
Planning and Optimization
A4. Planning Tasks

Malte Helmert and Thomas Keller

Universität Basel

September 23, 2019

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 1 / 35

Planning and Optimization
September 23, 2019 — A4. Planning Tasks

A4.1 State Variables

A4.2 Operators

A4.3 Planning Tasks

A4.4 Summary

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 2 / 35

Content of this Course

Planning

Classical

Foundations

Logic

Heuristics

Constraints

Probabilistic

Explicit MDPs

Factored MDPs

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 3 / 35

A4. Planning Tasks State Variables

A4.1 State Variables

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 4 / 35

A4. Planning Tasks State Variables

State Variables

How to specify huge transition systems
without enumerating the states?

I represent different aspects of the world
in terms of different state variables (Boolean or finite domain)

I individual state variables induce atomic propositions
 a state is a valuation of state variables

I n Boolean state variables induce 2n states
 exponentially more compact than “flat” representations

Example: O(n2) Boolean variables or O(n) finite-domain variables
with domain size O(n) suffice for blocks world with n blocks

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 5 / 35

A4. Planning Tasks State Variables

Blocks World State with Propositional Variables

Example

s(A-on-B) = F

s(A-on-C) = F

s(A-on-table) = T

s(B-on-A) = T

s(B-on-C) = F

s(B-on-table) = F

s(C-on-A) = F

s(C-on-B) = F

s(C-on-table) = T

A
B

C

Note: it may be useful to add auxiliary state variables like A-clear.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 6 / 35

A4. Planning Tasks State Variables

Blocks World State with Finite-Domain Variables

Example

Use three finite-domain state variables:

I below-a: {b, c, table}
I below-b: {a, c, table}
I below-c: {a, b, table}

s(below-a) = table

s(below-b) = a

s(below-c) = table

 33 = 27 states

A
B

C

Note: it may be useful to add auxiliary state variables like above-a.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 7 / 35

A4. Planning Tasks State Variables

Propositional State Variables

Definition (Propositional State Variable)

A propositional state variable is a symbol X.

Let V be a finite set of propositional state variables.

A state s over V is a valuation for V , i.e.,
a truth assignment s : V → {T,F}.

A formula over V is a propositional logic formula using V
as the set of atomic propositions.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 8 / 35

A4. Planning Tasks State Variables

Propositional State Variables

Definition (Finite-Domain State Variable)

A finite-domain state variable is a symbol v with an associated
domain dom(v), which is a finite non-empty set of values.

Let V be a finite set of finite-domain state variables.

A state s over V is an assignment s : V →
⋃

v∈V dom(v)
such that s(v) ∈ dom(v) for all v ∈ V .

A formula over V is a propositional logic formula whose atomic
propositions are of the form v = d where v ∈ V and d ∈ dom(v).

Slightly extending propositional logic, we treat states s
over finite-domain variables as logical valuations
where s |= v = d iff s(v) = d .

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 9 / 35

A4. Planning Tasks State Variables

State Variables: Either/Or

I State variables are the basis of compact descriptions
of transition systems.

I For a given transition system, we will either use propositional
or finite-domain state variables. We will not mix them.

I However, finite-domain variables can have any finite domain
including the domain {T,F}, so are in some sense a proper
generalization of propositional state variables.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 10 / 35

A4. Planning Tasks State Variables

From State Variables to Succinct Transition Systems

Problem:

I How to succinctly represent transitions and goal states?

Idea: Use formulas to describe sets of states

I states: all assignments to the state variables

I goal states: defined by a formula

I transitions: defined by operators (see following section)

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 11 / 35

A4. Planning Tasks Operators

A4.2 Operators

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 12 / 35

A4. Planning Tasks Operators

Syntax of Operators

Definition (Operator)

An operator o over state variables V is an object
with three properties:

I a precondition pre(o), a formula over V

I an effect eff(o) over V , defined on the following slides

I a cost cost(o) ∈ R+
0

Notes:

I Operators are also called actions.

I Operators are often written as triples 〈pre(o), eff(o), cost(o)〉.
I This can be abbreviated to pairs 〈pre(o), eff(o)〉

when the cost of the operator is irrelevant.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 13 / 35

A4. Planning Tasks Operators

Operators: Intuition

Intuition for operators o:

I The operator precondition describes the set of states
in which a transition labeled with o can be taken.

I The operator effect describes how taking such a transition
changes the state.

I The operator cost describes the cost of taking a transition
labeled with o.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 14 / 35

A4. Planning Tasks Operators

Syntax of Effects

Definition (Effect)

Effects over state variables V are inductively defined as follows:

I If v ∈ V is a propositional state variable,
then v and ¬v are effects (atomic effect).

I If v ∈ V is a finite-domain state variable and d ∈ dom(v),
then v := d is an effect (atomic effect).

I If e1, . . . , en are effects, then (e1 ∧ · · · ∧ en) is an effect
(conjunctive effect).
The special case with n = 0 is the empty effect >.

I If χ is a formula over V and e is an effect,
then (χ B e) is an effect (conditional effect).

Parentheses can be omitted when this does not cause ambiguity.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 15 / 35

A4. Planning Tasks Operators

Effects: Intuition

Intuition for effects:

I Atomic effects can be understood as assignments
that update the value of a state variable.
I For propositional state variables, v means “v := T”

and ¬v means “v := F”.

I A conjunctive effect e = (e1 ∧ · · · ∧ en) means that
all subeffects e1, . . . , en take place simultaneously.

I A conditional effect e = (χ B e ′) means that subeffect e ′

takes place iff χ is true in the state where e takes place.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 16 / 35

A4. Planning Tasks Operators

Semantics of Effects

Definition (Effect Condition for an Effect)

Let e be an atomic effect.
The effect condition effcond(e, e ′) under which e triggers
given the effect e ′ is a propositional formula defined as follows:

I effcond(e, e) = >
I effcond(e, e ′) = ⊥ for atomic effects e ′ 6= e

I effcond(e, (e1∧ · · ·∧ en)) = effcond(e, e1)∨ · · ·∨ effcond(e, en)

I effcond(e, (χ B e ′)) = χ ∧ effcond(e, e ′)

Intuition: effcond(e, e ′) represents the condition that must be true
in the current state for the effect e ′ to lead to the atomic effect e

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 17 / 35

A4. Planning Tasks Operators

Semantics of Operators: Propositional Case

Definition (Applicable, Resulting State)

Let V be a set of propositional state variables.
Let s be a state over V , and let o be an operator over V .
Operator o is applicable in s if s |= pre(o).

If o is applicable in s, the resulting state of applying o in s,
written sJoK, is the state s ′ defined as follows for all v ∈ V :

s ′(v) =


T if s |= effcond(v , e)

F if s |= effcond(¬v , e) ∧ ¬effcond(v , e)

s(v) if s 6|= effcond(v , e) ∨ effcond(¬v , e)

where e = eff(o).

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 18 / 35

A4. Planning Tasks Operators

Add-after-Delete Semantics

Note:

I The definition implies that if a variable is simultaneously
“added” (set to T) and “deleted” (set to F),
the value T takes precedence.

I This is called add-after-delete semantics.

I This detail of semantics is somewhat arbitrary,
but has proven useful in applications.

I For finite-domain variables, there are no distinguished values
like “true” and “false”, and a different semantics is used.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 19 / 35

A4. Planning Tasks Operators

Conflicting Effects and Consistency Condition

I What should an effect of the form v := a ∧ v := b mean?

I For finite-domain representations, the accepted semantics
is to make this illegal, i.e., to make an operator inapplicable
if it would lead to conflicting effects.

Definition (Consistency Condition)

Let e be an effect over finite-domain state variables V .

The consistency condition for e, consist(e) is defined as∧
v∈V

∧
d ,d ′∈dom(v),d 6=d ′

¬(effcond(v := d , e) ∧ effcond(v := d ′, e)).

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 20 / 35

A4. Planning Tasks Operators

Semantics of Operators: Finite-Domain Case

Definition (Applicable, Resulting State)

Let V be a set of finite-domain state variables.
Let s be a state over V , and let o be an operator over V .
Operator o is applicable in s if s |= pre(o) ∧ consist(eff(o)).

If o is applicable in s, the resulting state of applying o in s,
written sJoK, is the state s ′ defined as follows for all v ∈ V :

s ′(v) =

{
d if s |= effcond(v := d , eff(o)) for some d ∈ dom(v)

s(v) otherwise

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 21 / 35

A4. Planning Tasks Operators

Applying Operators: Example

Example

Consider the operator o = 〈a,¬a ∧ (¬c B ¬b)〉
and the state s = {a 7→ T, b 7→ T, c 7→ T, d 7→ T}.

The operator o is applicable in s because s |= a.

Effect conditions of eff(o):

effcond(a, eff(o)) = effcond(a,¬a ∧ (¬c B ¬b))

= effcond(a,¬a) ∨ effcond(a,¬c B ¬b)

= ⊥ ∨ (¬c ∧ effcond(a,¬b))

= ⊥ ∨ (¬c ∧ ⊥)

≡ ⊥ false in state s

The resulting state of applying o in s is the state
{a 7→ F, b 7→ T, c 7→ T, d 7→ T}.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 22 / 35

A4. Planning Tasks Operators

Applying Operators: Example

Example

Consider the operator o = 〈a,¬a ∧ (¬c B ¬b)〉
and the state s = {a 7→ T, b 7→ T, c 7→ T, d 7→ T}.

The operator o is applicable in s because s |= a.

Effect conditions of eff(o):

effcond(¬a, eff(o)) = effcond(¬a,¬a ∧ (¬c B ¬b))

= effcond(¬a,¬a) ∨ effcond(¬a,¬c B ¬b)

= > ∨ effcond(¬a,¬c B ¬b)

≡ > true in state s

The resulting state of applying o in s is the state
{a 7→ F, b 7→ T, c 7→ T, d 7→ T}.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 23 / 35

A4. Planning Tasks Operators

Applying Operators: Example

Example

Consider the operator o = 〈a,¬a ∧ (¬c B ¬b)〉
and the state s = {a 7→ T, b 7→ T, c 7→ T, d 7→ T}.

The operator o is applicable in s because s |= a.

Effect conditions of eff(o):

effcond(b, eff(o)) = effcond(b,¬a ∧ (¬c B ¬b))

= effcond(b,¬a) ∨ effcond(b,¬c B ¬b)

= ⊥ ∨ (¬c ∧ effcond(b,¬b))

= ⊥ ∨ (¬c ∧ ⊥)

≡ ⊥ false in state s

The resulting state of applying o in s is the state
{a 7→ F, b 7→ T, c 7→ T, d 7→ T}.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 24 / 35

A4. Planning Tasks Operators

Applying Operators: Example

Example

Consider the operator o = 〈a,¬a ∧ (¬c B ¬b)〉
and the state s = {a 7→ T, b 7→ T, c 7→ T, d 7→ T}.

The operator o is applicable in s because s |= a.

Effect conditions of eff(o):

effcond(¬b, eff(o)) = effcond(¬b,¬a ∧ (¬c B ¬b))

= effcond(¬b,¬a) ∨ effcond(¬b,¬c B ¬b)

= ⊥ ∨ (¬c ∧ effcond(¬b,¬b))

= ⊥ ∨ (¬c ∧ >)

≡ ¬c false in state s

The resulting state of applying o in s is the state
{a 7→ F, b 7→ T, c 7→ T, d 7→ T}.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 25 / 35

A4. Planning Tasks Operators

Applying Operators: Example

Example

Consider the operator o = 〈a,¬a ∧ (¬c B ¬b)〉
and the state s = {a 7→ T, b 7→ T, c 7→ T, d 7→ T}.

The operator o is applicable in s because s |= a.

Effect conditions of eff(o):

effcond(c , eff(o)) ≡ ⊥ false in state s

effcond(¬c , eff(o)) ≡ ⊥ false in state s

effcond(d , eff(o)) ≡ ⊥ false in state s

effcond(¬d , eff(o)) ≡ ⊥ false in state s

The resulting state of applying o in s is the state
{a 7→ F, b 7→ T, c 7→ T, d 7→ T}.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 26 / 35

A4. Planning Tasks Operators

Example Operators: Blocks World

Example (Blocks World Operators)

To model blocks world operators conveniently,
we use auxiliary state variables A-clear, B-clear, and C-clear
to express that there is nothing on top of a given block.

Then blocks world operators can be modeled as:
I 〈A-clear ∧ A-on-table ∧ B-clear, A-on-B ∧ ¬A-on-table ∧ ¬B-clear〉
I 〈A-clear ∧ A-on-table ∧ C-clear, A-on-C ∧ ¬A-on-table ∧ ¬C-clear〉
I 〈A-clear ∧ A-on-B, A-on-table ∧ ¬A-on-B ∧ B-clear〉
I 〈A-clear ∧ A-on-C, A-on-table ∧ ¬A-on-C ∧ C-clear〉
I 〈A-clear ∧ A-on-B ∧ C-clear, A-on-C ∧ ¬A-on-B ∧ B-clear ∧ ¬C-clear〉
I 〈A-clear ∧ A-on-C ∧ B-clear, A-on-B ∧ ¬A-on-C ∧ C-clear ∧ ¬B-clear〉
I . . .

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 27 / 35

A4. Planning Tasks Operators

Example Operator: 4-Bit Counter

Example (Incrementing a 4-Bit Counter)

Operator to increment a 4-bit number b3b2b1b0 represented
by 4 state variables b0, . . . , b3:

precondition:
¬b0 ∨ ¬b1 ∨ ¬b2 ∨ ¬b3

effect:

(¬b0B b0) ∧
((¬b1 ∧ b0)B (b1 ∧ ¬b0)) ∧

((¬b2 ∧ b1 ∧ b0)B (b2 ∧ ¬b1 ∧ ¬b0)) ∧
((¬b3 ∧ b2 ∧ b1 ∧ b0)B (b3 ∧ ¬b2 ∧ ¬b1 ∧ ¬b0))

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 28 / 35

A4. Planning Tasks Planning Tasks

A4.3 Planning Tasks

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 29 / 35

A4. Planning Tasks Planning Tasks

Planning Tasks

Definition (Planning Task)

A planning task is a 4-tuple Π = 〈V , I ,O, γ〉 where

I V is a finite set of state variables,

I I is a valuation over V called the initial state,

I O is a finite set of operators over V , and

I γ is a formula over V called the goal.

V must either consist only of propositional
or only of finite-domain state variables.

In the first case, Π is called a propositional planning task,
otherwise an FDR planning task (finite-domain representation).

Note: Whenever we just say planning task (without
“propositional” or “FDR”), both kinds of tasks are allowed.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 30 / 35

A4. Planning Tasks Planning Tasks

Mapping Planning Tasks to Transition Systems

Definition (Transition System Induced by a Planning Task)

The planning task Π = 〈V , I ,O, γ〉 induces
the transition system T (Π) = 〈S , L, c ,T , s0,S?〉, where

I S is the set of all states over V ,

I L is the set of operators O,

I c(o) = cost(o) for all operators o ∈ O,

I T = {〈s, o, s ′〉 | s ∈ S , o applicable in s, s ′ = sJoK},
I s0 = I , and

I S? = {s ∈ S | s |= γ}.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 31 / 35

A4. Planning Tasks Planning Tasks

Planning Tasks: Terminology

I Terminology for transitions systems is also applied
to the planning tasks Π that induce them.

I For example, when we speak of the states of Π,
we mean the states of T (Π).

I A sequence of operators that forms a solution of T (Π)
is called a plan of Π.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 32 / 35

A4. Planning Tasks Planning Tasks

Satisficing and Optimal Planning

By planning, we mean the following two algorithmic problems:

Definition (Satisficing Planning)

Given: a planning task Π
Output: a plan for Π, or unsolvable if no plan for Π exists

Definition (Optimal Planning)

Given: a planning task Π
Output: a plan for Π with minimal cost among all plans for Π,

or unsolvable if no plan for Π exists

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 33 / 35

A4. Planning Tasks Summary

A4.4 Summary

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 34 / 35

A4. Planning Tasks Summary

Summary

I Planning tasks compactly represent transition systems
and are suitable as inputs for planning algorithms.

I They are based on concepts from propositional logic,
enhanced to model state change.

I Planning tasks can be propositional or finite-domain.

I States of planning tasks are assignments to its state variables.

I Operators of propositional planning tasks describe
in which situations (precondition), how (effect) and
at which cost the state of the world can be changed.

I In satisficing planning, we must find a solution
for a planning task (or show that no solution exists).

I In optimal planning, we must additionally guarantee
that generated solutions are of minimal cost.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 35 / 35

	State Variables
	

	Operators
	

	Planning Tasks
	

	Summary
	

