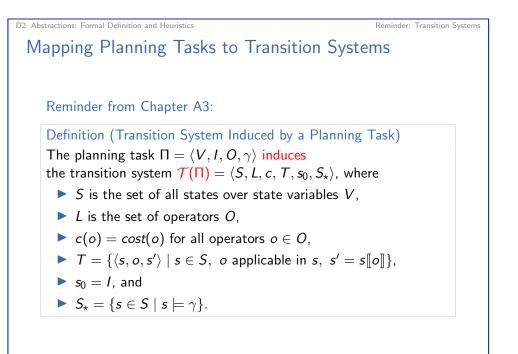


D2.1 Reminder: Transition Systems

M. Helmert, T. Keller (Universität Basel)

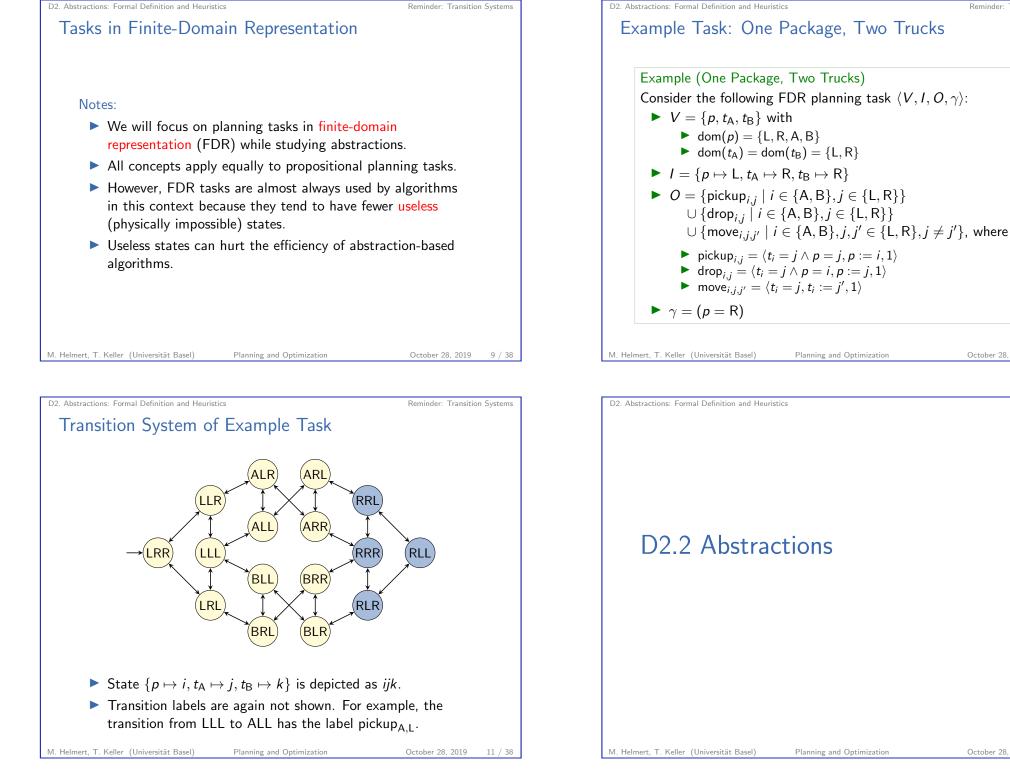
October 28, 2019 5 / 38

Planning and Optimization


Planning and Optimization

7 / 38

D2. Abstractions: Formal Definition and Heuristics **Transition Systems**


Reminder from Chapter A3:

 S is a finite set of states, L is a finite set of (transition) labels, c : L → ℝ₀⁺ is a label cost function, T ⊆ S × L × S is the transition relation, s₀ ∈ S is the initial state, and S_* ⊆ S is the set of goal states. 	
 c: L → ℝ₀⁺ is a label cost function, T ⊆ S × L × S is the transition relation, s₀ ∈ S is the initial state, and 	
• $T \subseteq S \times L \times S$ is the transition relation, • $s_0 \in S$ is the initial state, and	
• $s_0 \in S$ is the initial state, and	
• $S_* \subseteq S$ is the set of goal states.	
· · · · · · · · · · · · · · · · · · ·	
We say that $\mathcal T$ has the transition $\langle s,\ell,s' angle$ if $\langle s,\ell,s' angle\in$	Τ.
We also write this as $s \xrightarrow{\ell} s'$, or $s o s'$ when not intere	sted in ℓ
Note: Transition systems are also called state spaces.	

Planning and Optimization

8 / 38

October 28, 2019

October 28, 2019

12 / 38

10 / 38

Abstractions

Example Task: One Package, Two Trucks

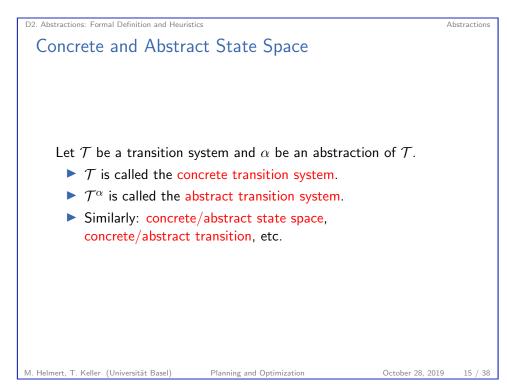
D2. Abstractions: Formal Definition and Heuristics

Abstractions

Abstractions

Definition (Abstraction)

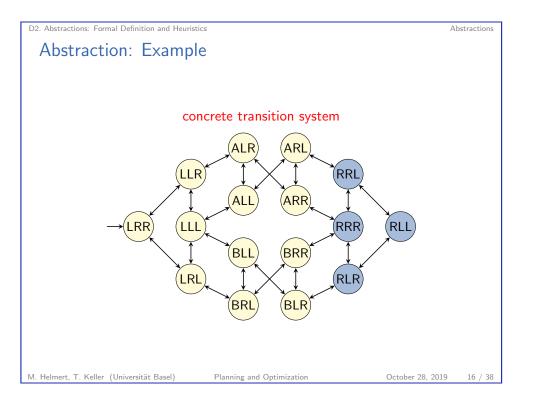
Let $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$ be a transition system. An abstraction (also: abstraction function, abstraction mapping) of \mathcal{T} is a function $\alpha : S \to S^{\alpha}$ defined on the states of \mathcal{T} , where S^{α} is an arbitrary set.

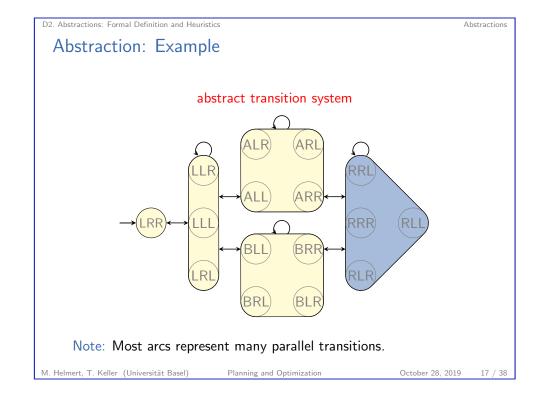

Without loss of generality, we require that α is surjective.

Intuition: α maps the states of \mathcal{T} to another (usually smaller) abstract state space.

Planning and Optimization

M. Helmert, T. Keller (Universität Basel)


October 28, 2019 13 / 38



D2. Abstractions: Formal Definition and Heuristics

Abstract Transition System

Definition (Abstract Transition System) Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ be a transition system, and let $\alpha : S \to S^{\alpha}$ be an abstraction of \mathcal{T} . The abstract transition system induced by α , in symbols \mathcal{T}^{α} , is the transition system $\mathcal{T}^{\alpha} = \langle S^{\alpha}, L, c, T^{\alpha}, s_0^{\alpha}, S_*^{\alpha} \rangle$ defined by: • $\mathcal{T}^{\alpha} = \{ \langle \alpha(s), \ell, \alpha(t) \rangle \mid \langle s, \ell, t \rangle \in T \}$ • $s_0^{\alpha} = \alpha(s_0)$ • $S_*^{\alpha} = \{ \alpha(s) \mid s \in S_* \}$

D2. Abstractions: Formal Definition and Heuristics

Homomorphisms and Isomorphisms

Homomorphisms and Isomorphisms

- The abstraction mapping α that transforms T to T^α is also called a strict homomorphism from T to T^α.
- Roughly speaking, in mathematics a homomorphism is a property-preserving mapping between structures.
- A strict homomorphism is one where no additional features are introduced. A non-strict homomorphism in planning would mean that the abstract transition system may include additional transitions and goal states not induced by α.
- ▶ We only consider strict homomorphisms in this course.
- If α is bijective, it is called an isomorphism between \mathcal{T} and \mathcal{T}^{α} , and the two transition systems are called isomorphic.

D2.3 Homomorphisms and Isomorphisms

M. Helmert, T. Keller (Universität Basel)

D2. Abstractions: Formal Definition and Heuristics

Homomorphisms and Isomorphisms

18 / 38

October 28, 2019

Isomorphic Transition Systems

The notion of isomorphic transition systems is important enough

Planning and Optimization

to warrant a formal definition:

Definition (Isomorphic Transition Systems) Let $\mathcal{T} = \langle S, L, c, T, s_0, S_\star \rangle$ and $\mathcal{T}' = \langle S', L', c', T', s'_0, S'_\star \rangle$ be transition systems.

We say that \mathcal{T} is isomorphic to \mathcal{T}' , in symbols $\mathcal{T} \sim \mathcal{T}'$, if there exist bijective functions $\varphi : S \to S'$ and $\lambda : L \to L'$ such that:

$$\blacktriangleright \ s \xrightarrow{\ell} t \in T \text{ iff } \varphi(s) \xrightarrow{\lambda(\ell)} \varphi(t) \in T',$$

- $\blacktriangleright \ c'(\lambda(\ell)) = c(\ell) \text{ for all } \ell \in L,$
- $\varphi(s_0) = s'_0$, and
- ► $s \in S_{\star}$ iff $\varphi(s) \in S'_{\star}$.

D2. Abstractions: Formal Definition and Heuristics

Homomorphisms and Isomorphisms

Graph-Equivalent Transition Systems

Sometimes a weaker notion of equivalence is useful:

Definition (Graph-Equivalent Transition Systems) Let $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$ and $\mathcal{T}' = \langle S', L', c', T', s'_0, S'_{\star} \rangle$ be transition systems.

We say that \mathcal{T} is graph-equivalent to \mathcal{T}' , in symbols $\mathcal{T} \stackrel{\mathsf{G}}{\sim} \mathcal{T}'$, if there exists a bijective function $\varphi : S \to S'$ such that:

- ▶ There is a transition $s \xrightarrow{\ell} t \in T$ with $c(\ell) = k$ iff there is a transition $\varphi(s) \xrightarrow{\ell'} \varphi(t) \in T'$ with $c'(\ell') = k$,
- ▶ $\varphi(s_0) = s'_0$, and
- ► $s \in S_{\star}$ iff $\varphi(s) \in S'_{\star}$.

Note: The labels of \mathcal{T} and \mathcal{T}' do not matter except that transitions of the same cost must be preserved.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization

October 28, 2019 21 / 38

D2. Abstractions: Formal Definition and Heuristics

Abstraction Heuristics

D2.4 Abstraction Heuristics

Isomorphism vs. Graph Equivalence

- \blacktriangleright (~) and ($\stackrel{G}{\sim}$) are equivalence relations.
- Two isomorphic transition systems are interchangeable for all practical intents and purposes.
- Two graph-equivalent transition systems are interchangeable for most intents and purposes.
- ▶ In particular, their goal distances are identical.
- Isomorphism implies graph equivalence, but not vice versa.

Planning and Optimization

M. Helmert, T. Keller (Universität Basel)

October 28, 2019

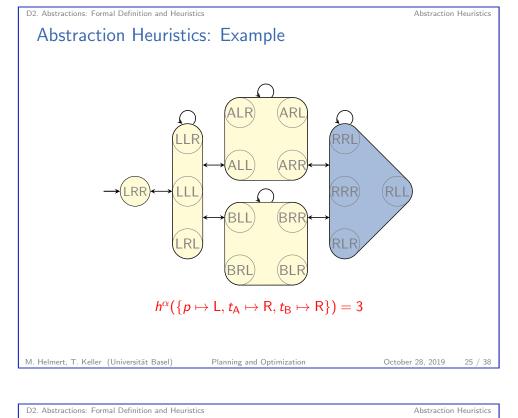
22 / 38

Abstraction Heuristics

D2. Abstractions: Formal Definition and Heuristics

Abstraction Heuristics

Definition (Abstraction Heuristic) Let $\alpha : S \to S^{\alpha}$ be an abstraction of a transition system \mathcal{T} . The abstraction heuristic induced by α , written h^{α} , is the heuristic function $h^{\alpha} : S \to \mathbb{R}^+_0 \cup \{\infty\}$ defined as


 $h^{lpha}(s) = h^*_{\mathcal{T}^{lpha}}(lpha(s)) \quad ext{for all } s \in S,$

where $h_{\mathcal{T}^{\alpha}}^{*}$ denotes the goal distance function in \mathcal{T}^{α} .

Notes:

- $h^{lpha}(s) = \infty$ if no goal state of \mathcal{T}^{lpha} is reachable from lpha(s)
- We also apply abstraction terminology to planning tasks Π, which stand for their induced transition systems. For example, an abstraction of Π is an abstraction of T(Π).

Planning and Optimization

Consistency of Abstraction Heuristics (2)

Proof (continued).

Consistency: Consider any state transition $s \xrightarrow{\ell} t$ of \mathcal{T} . We need to show $h^{\alpha}(s) \leq c(\ell) + h^{\alpha}(t)$. By the definition of \mathcal{T}^{α} , we get $\alpha(s) \xrightarrow{\ell} \alpha(t) \in \mathcal{T}^{\alpha}$. Hence, $\alpha(t)$ is a successor of $\alpha(s)$ in \mathcal{T}^{α} via the label ℓ .

We get:

 $egin{aligned} h^lpha(s) &= h^*_{\mathcal{T}^lpha}(lpha(s)) \ &\leq c(\ell) + h^*_{\mathcal{T}^lpha}(lpha(t)) \ &= c(\ell) + h^lpha(t), \end{aligned}$

where the inequality holds because perfect goal distances $h^*_{\mathcal{T}^\alpha}$ are consistent in $\mathcal{T}^\alpha.$

(The shortest path from $\alpha(s)$ to the goal in \mathcal{T}^{α} cannot be longer than the shortest path from $\alpha(s)$ to the goal via $\alpha(t)$.)

Planning and Optimization

27 / 38

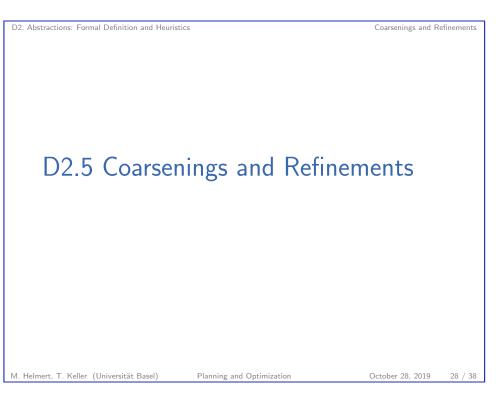
Abstraction Heuristics

Consistency of Abstraction Heuristics (1)

Theorem (Consistency and Admissibility of h^{α}) Let α be an abstraction of a transition system \mathcal{T} . Then h^{α} is safe, goal-aware, admissible and consistent.

Proof.

We prove goal-awareness and consistency; the other properties follow from these two.


Let $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$. Let $\mathcal{T}^{\alpha} = \langle S^{\alpha}, L, c, T^{\alpha}, s_0^{\alpha}, S_{\star}^{\alpha} \rangle$.

Goal-awareness: We need to show that $h^{\alpha}(s) = 0$ for all $s \in S_{\star}$, so let $s \in S_{\star}$. Then $\alpha(s) \in S_{\star}^{\alpha}$ by the definition of abstract transition systems, and hence $h^{\alpha}(s) = h_{T^{\alpha}}^{*}(\alpha(s)) = 0$

Planning and Optimization

M. Helmert, T. Keller (Universität Basel)

October 28, 2019 26 / 38

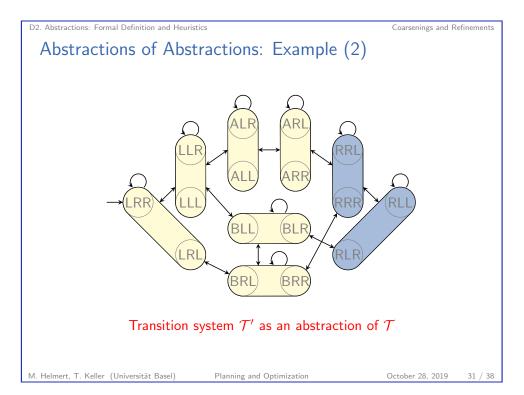
Coarsenings and Refinements

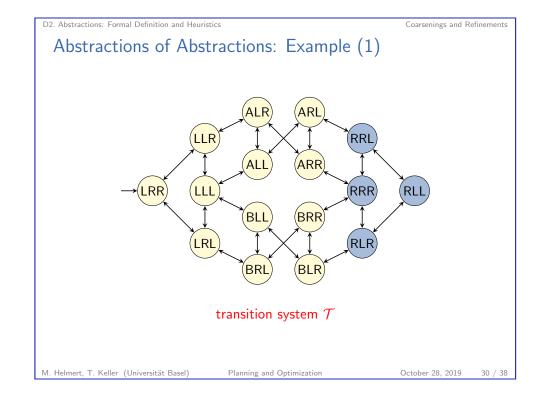
October 28, 2019

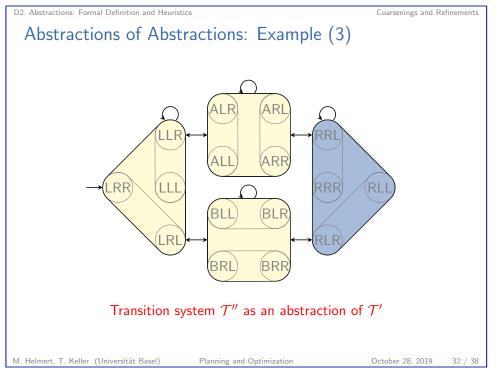
29 / 38

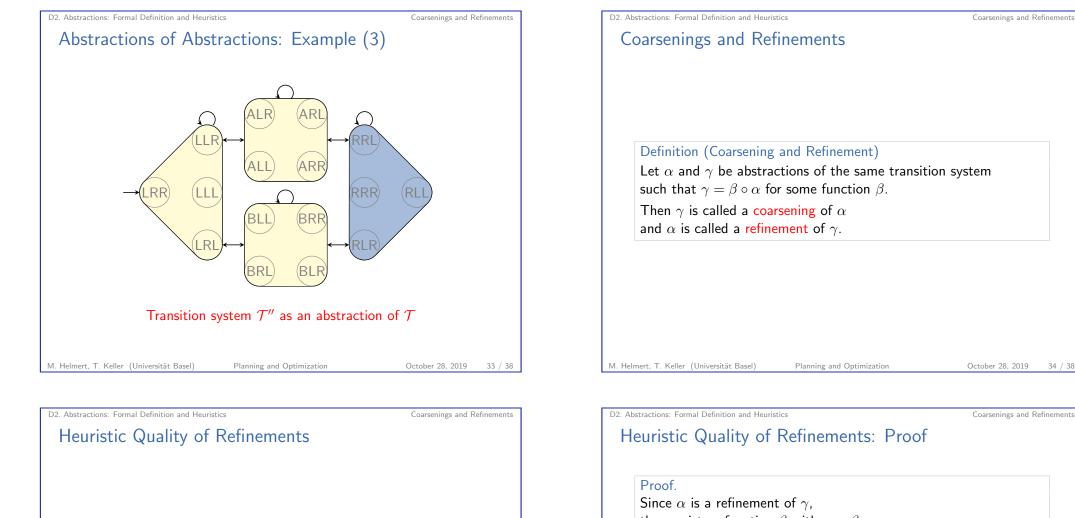
Abstractions of Abstractions

Since abstractions map transition systems to transition systems, they are composable:


- Using a first abstraction $\alpha : S \to S'$, map \mathcal{T} to \mathcal{T}^{α} .
- Using a second abstraction $\beta: S' \to S''$, map \mathcal{T}^{α} to $(\mathcal{T}^{\alpha})^{\beta}$.


The result is the same as directly using the abstraction $(\beta \circ \alpha)$:


• Let $\gamma: S \to S''$ be defined as $\gamma(s) = (\beta \circ \alpha)(s) = \beta(\alpha(s))$.


• Then $\mathcal{T}^{\gamma} = (\mathcal{T}^{\alpha})^{\beta}$.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization

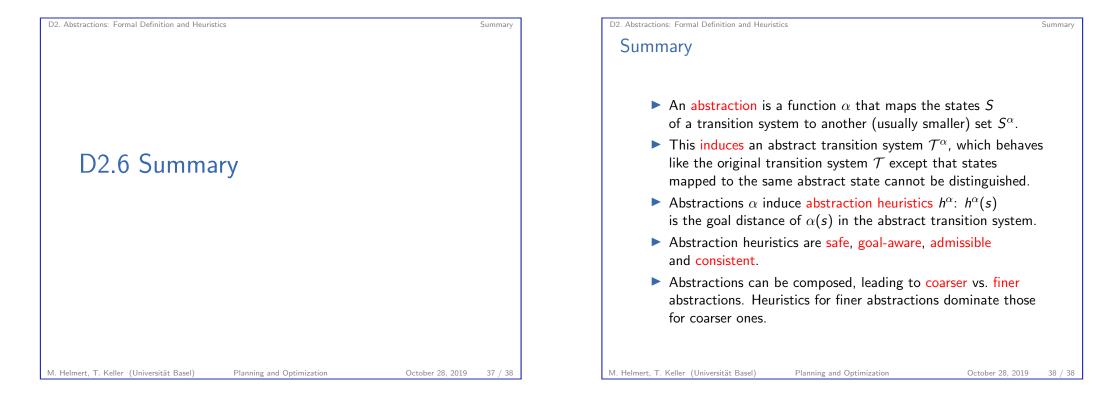
Theorem (Heuristic Quality of Refinements)

Let α and γ be abstractions of the same transition system such that α is a refinement of γ .

Then h^{α} dominates h^{γ} .

In other words, $h^{\gamma}(s) \leq h^{\alpha}(s) \leq h^{*}(s)$ for all states s.

Coarsenings and Refinements


34 / 38

there exists a function β with $\gamma = \beta \circ \alpha$. For all states s of Π , we get:

 $h^{\gamma}(s) = h^*_{\mathcal{T}^{\gamma}}(\gamma(s))$ $= h_{\mathcal{T}\gamma}^*(\beta(\alpha(s)))$ $=h_{\mathcal{T}^{\alpha}}^{\beta}(\alpha(s))$ $\leq h^*_{\mathcal{T}^{lpha}}(lpha(s))$ $= h^{\alpha}(s),$

where the inequality holds because $h_{\mathcal{T}^{\alpha}}^{\beta}$ is an admissible heuristic in the transition system \mathcal{T}^{α} .

Planning and Optimization

