

Planning and Optimizat October 9, 2019 — B5. SAT Planni	ion ng: Core Idea and Sequential End	coding	
B5.1 Introduction			
B5.2 Formula Overview			
B5.3 Initial State, Goal, Operator Selection			
B5.4 Transitions			
B5.5 Summary			
N. Helmert, T. Keller (Universität Basel) Pla	anning and Optimization	October 9, 2019	2 / 28

14 / 28

October 9, 2019

17 / 28

SAT Formula: Operator Selection

Let $O = \{o_1, ..., o_n\}.$

SAT Formula: Operator Selection operator selection clauses:

•
$$o_1^i \lor \cdots \lor o_n^i$$
 for all $1 \le i \le T$

operator exclusion clauses:

• $\neg o_i^i \lor \neg o_k^i$ for all $1 \le i \le T$, $1 \le j < k \le n$

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

M. Helmert, T. Keller (Universität Basel) Plannig and Optimization October 9, 2019 18 / 28

B5. SAT Planning: Core Idea and Sequential Encoding

M. Helmert, T. Keller (Universität Basel)

B5. SAT Planning: Core Idea and Sequential Encoding Simplifications and Abbreviations • Let us pick the last formula apart to understand it better (and also get a CNF representation along the way). • Let us call the formula τ ("transition"): $\tau = o^i \rightarrow (v^i \leftrightarrow regr(v, eff(o))^{i-1}).$ • First, some abbreviations: • Let e = eff(o). • Let e = eff(o). • Let $\rho = regr(v, e)$ ("regression"). We have $\rho = effcond(v, e) \lor (v \land \neg effcond(\neg v, e)).$ • Let $\delta = effcond(v, e)$ ("deleted"). • $\tau = o^i \rightarrow (v^i \leftrightarrow \rho^{i-1})$ with $\rho = \alpha \lor (v \land \neg \delta)$

Planning and Optimization

Transitions

Reminder: $\tau_1 = o^i \to (v^i \to \rho^{i-1})$ with $\rho = \alpha \lor (v \land \neg \delta)$ $\tau_1 = o^i \rightarrow (v^i \rightarrow o^{i-1})$ $\equiv o^i \rightarrow (\neg \rho^{i-1} \rightarrow \neg v^i)$ $\equiv (o^i \wedge \neg o^{i-1}) \rightarrow \neg v^i$ $\equiv (o^{i} \land \neg (\alpha^{i-1} \lor (v^{i-1} \land \neg \delta^{i-1}))) \to \neg v^{i}$ $\equiv (o^{i} \land (\neg \alpha^{i-1} \land (\neg \gamma^{i-1} \lor \delta^{i-1}))) \rightarrow \neg \gamma^{i}$ $\equiv \underbrace{((o^{i} \land \neg \alpha^{i-1} \land \neg v^{i-1}) \to \neg v^{i})}_{\tau_{11}} \land \underbrace{((o^{i} \land \neg \alpha^{i-1} \land \delta^{i-1}) \to \neg v^{i})}_{\tau_{12}}$ \rightarrow consider this two separate constraints τ_{11} and τ_{12} M. Helmert, T. Keller (Universität Basel) Planning and Optimization October 9, 2019 22 / 28 B5. SAT Planning: Core Idea and Sequential Encoding

B5. SAT Planning: Core Idea and Sequential Encoding

Picking it Apart (2)

Picking it Apart (3) Almost done! $\tau_{12} = (o^i \wedge \neg \alpha^{i-1} \wedge \delta^{i-1}) \rightarrow \neg v^i$ "When applying o, if o deletes v and does not add it, it is false afterwards." (Note the add-after-delete semantics.) called negative effect clause \blacktriangleright in clause form: $\neg o^i \lor \alpha^{i-1} \lor \neg \delta^{i-1} \lor \neg v^i$ For STRIPS tasks, these are indeed clauses. (And in general?) Planning and Optimization October 9, 2019 23 / 28 M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

Transitions

B5. SAT Planning: Core Idea and Sequential Encoding

Summary

B5.5 Summary

SAT Formula: Transitions

B5. SAT Planning: Core Idea and Sequential Encoding

SAT Formula: Transitions			
precondition clauses:			
• $\neg o^i \lor pre(o)^{i-1}$	for all $1 \leq i \leq T$, $o \in O$		
positive and negative effect claus	ses:		
$\blacktriangleright \neg o^i \lor \neg \alpha^{i-1} \lor v^i$	for all $1 \leq i \leq T$, $o \in O$, $v \in V$		
$\blacktriangleright \neg o^i \lor \alpha^{i-1} \lor \neg \delta^{i-1} \lor \neg v^i$	for all $1 \leq i \leq T$, $o \in O$, $v \in V$		
positive and negative frame claus	ses:		
$\blacktriangleright \neg o^i \lor \neg v^{i-1} \lor \delta^{i-1} \lor v^i$	for all $1 \leq i \leq T$, $o \in O$, $v \in V$		
	for all $1 \leq i \leq T$, $o \in O$, $v \in V$		
where $\alpha = effcond(v, eff(o))$, $\delta = effcond(\neg v, eff(o))$.			
For STRIPS, all except the preco	ondition clauses are in clause form.		
The precondition clauses are easi	ily convertible to CNF		
(one clause $\neg o^i \lor v^{i-1}$ for each	precondition atom v of o).		
almert T Keller (Universität Basel) Planning an	d Ontimization October 9, 2019, 26		

M. Helmert, T. Keller (Universität Basel)

Summar

B5. SAT Planning: Core Idea and Sequential Encoding

Summary

- **SAT** planning (planning as satisfiability) expresses a sequence of bounded-horizon planning tasks as SAT formulas.
- Plans can be extracted from satisfying assignments; unsolvable tasks are challenging for the algorithm.
- ▶ For each time step, there are propositions encoding which state variables are true and which operators are applied.
- ► We describe a basic sequential encoding where one operator is applied at every time step.
- The encoding produces a CNF formula for STRIPS tasks.
- ▶ The encoding follows naturally (with some work) from using regression to link state variables in adjacent time steps.

Transitions