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SAT Solvers

I SAT solvers (algorithms that find satisfying assignments
to CNF formulas) are one of the major success stories
in solving hard combinatorial problems.

I Can we leverage them for classical planning?

 SAT planning (a.k.a. planning as satisfiability)

background on SAT Solvers:
 Foundations of Artificial Intelligence Course, Ch. 31–32
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Complexity Mismatch

I The SAT problem is NP-complete,
while PlanEx is PSPACE-complete.

 one-shot polynomial reduction from PlanEx to SAT
not possible (unless NP = PSPACE)
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Solution: Iterative Deepening

I We can generate a propositional formula that tests
if task Π has a plan with horizon (length bound) T
in time O(‖Π‖k · T ) ( pseudo-polynomial reduction).

I Use as building block of algorithm that probes
increasing horizons (a bit like IDA∗).

I Can be efficient if there exist plans
that are not excessively long.
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SAT Planning: Main Loop

basic SAT Planning algorithm:

SAT Planning

def satplan(Π):
for T ∈ {0, 1, 2, . . . }:

ϕ := build sat formula(Π,T )
I = sat solver(ϕ) B returns a model or none
if I is not none:

return extract plan(Π,T , I )

Termination criterion for unsolvable tasks?
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B5.2 Formula Overview
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SAT Formula: CNF?

I SAT solvers require conjunctive normal form (CNF), i.e.,
formulas expressed as collection of clauses.

I We will make sure that our SAT formulas are in CNF
when our input is a STRIPS task.

I We do allow fully general propositional tasks, but then
the formula may need additional conversion to CNF.
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SAT Formula: Variables

I given propositional planning task Π = 〈V , I ,O, γ〉
I given horizon T ∈ N0

Variables of the SAT Formula

I propositional variables v i for all v ∈ V , 0 ≤ i ≤ T
encode state after i steps of the plan

I propositional variables o i for all o ∈ O, 1 ≤ i ≤ T
encode operator(s) applied in i-th step of the plan
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Formulas with Time Steps

Definition (Time-Stamped Formulas)

Let ϕ be a propositional logic formula over the variables V .
Let 0 ≤ i ≤ T .

We write ϕi for the formula obtained from ϕ
by replacing each v ∈ V with v i .

Example: ((a ∧ b) ∨ ¬c)3 = (a3 ∧ b3) ∨ ¬c3
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SAT Formula: Motivation

We want to express a formula whose models
are exactly the plans/traces with T steps.

For this, the formula must express four things:

I The variables v0 (v ∈ V ) define the initial state.

I The variables vT (v ∈ V ) define a goal state.

I We select exactly one operator variable o i (o ∈ O)
for each time step 1 ≤ i ≤ T .

I If we select o i , then variables v i−1 and v i (v ∈ V )
describe a state transition from the (i − 1)-th state of the plan
to the i-th state of the plan (that uses operator o).

The final formula is the conjunction of all these parts.
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B5.3 Initial State, Goal, Operator
Selection
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SAT Formula: Initial State

SAT Formula: Initial State
initial state clauses:

I v0 for all v ∈ V with I (v) = T

I ¬v0 for all v ∈ V with I (v) = F
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SAT Formula: Goal

SAT Formula: Goal
goal clauses:

I γT

For STRIPS, this is a conjunction of unit clauses.
For general goals, this may not be in clause form.
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SAT Formula: Operator Selection

Let O = {o1, . . . , on}.

SAT Formula: Operator Selection

operator selection clauses:

I o i1 ∨ · · · ∨ o in for all 1 ≤ i ≤ T

operator exclusion clauses:

I ¬o ij ∨ ¬o ik for all 1 ≤ i ≤ T , 1 ≤ j < k ≤ n
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B5.4 Transitions
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SAT Formula: Transitions

We now get to the interesting/challenging bit:
encoding the transitions.

Key observations: if we apply operator o at time i ,

I its precondition must be satisfied at time i − 1:
o i → pre(o)i−1

I variable v is true at time i iff its regression is true at i − 1:
o i → (v i ↔ regr(v , eff(o))i−1)

Question: Why regr(v , eff(o)), not regr(v , o)?
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Simplifications and Abbreviations

I Let us pick the last formula apart to understand it better
(and also get a CNF representation along the way).

I Let us call the formula τ (“transition”):
τ = o i → (v i ↔ regr(v , eff(o))i−1).

I First, some abbreviations:
I Let e = eff(o).
I Let ρ = regr(v , e) (“regression”).

We have ρ = effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
I Let α = effcond(v , e) (“added”).
I Let δ = effcond(¬v , e) (“deleted”).

 τ = o i → (v i ↔ ρi−1) with ρ = α ∨ (v ∧ ¬δ)
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Picking it Apart (1)

Reminder: τ = o i → (v i ↔ ρi−1) with ρ = α ∨ (v ∧ ¬δ)

τ = o i → (v i ↔ ρi−1)

≡ o i → ((v i → ρi−1) ∧ (ρi−1 → v i ))

≡ (o i → (v i → ρi−1))︸ ︷︷ ︸
τ1

∧ (o i → (ρi−1 → v i ))︸ ︷︷ ︸
τ2

 consider this two separate constraints τ1 and τ2
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Picking it Apart (2)

Reminder: τ1 = o i → (v i → ρi−1) with ρ = α ∨ (v ∧ ¬δ)

τ1 = o i → (v i → ρi−1)

≡ o i → (¬ρi−1 → ¬v i )
≡ (o i ∧ ¬ρi−1)→ ¬v i

≡ (o i ∧ ¬(αi−1 ∨ (v i−1 ∧ ¬δi−1)))→ ¬v i

≡ (o i ∧ (¬αi−1 ∧ (¬v i−1 ∨ δi−1)))→ ¬v i

≡ ((o i ∧ ¬αi−1 ∧ ¬v i−1)→ ¬v i )︸ ︷︷ ︸
τ11

∧ ((o i ∧ ¬αi−1 ∧ δi−1)→ ¬v i )︸ ︷︷ ︸
τ12

 consider this two separate constraints τ11 and τ12

M. Helmert, T. Keller (Universität Basel) Planning and Optimization October 9, 2019 22 / 28

B5. SAT Planning: Core Idea and Sequential Encoding Transitions

Interpreting the Constraints (1)

Can we give an intuitive description of τ11 and τ12?
 Yes!

I τ11 = (o i ∧ ¬αi−1 ∧ ¬v i−1)→ ¬v i

“When applying o, if v is false and o does not add it,

“

it remains false.”
I called negative frame clause
I in clause form: ¬o i ∨ αi−1 ∨ v i−1 ∨ ¬v i

I τ12 = (o i ∧ ¬αi−1 ∧ δi−1)→ ¬v i

“When applying o, if o deletes v and does not add it,

“

it is false afterwards.” (Note the add-after-delete semantics.)

I called negative effect clause
I in clause form: ¬o i ∨ αi−1 ∨ ¬δi−1 ∨ ¬v i

For STRIPS tasks, these are indeed clauses. (And in general?)
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Picking it Apart (3)

Almost done!

Reminder: τ2 = o i → (ρi−1 → v i ) with ρ = α ∨ (v ∧ ¬δ)

τ2 = o i → (ρi−1 → v i )

≡ (o i ∧ ρi−1)→ v i

≡ (o i ∧ (αi−1 ∨ (v i−1 ∧ ¬δi−1)))→ v i

≡ ((o i ∧ αi−1)→ v i )︸ ︷︷ ︸
τ21

∧ ((o i ∧ v i−1 ∧ ¬δi−1)→ v i )︸ ︷︷ ︸
τ22

 consider this two separate constraints τ21 and τ22
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Interpreting the Constraints (2)

How about an intuitive description of τ21 and τ22?

I τ21 = (o i ∧ αi−1)→ v i

“When applying o, if o adds v , it is true afterwards.”
I called positive effect clause
I in clause form: ¬o i ∨ ¬αi−1 ∨ v i

I τ22 = (o i ∧ v i−1 ∧ ¬δi−1)→ v i

“When applying o, if v is true and o does not delete it,

“

it remains true.”
I called positive frame clause
I in clause form: ¬o i ∨ ¬v i−1 ∨ δi−1 ∨ v i

For STRIPS tasks, these are indeed clauses. (But not in general.)
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SAT Formula: Transitions

SAT Formula: Transitions
precondition clauses:

I ¬o i ∨ pre(o)i−1 for all 1 ≤ i ≤ T , o ∈ O

positive and negative effect clauses:

I ¬o i ∨ ¬αi−1 ∨ v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

I ¬o i ∨ αi−1 ∨ ¬δi−1 ∨ ¬v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

positive and negative frame clauses:

I ¬o i ∨ ¬v i−1 ∨ δi−1 ∨ v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

I ¬o i ∨ αi−1 ∨ v i−1 ∨ ¬v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

where α = effcond(v , eff(o)), δ = effcond(¬v , eff(o)).

For STRIPS, all except the precondition clauses are in clause form.

The precondition clauses are easily convertible to CNF
(one clause ¬o i ∨ v i−1 for each precondition atom v of o).
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B5.5 Summary

M. Helmert, T. Keller (Universität Basel) Planning and Optimization October 9, 2019 27 / 28

B5. SAT Planning: Core Idea and Sequential Encoding Summary

Summary

I SAT planning (planning as satisfiability) expresses a sequence
of bounded-horizon planning tasks as SAT formulas.

I Plans can be extracted from satisfying assignments;
unsolvable tasks are challenging for the algorithm.

I For each time step, there are propositions encoding
which state variables are true and which operators are applied.

I We describe a basic sequential encoding
where one operator is applied at every time step.

I The encoding produces a CNF formula for STRIPS tasks.

I The encoding follows naturally (with some work) from using
regression to link state variables in adjacent time steps.
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