Planning and Optimization D1. Abstractions: Introduction Malte Helmert and Thomas Keller Universität Basel October 28, 2019

October 28, 2019

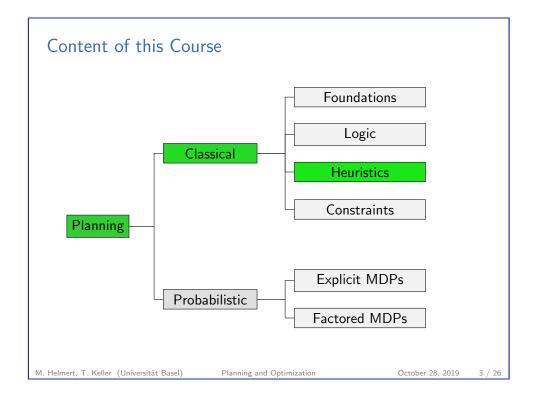
Planning and Optimization
October 28, 2019 — D1. Abstractions: Introduction

D1.1 Introduction

D1.2 Practical Requirements

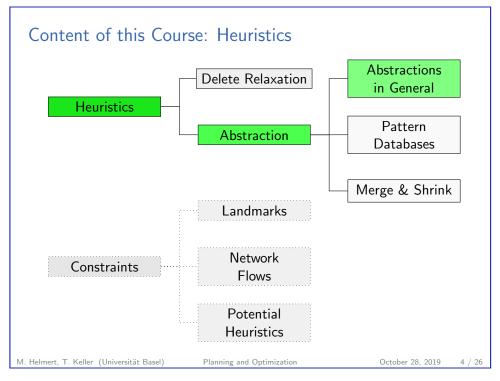
D1.3 Multiple Abstractions

D1.4 Outlook


D1.5 Summary

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization


October 28, 2019

2 / 26

Planning and Optimization

M. Helmert, T. Keller (Universität Basel)

D1. Abstractions: Introduction Introduction

D1.1 Introduction

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

October 28, 2019

5 / 26

D1. Abstractions: Introduction

Introduction

Coming Up with Heuristics in a Principled Way

General Procedure for Obtaining a Heuristic

Solve a simplified version of the problem.

Major ideas for heuristics in the planning literature:

- delete relaxation
- abstraction
- landmarks
- critical paths
- network flows
- potential heuristics

Heuristics based on abstraction are among the most prominent techniques for optimal planning.

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

October 28, 2019 6 /

D1. Abstractions: Introduction

Introduction

Abstracting a Transition System

Abstracting a transition system means dropping some distinctions between states, while preserving the transition behaviour as much as possible.

- An abstraction of a transition system $\mathcal T$ is defined by an abstraction mapping α that defines which states of $\mathcal T$ should be distinguished and which ones should not.
- From \mathcal{T} and α , we compute an abstract transition system \mathcal{T}^{α} which is similar to \mathcal{T} , but smaller.
- ► The abstract goal distances (goal distances in \mathcal{T}^{α}) are used as heuristic estimates for goal distances in \mathcal{T} .

D1. Abstractions: Introduction

Introduction

Abstracting a Transition System: Example

Example (15-Puzzle)

A 15-puzzle state is given by a permutation $\langle b, t_1, \dots, t_{15} \rangle$ of $\{1, \dots, 16\}$, where b denotes the blank position and the other components denote the positions of the 15 tiles.

One possible abstraction mapping ignores the precise location of tiles 8-15, i.e., two states are distinguished iff they differ in the position of the blank or one of the tiles 1-7:

$$\alpha(\langle b, t_1, \ldots, t_{15} \rangle) = \langle b, t_1, \ldots, t_7 \rangle$$

The heuristic values for this abstraction correspond to the cost of moving tiles 1–7 to their goal positions.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization

October 28, 2019

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

October 28, 2019

9 8

D1. Abstractions: Introduction

Abstraction Example: 15-Puzzle

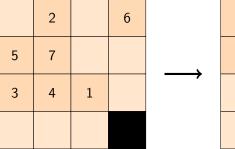
9	2	12	6
5	7	14	13
3	4	1	11
15	10	8	

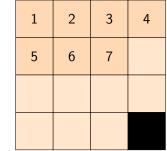
1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

real state space:

- ▶ $16! = 20922789888000 \approx 2 \cdot 10^{13}$ states
- $ightharpoonup rac{16!}{2} = 10461394944000 \approx 10^{13}$ reachable states

M. Helmert, T. Keller (Universität Basel)


D1. Abstractions: Introduction


Planning and Optimization

October 28, 2019

9 / 26

Abstraction Example: 15-Puzzle

abstract state space:

- ► $16 \cdot 15 \cdot \ldots \cdot 9 = 518918400 \approx 5 \cdot 10^8$ states
- ▶ $16 \cdot 15 \cdot \ldots \cdot 9 = 518918400 \approx 5 \cdot 10^8$ reachable states

Computing the Abstract Transition System: Example

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

October 28, 2019

D1. Abstractions: Introduction

D1. Abstractions: Introduction

Introducti

Computing the Abstract Transition System

Given \mathcal{T} and α , how do we compute \mathcal{T}^{α} ?

Requirement

We want to obtain an admissible heuristic.

Hence, $h^*(\alpha(s))$ (in the abstract state space \mathcal{T}^{α}) should never overestimate $h^*(s)$ (in the concrete state space \mathcal{T}).

An easy way to achieve this is to ensure that all solutions in \mathcal{T} are also present in \mathcal{T}^{α} :

- ▶ If s is a goal state in \mathcal{T} , then $\alpha(s)$ is a goal state in \mathcal{T}^{α} .
- If \mathcal{T} has a transition from s to t, then \mathcal{T}^{α} has a transition from $\alpha(s)$ to $\alpha(t)$.

Example (15-Puzzle)

In the running example:

- $\blacktriangleright~\mathcal{T}$ has the unique goal state $\langle 16,1,2,\dots,15 \rangle.$
 - $\rightsquigarrow \ \mathcal{T}^{\alpha} \ \text{has the unique goal state} \ \langle 16,1,2,\ldots,7 \rangle.$
- ▶ Let x and y be neighbouring positions in the 4 × 4 grid. \mathcal{T} has a transition from $\langle x, t_1, \ldots, t_{i-1}, y, t_{i+1}, \ldots, t_{15} \rangle$ to $\langle y, t_1, \ldots, t_{i-1}, x, t_{i+1}, \ldots, t_{15} \rangle$ for all $i \in \{1, \ldots, 15\}$.
 - \sim \mathcal{T}^{α} has a transition from $\langle x, t_1, \dots, t_{i-1}, y, t_{i+1}, \dots, t_7 \rangle$ to $\langle y, t_1, \dots, t_{i-1}, x, t_{i+1}, \dots, t_7 \rangle$ for all $i \in \{1, \dots, 7\}$.
 - Moreover, \mathcal{T}^{α} has a transition from $\langle x, t_1, \dots, t_7 \rangle$ to $\langle y, t_1, \dots, t_7 \rangle$ if $y \notin \{t_1, \dots, t_7\}$.

D1. Abstractions: Introduction Practical Requirements

D1.2 Practical Requirements

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

October 28, 2019

12 / 26

D1. Abstractions: Introduction

Practical Requirements

Practical Requirements for Abstractions

To be useful in practice, an abstraction heuristic must be efficiently computable. This gives us two requirements for α :

- For a given state s, the abstract state $\alpha(s)$ must be efficiently computable.
- ▶ For a given abstract state $\alpha(s)$, the abstract goal distance $h^*(\alpha(s))$ must be efficiently computable.

There are a number of ways of achieving these requirements:

- pattern database heuristics (Culberson & Schaeffer, 1996)
- merge-and-shrink abstractions (Dräger, Finkbeiner & Podelski, 2006)
- ► Cartesian abstractions (Ball, Podelski & Rajamani, 2001)
- structural patterns (Katz & Domshlak, 2008b)

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

October 28, 2019

-- / --

D1. Abstractions: Introduction

Practical Requirements

Practical Requirements for Abstractions: Example

Example (15-Puzzle)

In our running example, α can be very efficiently computed: just project the given 16-tuple to its first 8 components.

To compute abstract goal distances efficiently during search, the most common approach is to precompute all abstract goal distances prior to search by performing a backward uniform-cost search from the abstract goal state(s). These distances are then stored in a table (requires \approx 495 MiB RAM).

During search, computing $h^*(\alpha(s))$ is just a table lookup.

This heuristic is an example of a pattern database heuristic.

D1. Abstractions: Introduction

Multiple Abstractions

D1.3 Multiple Abstractions

M. Helmert, T. Keller (Universität Basel) Planning and Optimization

ntion

October 28, 2019

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

October 28, 2019

16 / 2

D1. Abstractions: Introduction

Multiple Abstractions

Multiple Abstractions

- One important practical question is how to come up with a suitable abstraction mapping α .
- ► Indeed, there is usually a huge number of possibilities, and it is important to pick good abstractions (i.e., ones that lead to informative heuristics).
- ► However, it is generally not necessary to commit to a single abstraction.

M. Helmert, T. Keller (Universität Basel)

D1. Abstractions: Introduction

Planning and Optimization

October 28, 2019

17 / 2

D1. Abstractions: Introduction

Multiple Abstractions

Combining Multiple Abstractions

Maximizing several abstractions:

- ▶ Each abstraction mapping gives rise to an admissible heuristic.
- ▶ By computing the maximum of several admissible heuristics, we obtain another admissible heuristic which dominates the component heuristics.
- ► Thus, we can always compute several abstractions and maximize over the individual abstract goal distances.

Adding several abstractions:

- ▶ In some cases, we can even compute the sum of individual estimates and still stay admissible.
- Summation often leads to much higher estimates than maximization, so it is important to understand under which conditions summation of heuristics is admissible.

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

October 28, 2019

10 / 0

Multiple Abstractions

Maximizing Several Abstractions: Example

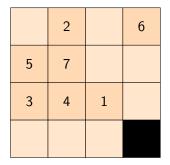
Example (15-Puzzle)

- ▶ with the same amount of memory required for the tables for the mapping to tiles 1–7, we could store the tables for nine different abstractions to six tiles and the blank
- ▶ use maximum of individual estimates

D1. Abstractions: Introduction

Multiple Abstraction

Adding Several Abstractions: Example


9	2	12	6
5	7	14	13
3	4	1	11
15	10	8	

9	2	12	6
5	7	14	13
3	4	1	11
15	10	8	

- ▶ 1st abstraction: ignore precise location of 8–15
- ▶ 2nd abstraction: ignore precise location of 1–7
- → Is the sum of the abstraction heuristics admissible?

D1. Abstractions: Introduction Multiple Abstractions

Adding Several Abstractions: Example

9		12	
		14	13
			11
15	10	8	

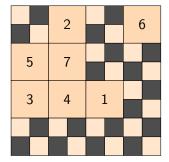
- ▶ 1st abstraction: ignore precise location of 8–15
- ▶ 2nd abstraction: ignore precise location of 1–7
- The sum of the abstraction heuristics is not admissible.

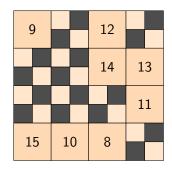
M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

October 28, 2019

October 28, 2019


21 / 26


D1. Abstractions: Introduction Outlook

D1.4 Outlook

D1. Abstractions: Introduction Multiple Abstract

Adding Several Abstractions: Example

- ▶ 1st abstraction: ignore precise location of 8–15 and blank
- ▶ 2nd abstraction: ignore precise location of 1–7 and blank
- → The sum of the abstraction heuristics is admissible.

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

October 28, 2019

22 / 26

D1. Abstractions: Introduction

Outlo

Our Plan for the Next Lectures

In the following, we take a deeper look at abstractions and their use for admissible heuristics.

In Chapters D2–D3, we formally introduce abstractions and abstraction heuristics and study some of their most important properties.

Afterwards, we discuss some particular classes of abstraction heuristics in detail, namely

- ▶ pattern database heuristics (D4–D6) and
- ▶ merge-and-shrink abstractions (D7–D8).

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

October 28, 2019

D1. Abstractions: Introduction Summary

D1.5 Summary

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

October 28, 2019

D1. Abstractions: Introduction

cions: Introduction Summary

Summary

► Abstraction is one of the principled ways of deriving heuristics for planning tasks and transition systems in general.

- The key idea is to map states to a smaller abstract transition system \mathcal{T}^{α} by means of an abstraction function α .
- ▶ Goal distances in \mathcal{T}^{α} are then used as admissible estimates for goal distances in the original transition system.
- ► To be practical, we must be able to compute abstraction functions and determine abstract goal distances efficiently.
- ► Often, multiple abstractions are used.

 They can always be maximized admissibly.
- ► Adding abstraction heuristics is not always admissible.

 When it is, it leads to a stronger heuristic than maximizing.

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

October 28, 2019 26

26 / 26