Planning and Optimization
B8. Symbolic Search: Full Algorithm

Malte Helmert and Thomas Keller

Universitat Basel

October 14, 2019

Content of this Course

% Foundations |

—I Heuristics |

—I Constraints |

Explicit MDPs |

Probabilistic

Factored MDPs |

Operations Formulas and Singletons Renaming S readth-first Search

Devising a Symbolic Search Algorithm

m We now put the pieces together to build
a symbolic search algorithm for propositional planning tasks.
m use BDDs as a black box data structure:
m care about provided operations and their time complexity
m do not care about their internal implementation
m Efficient implementations are available as libraries, e.g.:

m CUDD, a high-performance BDD library
m libbdd, shipped with Ubuntu Linux

Basic BDD Operations
©000000000

Basic BDD Operations

Basic BDD Operations Formulas and Singletons e Ning Sy 3readth-first Search D [¢ Summar

0O@00000000

BDD Operations: Preliminaries

m All BDDs work on a fixed and totally ordered
set of propositional variables.
m Complexity of operations given in terms of:

m k, the number of BDD variables
m [|B||, the number of nodes in the BDD B

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search
0080000000 Y|

BDD Operations (1)

Summar

BDD operations: logical /set atoms

m bdd-true(): build BDD representing all assignments
m in logic: T
m time complexity: O(1)

m bdd-false(): build BDD representing ()
m in logic: L
m time complexity: O(1)

m bdd-atom(v): build BDD representing {s | s(v) =1}
m in logic: v
m time complexity: O(1)

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search)isc on Summar
[e]e]e] lelelelele]e] [e]e]e} YOO000 ole

BDD Operations (2)

BDD operations: logical/set connectives

m bdd-complement(B): build BDD representing r(B)

m in logic: —¢

m time complexity: O(||B]|)

m bdd-union(B, B’): build BDD representing r(B) U r(B’)

m in logic: (p V)

m time complexity: O(||B]| - ||B']])

m analogously:

m bdd-intersection(B, B'): r(B)Nr(B’), (¢ A9)
bdd-setdifference(B, B'): r(B)\ r(B’), (¢ A)
bdd-implies(B, B'): r(B)U r(B’), (¢ = ¢)
bdd-equiv(B, B'): (r(B)Nr(B"))U(r(B)Nr(B")), (¢ <)

Basic BDD Operations Formulas and Singletons e ling Sy 3readth-first Search D
0000800000 5

BDD Operations (3)

Summar

BDD operations: Boolean tests
m bdd-includes(B,): return true iff | € r(B)
m in logic: | = ¢?
m time complexity: O(k)
m bdd-equals(B, B'): return true iff r(B) = r(B’)
m in logic: ¢ =7
m time complexity: O(1) (due to canonical representation)

Symbolic Breadth-first Search Discussion Summary

Basic BDD Operations Formulas and Singletons Renaming

[e]e]e]e]e] le]elele)

Conditioning: Formulas

The last two basic BDD operations are a bit more unusual
and require some preliminary remarks.

Conditioning a variable v in a formula ¢ to T or F,
written [T /v] or ¢[F/v], means restricting v
to a particular truth value:

Examples:
B (AN(BV-O)[T/Bl=(AA(TV-C)=A
B (AN(BV-C))[F/B]=(AN(LV-C)=AN-C

Basic BDD Operations Formulas and Singletons Renaming
[e]e]e]e]o]e] lolele) 000 SO

Summary

Conditioning: Sets of Assignments

We can define the same operation for sets of assignments S:
S[F/v] and S[T/v]| restrict S to elements with the given value
for v and remove v from the domain of definition:

Example:

8 S={{A—=F,B—=F,C— F},
{A=T,B—T,C+— F},
{A=T,B—»T,C—T}}

~ S[T/B]={{A—T,C+— F},

{A=T,C—T}}

3readth-first Search D) Summar

Basic BDD Operations Formulas and Singletons Renaming S

0000000800

Forgetting

Forgetting (a.k.a. existential abstraction) is similar to conditioning:
we allow either truth value for v and remove the variable.

We write this as Jv ¢ (for formulas) and v S (for sets).
Formally:

m v =o[T/v]Ve[F/v]

m dvS = S[T/v]US[F/v]

Basic BDD Operations Formulas and Singletons Renaming

h discussion Summar
0000000080 500000

Forgetting: Example

Examples:

s S={{A—-F,B—F,C— F},
{A—=T,B—T,C— F},
{A=T,B—»T,C—T}}

~ ABS ={{A—F,C+— F},

{A—T,C+— F},
{A=>T,C—T}}
~ 3CS={{A— F,B+— F},
{A=T,B—T}}

Basic BDD Operations Formulas and Singletons Renaming Sy lic h Disc on Summar
000000000e -

BDD Operations (4)

BDD operations: conditioning and forgetting
m bdd-condition(B, v, t) where t € {T,F}:
build BDD representing r(B)[t/v]
m in logic: ¢[t/v]
m time complexity: O(||B]|)
m bdd-forget(B, v):
build BDD representing 3v r(B)

minlogic: v (= ¢[T/v]V ¢[F/v])
m time complexity: O(||B||?)

Formulas and Singletons
000

Formulas and Singletons

erations Formulas and Singletons enaming S readth-first Search

oeo

Formulas to BDDs

m With the logical /set operations, we can convert propositional
formulas ¢ into BDDs representing the models of ¢.

= We denote this computation with bdd-formula(¢y).

m Each individual logical connective takes polynomial time,
but converting a full formula of length n can take O(2") time.
(How is this possible?)

erations Formulas and Singletons Renaming S readth-first Search

ee] J

Singleton BDDs

m We can convert a single truth assignment /
into a BDD representing {/} by computing
the conjunction of all literals true in /
(using bdd-atom, bdd-complement and bdd-intersection).

m We denote this computation with bdd-singleton(/).

m When done in the correct order, this takes time O(k).

Renaming
@00

Renaming

) Operations Formulas and Singletons Renamin S 3readth-first Search D) o Summar
F g g

oeo

Renaming

We will need to support one final operation on formulas: renaming.

Renaming X to Y in formula ¢, written p[X — Y],
means replacing all occurrences of X by Y in .

We require that Y is not present in ¢ initially.

Example:
mo=(AAN(BV-(Q))
~ p[A— D] = (DA (BV-C))

) Operations Formulas and Singletons Renaming S 3readth-first Search

How Hard Can That Be?

m For formulas, renaming is a simple (linear-time) operation.

m For a BDD B, it is equally simple (O(||B]|)) when renaming
between variables that are adjacent in the variable order.

= In general, it requires O(||B||?), using the equivalence
e[X = Y] =3IX(p A (X < Y))

Symbolic Breadth-first Search

®000000

Symbolic Breadth-first Search

erations Formulas and Singletons

Symbolic Breadth-first Search D
0®00000 [

Planning Task State Variables vs. BDD Variables

Consider propositional planning task (V/, /I, O,~) with states S.

In symbolic planning, we have two BDD variables v and v/
for every state variable v € V of the planning task.

m use unprimed variables v to describe sets of states:
{s € S | some property}

m use combinations of unprimed and primed variables v, v/
to describe sets of state pairs:
{(s,s’) | some property}

Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussio
0 000 0080000

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy := {/}
i:=0
loop:
if reached; N goal_states # :
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

3DD Operations Formulas and Singletons

Renaming Symbolic Breadth-first Search D
000 foJe] Yelolele)

Summary

Breadth-first Search with Progression and BDDs

def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy := {/}
i:=0
loop:

if reached; N goal_states # :
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-formula.

3DD Operations Formulas and Singletons

Renaming Symbolic Breadth-first Search D
000 foJe] Yelolele)

Summary

Breadth-first Search with Progression and BDDs

def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy := {/}
i:=0
loop:

if reached; N goal_states # :
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-singleton.

ic BDD

perations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary
o 000 foJe] Yelolele) 000000

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V, I, O, 7):
goal_states := models(y)
reachedy := {/}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-intersection, bdd-false, bdd-equals.

3DD Operations Formulas and Singletons

Renaming Symbolic Breadth-first Search D
000 foJe] Yelolele)

Summary

Breadth-first Search with Progression and BDDs

def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy := {/}
i:=0
loop:

if reached; N goal_states # :
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-union.

3DD Operations Formulas and Singletons

Renaming Symbolic Breadth-first Search D
000 foJe] Yelolele)

Summary

Breadth-first Search with Progression and BDDs

def bfs-progression(V, I, O, 7):
goal_states := models(y)
reachedy := {/}
i:=0
loop:
if reached; N goal_states # :
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:

return no solution exists
i=i+1

Use bdd-equals.

3DD Operations Formulas and Singletons

Renaming Symbolic Breadth-first Search D
000 foJe] Yelolele)

Summary

Breadth-first Search with Progression and BDDs

def bfs-progression(V, I, O, 7):
goal_states := models(y)
reachedy := {/}
i:=0
loop:

if reached; N goal_states # :
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

How to do this?

erations Formulas and Singletons Renaming Symbolic Breadth-first Search
000 000 000@000

The apply Function (1)

We need an operation that

m for a set of states reached (given as a BDD)
m and a set of operators O
m computes the set of states (as a BDD) that can be reached

by applying some operator o € O in some state s € reached.
We have seen something similar already. ..

Formulas and Singletons Renaming Symbolic Breadth-first Search D) Summar
0000000 5

Translating Operators into Formulas

Definition (Operators in Propositional Logic)

Let o be an operator and V a set of state variables.
Define 1v(0) := pre(o) A A\, c\ (regr(v, eff0)) <+ v').

States that o is applicable and describes how
m the new value of v, represented by v/,

m must relate to the old state, described by variables V.

Operations Formulas and Singletons Renaming Symbolic Breadth-first Search
000 0000000

The apply Function (2)

m The formula 7y/(0) describes all transitions s = s’
m induced by a single operator o
m in terms of variables V' describing s
m and variables V' describing s’.
m The formula \/ .o 7v(0) describes state transitions
by any operator in O.
m We can translate this formula to a BDD
(over variables V U V') with bdd-formula.
m The resulting BDD is called the transition relation
of the planning task, written as T(O).

Renaming Symbolic Breadth-first Search Discussion Summary
0000000 000000 oo

ic BDD

perations Formulas and Singletons

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)

as follows:

The apply function

def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B)

3DD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Summary

000000e

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)

as follows:

The apply function

def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B)
This describes the set of state pairs (s, s’) where s’ is a successor
of s in terms of variables VU V'.

Renaming Symbolic Breadth-first Search Discussion Summary
0000000 000000 oo

ic BDD

perations Formulas and Singletons

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function

def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B)
This describes the set of state pairs (s, s’) where s’ is a successor
of s and s € reached in terms of variables V U V’.

3DD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search ssio Summary
o 000 000000@ o o 0o

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)

as follows:

The apply function

def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B)

This describes the set of states s’ which are successors
of some state s € reached in terms of variables V".

3DD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search ssio Summary
o 000 000000@ o o 0o

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)

as follows:

The apply function

def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B)

This describes the set of states s’ which are successors
of some state s € reached in terms of variables V.

Symbolic Breadth-first Search Discussion Summary
000000@ 000000 00

asic BDD Upr—r ations F |muh and Singletons Renaming

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function

def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B)
Thus, apply indeed computes the set of successors of reached
using operators O.

Discussion
©00000

Discussion

Sreadth-first Search Discussion Su

O®@0000

Discussion

m This completes the discussion of a (basic)
symbolic search algorithm for classical planning.

m We ignored the aspect of solution extraction.
This needs some extra work, but is not a major challenge.

m In practice, some steps can be performed slightly more
efficiently, but these are comparatively minor details.

erations Formulas and Singletons Renaming S eadth-first Search Discussion

Variable Orders

For good performance, we need a good variable ordering.

m Variables that refer to the same state variable
before and after operator application (v and v/)
should be neighbors in the transition relation BDD.

)perations Formulas and Singletons Renaming S readth-first Search Discussion

O00e00

Finite-Domain Variables and Variable Orders

The algorithm can easily be extended to FDR tasks
by using [log, n] BDD variables to represent
a state variable with n possible values.
m Variables related to the same FDR variable
should be kept together in the BDD variable ordering
(but still interleaving primed and unprimed variables).
m Automatic conversion from STRIPS to SAS™
was first explored in the context of symbolic search.

m It was found critical for performance.

St

1ulas and Singletons R g S 3readth-first Search Discussion Su

[e]e]ele] Je]

Extensions

Symbolic search can be extended to...
m regression and bidirectional search:
this is very easy and often effective
m uniform-cost search:
requires some work, but not too difficult in principle

m heuristic search:
requires a heuristic representable as a BDD;
has not really been shown to outperform blind symbolic search

Discussion
00000e

Literature

@ Randal E. Bryant.
Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers 35.8, pp. 677—691, 1986.
Reduced ordered BDDs.

B Kenneth L. McMillan.
Symbolic Model Checking.
PhD Thesis, 1993.
Symbolic search with BDDs.

El Alvaro Torralba.
Symbolic Search and Abstraction Heuristics
for Cost-Optimal Planning.
PhD Thesis, 2015.
State of the art of symbolic search planning.

[Je]

Summary

3readth-first Search 1 Summary

oe

Summary

m Symbolic search operates on sets of states
instead of individual states as in explicit-state search.

m State sets and transition relations can be represented
as BDDs.

m Based on this, we can implement a blind breadth-first search
in an efficient way.

m A good variable ordering is crucial for performance.

	Basic BDD Operations
	

	Formulas and Singletons
	

	Renaming
	

	Symbolic Breadth-first Search
	

	Discussion
	

	Summary
	

