

Planning and Optimization September 23, 2019 — A4. Planning Tasks	
A4.1 State Variables	
A4.2 Operators	
A4.3 Planning Tasks	
A4.4 Summary	
M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 20	019 2 / 35

A4. Planning Tasks

State Variable

State Variables

How to specify huge transition systems without enumerating the states?

- represent different aspects of the world in terms of different state variables (Boolean or finite domain)
- individual state variables induce atomic propositions \rightarrow a state is a valuation of state variables
- n Boolean state variables induce 2ⁿ states ↔ exponentially more compact than "flat" representations

Example: $O(n^2)$ Boolean variables or O(n) finite-domain variables with domain size O(n) suffice for blocks world with *n* blocks

Planning and Optimization

M. Helmert, T. Keller (Universität Basel)

September 23, 2019 5 / 35

State Variables

7 / 35

A4. Planning Tasks

Planning and Optimization

A4. Planning Tasks

Blocks World State with Propositional Variables

Planning and Optimization

State Variables

Propositional State Variables

A4. Planning Tasks

From State Variables to Succinct Transition Systems

Problem:

► How to succinctly represent transitions and goal states?

Idea: Use formulas to describe sets of states

- states: all assignments to the state variables
- goal states: defined by a formula
- transitions: defined by operators (see following section)

A4. Planning Tasks

State Variables

State Variables: Either/Or

- State variables are the basis of compact descriptions of transition systems.
- For a given transition system, we will either use propositional or finite-domain state variables. We will not mix them.
- However, finite-domain variables can have any finite domain including the domain {T, F}, so are in some sense a proper generalization of propositional state variables.

Planning and Optimization

M. Helmert, T. Keller (Universität Basel)

September 23, 2019

10 / 35

State Variables

Syntax of Operators

Definition (Operator)

An operator o over state variables V is an object with three properties:

- ▶ a precondition pre(o), a formula over V
- > an effect eff(o) over V, defined on the following slides
- ▶ a cost $cost(o) \in \mathbb{R}_0^+$

Notes:

- Operators are also called actions.
- Operators are often written as triples (pre(o), eff(o), cost(o)).

Planning and Optimization

This can be abbreviated to pairs (pre(o), eff(o)) when the cost of the operator is irrelevant.

```
M. Helmert, T. Keller (Universität Basel)
```

September 23, 2019

Operator

13 / 35

15 / 35

A4. Planning Tasks

Syntax of Effects

Definition (Effect)

Effects over state variables V are inductively defined as follows:

- If v ∈ V is a propositional state variable, then v and ¬v are effects (atomic effect).
- If v ∈ V is a finite-domain state variable and d ∈ dom(v), then v := d is an effect (atomic effect).
- If e₁,..., e_n are effects, then (e₁ ∧ ··· ∧ e_n) is an effect (conjunctive effect).
 The special energy with p = 0 is the spect offect.

The special case with n = 0 is the empty effect \top .

If \(\chi \) is a formula over V and e is an effect, then (\(\chi \) ▷ e) is an effect (conditional effect).

Parentheses can be omitted when this does not cause ambiguity.

Planning and Optimization

Operators: Intuition

Intuition for operators o:

- The operator precondition describes the set of states in which a transition labeled with o can be taken.
- The operator effect describes how taking such a transition changes the state.
- The operator cost describes the cost of taking a transition labeled with o.

Planning and Optimization

M. Helmert, T. Keller (Universität Basel)

September 23, 2019

14 / 35

Operators

Semantics of Effects

Definition (Effect Condition for an Effect) Let e be an atomic effect. The effect condition effcond(e, e') under which e triggers given the effect e' is a propositional formula defined as follows: • effcond(e, e) = \top

- effcond(e, e') = \perp for atomic effects $e' \neq e$
- effcond(e, $(e_1 \land \cdots \land e_n)$) = effcond(e, e_1) $\lor \cdots \lor$ effcond(e, e_n)
- effcond(e, $(\chi \triangleright e')$) = $\chi \land$ effcond(e, e')

Intuition: effcond(e, e') represents the condition that must be true in the current state for the effect e' to lead to the atomic effect e

Planning and Optimization

M. Helmert, T. Keller (Universität Basel)

September 23, 2019 17 / 35

Operators

Operators

A4. Planning Tasks Add-after-Delete Semantics

Note:

- The definition implies that if a variable is simultaneously "added" (set to **T**) and "deleted" (set to **F**), the value **T** takes precedence.
- This is called add-after-delete semantics.
- This detail of semantics is somewhat arbitrary, but has proven useful in applications.
- ▶ For finite-domain variables, there are no distinguished values like "true" and "false", and a different semantics is used.

Semantics of Operators: Propositional Case

Definition (Applicable, Resulting State) Let V be a set of propositional state variables. Let s be a state over V, and let o be an operator over V. Operator *o* is applicable in *s* if $s \models pre(o)$. If *o* is applicable in *s*, the resulting state of applying *o* in *s*, written s[o], is the state s' defined as follows for all $v \in V$:

$$s'(v) = \begin{cases} \mathsf{T} & \text{if } s \models effcond(v, e) \\ \mathsf{F} & \text{if } s \models effcond(\neg v, e) \land \neg effcond(v, e) \\ s(v) & \text{if } s \nvDash effcond(v, e) \lor effcond(\neg v, e) \end{cases}$$

Planning and Optimization

where e = eff(o).

M. Helmert, T. Keller (Universität Basel)

```
September 23, 2019
                      18 / 35
```

Operators

A4. Planning Tasks

Applying Operators: Example Example Consider the operator $o = \langle a, \neg a \land (\neg c \triangleright \neg b) \rangle$ and the state $s = \{a \mapsto T, b \mapsto T, c \mapsto T, d \mapsto T\}$. The operator o is applicable in s because $s \models a$. Effect conditions of eff(o): $effcond(\neg a, eff(o)) = effcond(\neg a, \neg a \land (\neg c \triangleright \neg b))$ $= effcond(\neg a, \neg a) \lor effcond(\neg a, \neg c \triangleright \neg b)$ $\equiv \top \lor effcond(\neg a, \neg c \triangleright \neg b)$ $\equiv \top \lor true in state s$

A4. Planning Tasks

Applying Operators: Example

Example

```
Consider the operator o = \langle a, \neg a \land (\neg c \rhd \neg b) \rangle
and the state s = \{a \mapsto T, b \mapsto T, c \mapsto T, d \mapsto T\}.
The operator o is applicable in s because s \models a.
Effect conditions of eff(o):
effcond(a, eff(o)) = effcond(a, \neg a \land (\neg c \rhd \neg b))
= effcond(a, \neg a) \lor effcond(a, \neg c \rhd \neg b)
= \bot \lor (\neg c \land effcond(a, \neg b))
= \bot \lor (\neg c \land \bot)
\equiv \bot \quad \rightsquigarrow \text{ false in state } s
M. Helmert, T. Keller (Universität Basel) Planning and Optimization September 23, 2019 22 / 35
```

A4. Planning Tasks Applying Operators: Example

Example

Operators

Consider the operator $o = \langle a, \neg a \land (\neg c \rhd \neg b) \rangle$ and the state $s = \{a \mapsto \mathbf{T}, b \mapsto \mathbf{T}, c \mapsto \mathbf{T}, d \mapsto \mathbf{T}\}$. The operator o is applicable in s because $s \models a$. Effect conditions of eff(o): $effcond(b, eff(o)) = effcond(b, \neg a \land (\neg c \rhd \neg b))$ $= effcond(b, \neg a) \lor effcond(b, \neg c \rhd \neg b)$ $= \bot \lor (\neg c \land effcond(b, \neg b))$ $= \bot \lor (\neg c \land \bot)$ $\equiv \bot \quad \rightsquigarrow \text{ false in state } s$

Planning and Optimization

Operators

Applying Operators: Example

Example

Consider the operator $o = \langle a, \neg a \land (\neg c \triangleright \neg b) \rangle$ and the state $s = \{a \mapsto T, b \mapsto T, c \mapsto T, d \mapsto T\}$. The operator o is applicable in s because $s \models a$. Effect conditions of eff(o): $effcond(\neg b, eff(o)) = effcond(\neg b, \neg a \land (\neg c \triangleright \neg b))$ $= effcond(\neg b, \neg a) \lor effcond(\neg b, \neg c \triangleright \neg b)$ $= \bot \lor (\neg c \land effcond(\neg b, \neg b))$ $= \bot \lor (\neg c \land T)$ $\equiv \neg c \quad \rightsquigarrow \text{ false in state } s$

A4. Planning Tasks

Example (Blocks World Operators)

To model blocks world operators conveniently, we use auxiliary state variables *A-clear*, *B-clear*, and *C-clear* to express that there is nothing on top of a given block.

Then blocks world operators can be modeled as:

- $\blacktriangleright \quad \langle A\text{-}clear \land A\text{-}on\text{-}table \land B\text{-}clear, A\text{-}on\text{-}B \land \neg A\text{-}on\text{-}table \land \neg B\text{-}clear \rangle$
- $\blacktriangleright \quad \langle A\text{-}clear \land A\text{-}on\text{-}table \land C\text{-}clear, \ A\text{-}on\text{-}C \land \neg A\text{-}on\text{-}table \land \neg C\text{-}clear \rangle$
- $\blacktriangleright \quad \langle A\text{-}clear \land A\text{-}on\text{-}B, \text{ }A\text{-}on\text{-}table \land \neg A\text{-}on\text{-}B \land B\text{-}clear \rangle$
- $\blacktriangleright \quad \langle A\text{-clear} \land A\text{-on-}C, \text{ } A\text{-on-table} \land \neg A\text{-on-}C \land C\text{-clear} \rangle$
- $\blacktriangleright \quad \langle A\text{-}clear \land A\text{-}on\text{-}B \land C\text{-}clear, \ A\text{-}on\text{-}C \land \neg A\text{-}on\text{-}B \land B\text{-}clear \land \neg C\text{-}clear \rangle$
- $\blacktriangleright \quad \langle A\text{-}clear \land A\text{-}on\text{-}C \land B\text{-}clear, \ A\text{-}on\text{-}B \land \neg A\text{-}on\text{-}C \land C\text{-}clear \land \neg B\text{-}clear \rangle$

Planning and Optimization

▶ ...

Operator

Operator

27 / 35

Applying Operators: Example

Example

Consider the operator $o = \langle a, \neg a \land (\neg c \triangleright \neg b) \rangle$ and the state $s = \{a \mapsto \mathbf{T}, b \mapsto \mathbf{T}, c \mapsto \mathbf{T}, d \mapsto \mathbf{T}\}$. The operator o is applicable in s because $s \models a$. Effect conditions of eff(o): $effcond(c, eff(o)) \equiv \bot \quad \rightsquigarrow \text{ false in state } s$ $effcond(\neg c, eff(o)) \equiv \bot \quad \rightsquigarrow \text{ false in state } s$ $effcond(d, eff(o)) \equiv \bot \quad \rightsquigarrow \text{ false in state } s$ $effcond(\neg d, eff(o)) \equiv \bot \quad \rightsquigarrow \text{ false in state } s$ $effcond(\neg d, eff(o)) \equiv \bot \quad \rightsquigarrow \text{ false in state } s$ $effcond(\neg d, eff(o)) \equiv \bot \quad \rightsquigarrow \text{ false in state } s$ The resulting state of applying o in s is the state $\{a \mapsto \mathbf{F}, b \mapsto \mathbf{T}, c \mapsto \mathbf{T}, d \mapsto \mathbf{T}\}$.

Operators

Planning and Optimization

A4. Planning Tasks Mapping Planning Tasks to Transition Systems Definition (Transition System Induced by a Planning Task) The planning task $\Pi = \langle V, I, O, \gamma \rangle$ induces the transition system $\mathcal{T}(\Pi) = \langle S, L, c, T, s_0, S_{\star} \rangle$, where \triangleright S is the set of all states over V, \blacktriangleright L is the set of operators O. \triangleright c(o) = cost(o) for all operators $o \in O$. ▶ $T = \{ \langle s, o, s' \rangle \mid s \in S, o \text{ applicable in } s, s' = s \llbracket o \rrbracket \},$ \blacktriangleright $s_0 = I$, and $\triangleright \ S_{\star} = \{ s \in S \mid s \models \gamma \}.$

Planning and Optimization

A4. Planning Tasks

Planning Tasks

Planning Tasks

31 / 35

Planning Tasks

Satisficing and Optimal Planning

By planning, we mean the following two algorithmic problems:

Definition (Satisficing Planning)

Given: a planning task Π Output: a plan for Π , or **unsolvable** if no plan for Π exists

Definition (Optimal Planning)

Given: a planning task Π
Output: a plan for Π with minimal cost among all plans for Π, or unsolvable if no plan for Π exists

Planning and Optimization

M. Helmert, T. Keller (Universität Basel)

September 23, 2019

33 / 35

Summary

Planning Tasks

A4. Planning Tasks

A4. Planning Tasks				Summary
A4.4	Summar	У		
M. Helmert, T. Keller	(Universität Basel)	Planning and Optimization	September 23, 2019	34 / 35