Planning and Optimization D3. Abstractions: Additive Abstractions

Malte Helmert and Thomas Keller

Universität Basel

October 30, 2019

Content of this Course

Additivity	Outlook	
0000000		

Additivity

Orthogonality of Abstractions

Definition (Orthogonal)

Let α_1 and α_2 be abstractions of transition system \mathcal{T} .

We say that α_1 and α_2 are orthogonal if for all transitions $s \xrightarrow{\ell} t$ of \mathcal{T} , we have $\alpha_i(s) = \alpha_i(t)$ for at least one $i \in \{1, 2\}$.

Affecting Transition Labels

Definition (Affecting Transition Labels)

Let $\mathcal T$ be a transition system, and let ℓ be one of its labels.

We say that ℓ affects \mathcal{T} if \mathcal{T} has a transition $s \xrightarrow{\ell} t$ with $s \neq t$.

Theorem (Affecting Labels vs. Orthogonality)

Let α_1 and α_2 be abstractions of transition system \mathcal{T} . If no label of \mathcal{T} affects both \mathcal{T}^{α_1} and \mathcal{T}^{α_2} ,

then α_1 and α_2 are orthogonal.

(Easy proof omitted.)

Additivity	Outlook
0000000	

Orthogonal Abstractions: Example

	2		6
5	7		
3	4	1	

9		12	
		14	13
			11
15	10	8	

Are the abstractions orthogonal?

dditivity	
00000000	

Orthogonal Abstractions: Example

Q)			1	2		
				1	4	1	3
						1	1
1	5	1	0	8	3		

Are the abstractions orthogonal?

Orthogonality and Additivity

Theorem (Additivity for Orthogonal Abstractions)

Let $h^{\alpha_1}, \ldots, h^{\alpha_n}$ be abstraction heuristics of the same transition system such that α_i and α_j are orthogonal for all $i \neq j$.

Then $\sum_{i=1}^{n} h^{\alpha_i}$ is a safe, goal-aware, admissible and consistent heuristic for Π .

Summary 00

Orthogonality and Additivity: Example

transition system \mathcal{T} state variables: first package, second package, truck

Summary 00

Orthogonality and Additivity: Example

$\begin{array}{c} \mbox{abstraction } \alpha_1 \\ \mbox{abstraction: only consider value of first package} \end{array}$

Summary 00

Orthogonality and Additivity: Example

$\begin{array}{c} \mbox{abstraction } \alpha_1 \\ \mbox{abstraction: only consider value of first package} \end{array}$

Orthogonality and Additivity: Example

abstraction α_2 (orthogonal to α_1) abstraction: only consider value of second package

Summary 00

Orthogonality and Additivity: Example

abstraction α_2 (orthogonal to α_1) abstraction: only consider value of second package

Proof.

We prove goal-awareness and consistency;

the other properties follow from these two.

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_\star \rangle$ be the concrete transition system. Let $h = \sum_{i=1}^n h^{\alpha_i}$.

. . .

Orthogonality and Additivity: Proof (1)

Proof.

We prove goal-awareness and consistency;

the other properties follow from these two.

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ be the concrete transition system. Let $h = \sum_{i=1}^n h^{\alpha_i}$. Goal-awareness: For goal states $s \in S_*$, $h(s) = \sum_{i=1}^n h^{\alpha_i}(s) = \sum_{i=1}^n 0 = 0$ because all individual

abstraction heuristics are goal-aware.

Proof (continued).

Consistency: Let $s \xrightarrow{o} t \in T$. We must prove $h(s) \leq c(o) + h(t)$.

Proof (continued).

Consistency: Let $s \xrightarrow{o} t \in T$. We must prove $h(s) \leq c(o) + h(t)$. Because the abstractions are orthogonal, $\alpha_i(s) \neq \alpha_i(t)$ for at most one $i \in \{1, ..., n\}$.

Proof (continued).

Consistency: Let $s \xrightarrow{o} t \in T$. We must prove $h(s) \leq c(o) + h(t)$. Because the abstractions are orthogonal, $\alpha_i(s) \neq \alpha_i(t)$ for at most one $i \in \{1, ..., n\}$.

Case 1: $\alpha_i(s) = \alpha_i(t)$ for all $i \in \{1, \ldots, n\}$.

Proof (continued).

Consistency: Let $s \xrightarrow{o} t \in T$. We must prove $h(s) \leq c(o) + h(t)$. Because the abstractions are orthogonal, $\alpha_i(s) \neq \alpha_i(t)$ for at most one $i \in \{1, ..., n\}$.

Case 1: $\alpha_i(s) = \alpha_i(t)$ for all $i \in \{1, ..., n\}$. Then $h(s) = \sum_{i=1}^n h^{\alpha_i}(s)$ $= \sum_{i=1}^n h^{\alpha_i}(s)$

$$=\sum_{i=1}^{n} h^{\alpha_i}(\alpha_i(t))$$
$$=\sum_{i=1}^{n} h^{\alpha_i}(\alpha_i(t))$$
$$=\sum_{i=1}^{n} h^{\alpha_i}(t)$$
$$= h(t) \le c(o) + h(t).$$

. . .

Proof (continued).

Case 2: $\alpha_i(s) \neq \alpha_i(t)$ for exactly one $i \in \{1, ..., n\}$. Let $k \in \{1, ..., n\}$ such that $\alpha_k(s) \neq \alpha_k(t)$.

Proof (continued).

Case 2:
$$\alpha_i(s) \neq \alpha_i(t)$$
 for exactly one $i \in \{1, ..., n\}$.
Let $k \in \{1, ..., n\}$ such that $\alpha_k(s) \neq \alpha_k(t)$.
Then $h(s) = \sum_{i=1}^n h^{\alpha_i}(s)$
 $= \sum_{i \in \{1, ..., n\} \setminus \{k\}} h^*_{\mathcal{T}^{\alpha_i}}(\alpha_i(s)) + h^{\alpha_k}(s)$
 $\leq \sum_{i \in \{1, ..., n\} \setminus \{k\}} h^*_{\mathcal{T}^{\alpha_i}}(\alpha_i(t)) + c(o) + h^{\alpha_k}(t)$
 $= c(o) + \sum_{i=1}^n h^{\alpha_i}(t)$
 $= c(o) + h(t),$

where the inequality holds because $\alpha_i(s) = \alpha_i(t)$ for all $i \neq k$ and h^{α_k} is consistent.

Outlook	
00000	

Using Abstraction Heuristics in Practice

In practice, there are conflicting goals for abstractions:

- we want to obtain an informative heuristic, but
- want to keep its representation small.

Abstractions have small representations if

- there are few abstract states and
- there is a succinct encoding for α .

Outlook	
00000	

Counterexample: One-State Abstraction

One-state abstraction: $\alpha(s) := \text{const.}$

- $+\,$ very few abstract states and succinct encoding for α
- completely uninformative heuristic

	Outlook	
00000000	000000	00

Counterexample: Identity Abstraction

Identity abstraction: $\alpha(s) := s$.

- $+\,$ perfect heuristic and succinct encoding for α
- too many abstract states

Outlook	
000000	

Counterexample: Perfect Abstraction

Perfect abstraction: $\alpha(s) := h^*(s)$.

- $+\,$ perfect heuristic and usually few abstract states
- usually no succinct encoding for α

Additivity	JOK	nmary
00000000 00000	000 00	

Automatically Deriving Good Abstraction Heuristics

Abstraction Heuristics for Planning: Main Research Problem

Automatically derive effective abstraction heuristics for planning tasks.

 we will study two state-of-the-art approaches in Chapters D4–D8

Outlook	Summary
	•0

Summary

Summary

- Abstraction heuristics from orthogonal abstractions can be added without losing admissibility or consistency.
- One sufficient condition for orthogonality is that all abstractions are affected by disjoint sets of labels.
- Practically useful abstractions are those which give informative heuristics, yet have a small representation.
- Coming up with good abstractions automatically is the main research challenge when applying abstraction heuristics in planning.