Planning as satisfiability: parallel plans and
algorithms for plan search

Jussi Rintanen

National ICT Australia
Canberra Research Laboratory
Australia

Keijo Heljanko and llkka Niemela

Helsinki University of Technology

Laboratory for Theoretical Computer Science
P. O. Box 5400, FI-02015 TKK

Finland

We address two aspects of constructing plans efficiently by means of satisfiability testing: efficient encoding of
the problem of existence of plans of a given numbef time points in the propositional logic and strategies for
finding plans, given these formulae for different values.of

For the first problem we consider three semantics for plans with parallel operator application in order to
make the search for plans more efficient. The standard semantics requires that parallel operators are independent
and can therefore be executed in any order. We consider a more relaxed definition of parallel plans which was
first proposed by Dimopoulos et al., as well as a normal form for parallel plans that requires every operator
to be executed as early as possible. We formalize the semantics of parallel plans emerging in this setting and
present translations of these semantics into the propositional logic. The sizes of the translations are asymptotically
optimal. Each of the semantics is constructed in such a way that there is a plan following the semantics exactly
when there is a sequential plan, and moreover, the existence of a parallel plan implies the existence of a sequential
plan with as many operators as in the parallel one.

For the second problem we consider strategies based on testing the satisfiability of several formulae represent-
ing plans ofn time steps for several values ofconcurrently by several processes. We show that big efficiency
gains can be obtained in comparison to the standard strategy of sequentially testing the satisfiability of formulae
for an increasing number of time steps.

Contents

1 Introduction 2
1.1 Notation 4

2 Definitions of parallel plans 5
2.1 V-StepsemantiCs 5
2.2 Processsemantics 11
2.3 I-Stepsemantics 12

3 Planning as satisfiability 17
3.1 Thebaseencoding, 17
3.2 V-Stepsemantics 20

3.21 Aquadraticencoding 21

3.22 Alnearencoding 21

3.3 ProcesssemantiCs 24
3.4 3F-Stepsemantics 27
3.4.1 Disablinggraphso 27

3.4.2 Encodingofsiz&(n®) L 29

3.43 Encoding of siz&(elogam) 29

3.4.4 Alinear-size encoding based on a fixed ordering of operators . 30

4 Experiments 31
4.1 Implementationdetails, 31
4.2 Experimentalsetting, 32
4.3 Problem instances sampled from the phase transition region. 33.
4.4 Structured probleminstances oL 34
4.4.1 d-step semantics v§¥-step semanticso 35

4.4.2 Process semantics ¥sstep semantics L 38

4.4.3 Linearvs. quadrati¢-stepencoding. 38

4.4.4 Sizes of strong components of disabling graphs 39

4.45 Quadratit/-step encoding vs. the BLACKBOX encoding40

5 Evaluation algorithms for planning as satisfiability 42
5.1 Algorithm S: sequential evaluation 45
5.2 Algorithm A: multiple processes 45
5.3 Algorithm B: geometric divisionof CPUuse 46
5.4 Propertiesofthealgorithms 46
5,5 Experiments 50

6 Related work 54
6.1 Encodings of planning in the propositional logic 54
6.2 Evaluationalgorithms 55
6.3 Heuristic state-space searchplanners 55
7 Conclusions 57
Appendix 61

1. INTRODUCTION

In the simplest form of planning, traditionally called classical planning, the objective is to
find a sequence of actions that leads from a given initial state to one of the goal states. Plan-
ning as satisfiability [Kautz and Selman 1996] is a leading approach to solve this kind of
planning problems. The underlying idea is to encode the bounded plan existence problem,
i.e. whether a plan of a given lengthexists, as a formula in the classical propositional
logic. The formula for a givem is satisfiable if and only if there is a plan of length
Finding a plan reduces to testing the satisfiability of the formulae for different values of

An important factor in the efficiency of planning as satisfiability in finding non-optimal
plans which do not necessarily have the smallest possible number of operators is the notion
of parallel plans [Blum and Furst 1997; Kautz and Selman 1996]. In a parallel plan each

time point may have more than one operator. The length parameéstricts the number

of time points but not directly the number of operators. A parallel plan is a representation
of one or more sequential plans, and the parallelism is not meant to represent genuine tem-
poral parallelism. Different notions of parallel plans can be defined, and for maintaining
the connection to sequential plans it is required that there is a parallel plan exactly when
there is a sequential plan, and moreover, mapping a given parallel plan to a sequential
plan should be possible in polynomial time. In this paper we develop semantics for paral-
lel plans that have these properties. Results in Section 2 identify important tractable and
intractable notions of parallel plans.

Parallel plans increase the efficiency of planning for two reasons. First, since several
independent operators can be parallel at one time point, it is unnecessary to consider all
their total orderings during plan search, unlike with sequential plans. Second, increased
parallelism leads to a decreased number of time points. This reduces the number of propo-
sitional variables and the size of formulae and makes satisfiability testing more efficient.

The standardtate-based encodingf parallel plans [Kautz and Selman 1996] allows
several operators at the same time point as long as the operators are mutually non-interfering.
This condition guarantees that any total ordering on the simultaneous operators is a valid
execution and that it leads to the same state in all cases. We formalize a generalization of
this idea and call ithe vV-step semanticsf parallel plans, and give asymptotically optimal
linear-size encodings of this semantics in the classical propositional logic.

Our objective is to develop more efficient techniques for different forms of planning, and
for this purpose we formalize further two semantics of parallel plans and present efficient
encodings of them in the propositional logic. Both of these semantics are known from
earlier research but the firshe process semantidsas not been considered in connection
with planning, and the seconithe 3-step semanti¢chas not been given efficient encodings
in the propositional logic before.

The two new semantics considered in this paper are orthogonal refinement¥ aitdpe
semantics. The process semantics is stricter thav-8tep semantics in that it requires all
actions to be taken as early as possible. Since there are less valid plans of a given length ac-
cording to the process semantics thantretep semantics, the corresponding satisfiability
problems are more strongly constrained and plan search could be more efficient. Process
semantics was first introduced for Petri nets; for an overview see [Best and Devillers 1987].
Heljanko [2001] has applied this semantics to the deadlock detection of 1-safe Petri nets
and has demonstrated that it leads to big efficiency gains for many types of problems.

The idea of thed-step semantics was proposed by Dimopoulos et al. [1997]. They
pointed out that it is not necessary that all parallel operators are non-interfering as long as
they can be executed in at least one order, which makes it possible to increase the number
of parallel operators still further. They also showed how certain planning problems can
be modified to satisfy this condition and that the reduction in the number of time points
improves runtimes. Until now the application Bfstep semantics in planning as satisfia-
bility was hampered by the cubic size of the obvious encodings. We give more compact
encodings for this semantics and show that this often leads to dramatic improvements in
efficiency. Before the developments reported in this paper, this semantics was never used
in an automated planner that is based on a declarative language like the propositional logic.
Our most efficient encodings of this and the other semantics are more restrictive than the
general definitions of these semantics. We justify the restrictions by showing that the gen-
eral definitions are intractable.

As a second contribution of this paper we demonstrate the strong potential of the plan-
ning as satisfiability approach to solve non-optimal planning efficiently by proposing two
new concurrent algorithms for controlling any planner that is based on testing the exis-
tence of plans with different numbers of time points. These algorithms effectively avoid
the expensive plan inexistence (unsatisfiability) tests that dominate the runtimes of earlier
planners. The speed-up of these algorithms over the standard sequential algorithm can be
arbitrarily high, and these algorithms are guaranteed to be only at most a constant fac-
tor slower than the standard sequential algorithm. An empirical investigation (Section 5)
shows that for some classes of problems for which planning as satisfiability had not earlier
fared very well these algorithms lift the efficiency to a completely different level.

The results of this paper are also directly applicable to bounded model checking [Biere,
Cimatti, Clarke, and Zhu 1999] of safety properties in computer-aided verification. It is
also possible to extend the results to model checking for arbitrary linear temporal logic
(LTL) properties. We do not pursue this topic further in this paper.

The structure of this paper is as follows. In Sections 2.1, 2.2, and 2.3 we define the
standard/-step semantics, the process semantics, and-ftep semantics, respectively. A
main result of Section 2 is the identification of the border between tractable and intractable
notions of parallel plans, based on the distinction between polynomial-time and NP-hard
decision problems.

In Section 3 we present encodings of classical planning under the different semantics
of parallel plans in the classical propositional logic. Section 3.1 presents the part of the
encodings shared by all the semantics, and Sections 3.2, 3.3 and 3.4 presents encodings of
the three semantics. A main result is the introduction of encodings that have a size that is
asymptotically optimal. Encodings of planning with this property have not been presented
earlier.

Section 4 evaluates the efficiency of the different semantics for different kinds of plan-
ning problems. Section 4.3 makes a comparison in terms of runtimes and plan quality with
difficult problems which are sampled from the space of all problem instances. Section 4.4
makes a comparison with a number of standard benchmark problems.

Section 5 presents two new concurrent algorithms for controlling any planner that uses
as the main subprocedure a test for the existence of plans with a given number of time
points. In Section 5.4 the properties of the algorithms are analytically investigated, and in
Section 5.5 their impact on planner runtimes is experimentally demonstrated.

Section 6 discusses related work and Section 7 concludes the paper.

1.1 Notation

We consider planning in a setting where the states of the world are represented in terms
of a setA of Boolean state variables which take the valuee or false Formulae are
formed from the state variables with the connectives\ and—. The connectives> and
«— are defined in terms of the other connectives. Estakeis a valuation of4, which is
an assignment: A — {0,1}. A literal is a formula of the fornu or —a wherea € Ais a
state variable. We define tlkemplementsf literals asa = —a and=a = a for all a € A.
A clauseis a disjunction/y Vv --- V [,, of one or more literals. We also use the constant
atomsT and_L for denotingtrue andfalse respectively.

We useoperatorsfor expressing how the state of the world can be changed.

Definition 1.1 Anoperatoron a set of state variabled is a triple (p, e, ¢) where

(1) pis a propositional formula o (the preconditiof
(2) eis a set of literals oM (the unconditional effecjsand

(3) cis asetof pairsf > d (the conditional effec)svheref is a propositional formula
on A, andd is a set of literals or.

For an operatofp, ¢, ¢) its active effectén states are

[O]S:eUU{d\fDdEC,ﬂ:f}.

The operator igxecutablen s if s = p and its set of active effects inis consistent (does
not contain bothu and—a for anya € A.) If this is the case, then we defiagp,(s) as
the unique state that is obtained franby making[o] s true and retaining the values of the
state variables not occurring [p];. For sequences;;os;. .. ; 0, oOf operators we define
APy ;05:...:0, (5) ASAPM,, (- - AP, (PR, (8)) - -). For setsS of operators and states
we defineapps(s): the result of simultaneously applying all operators S. We require
thatapp,(s) is defined for every € S and that the s€t5], = (J, . 5[0] of active effects of
all operators inS is consistent. For operatoss= (p, e, ¢) and atomic effectsof the form

a and—a (for a € A) define theeffect precondition EPQo) = T if I € e and otherwise
EPG (o) = V{f|f > d € ¢, € d} where the empty disjunctioy () is defined asl.

Lemma 1.2 For literals I, operatorso and states;, [€ [o], if and only ifs = EPG /(o).

We sometimes consider operators without conditional effects and disjunctivity in pre-
conditions: {p, e, ¢} is aSTRIPS operatoif ¢ = () andp is a conjunction of literals. Let
7 = (A, I,0,G) be aproblem instanceonsisting of a setl of state variables, a stafeon
A (the initial state), a seb of operators oM, and a formulas on A (the goal formula).
A (sequential)plan for 7 is a sequence = oy;...;0, of operators fromD such that
app,(I) E G. This means that applying the operators in the given order starting in the
initial state is defined (the precondition of every operator is true and the active effects are
consistent when the operator is applied) and produces a state that satisfies the goal formula.
Sometimes we say that an operator sequence is a plan &od I when we simply want
to say that the plan is executable starting frbmithout specifying the goal states.

In the rest of this paper we also consider plans that are sequensetsaiff operators
The different semantics discussed in the next sections impose further constraints on these
sets.

2. DEFINITIONS OF PARALLEL PLANS
2.1 V-Step semantics

We formally present a semantics that generalizes the semantics used in most works on
parallel plans, for example that of Kautz and Selman [1996].

Earlier definitions of parallel plans have been based on the notioriesference The
parallel application of a set of operators is possible if the operators do not interfere. Lack
of interference guarantees that the operators can be executed sequentially in any total order
and that the terminal state is independent of the ordering. As shown in Theorem 2.3, non-
interference and executability in any order coincide for STRIPS operators. Our definition
of operators extends the definition of STRIPS operators considerably, and instead of non-
interference in Definition 2.1 we adopt the more abstract and intuitive order-independence
as the basic principle in théstep semantics.

For the efficiency of plan search and plan validation it is important that the test whether
a plan is executable and achieves the goals is tractable. For this reason we investigate
the tractability of our general definition &fstep semantics and then identify restricted
tractable classes vfstep plans. This investigation goes beyond earlier works like by Blum
and Furst [1997] and Kautz and Selman [1996, 1999] which restrict to STRIPS operators.

Definition 2.1 (V-Step plans) For a set of operator§) and an initial statel, aV-step plan

for O and[is a sequenc& = (Sy,...,S;—1) of sets of operators for sonie> 0 such
that there is a sequence of statgs. . ., s; (the execution df") such that
(1) sp =1,and

(2) foralli € {0,...,1— 1} and every total ordering;, ..., o0, 0f S;, app,,o, (s:)
is defined and equals ;.

We show that this abstract definition yields the standard definition of parallel plans for
STRIPS operators which requires that no operator falsifies the precondition of any other
operator that is applied simultaneously.

Lemma 2.2 LetT = (So,...,S;—1) be av-step plan with executiosy, . . ., s;. Then the
following hold.

(1) Thereisna € {0,...,l — 1} and{{p,e,c),(p’, €', ')} C S, anda € A such that
a€eand—a € €.
(2) app,(s;) is defined for every € S;.

PrROOF For (1) we derive a contradiction by assuming the opposite. Take an ordering
of the operators such thét, e, c) and(p’, ¢’, ¢’) are the last operators in this order. Hence
si+1 E —a. But the ordering in which the two operators are the other way round leads to
a states; ; such thats; ; |= a. This contradicts the assumption thais aVv-step plan.
Hence (1) holds.

Consider any operater € S; and any ordering in which is the first operator. For the
operators to be executable in this ordehas to be executable i3. Therefore (2). O

For operators without conditional effects (including STRIPS operators) the above lemma
means that for every sé} of parallel operatorapps, (s;) is defined. With conditional ef-
fects sequential execution in any order is sometimes possible even when simultaneous exe-
cution is not: consider for examp{gT, 0, {(maA—b) > {a, =b}, b > {a}}), (T, 0, {(—an
—b) > {—a,b},a > {b}})} executed in a state that satisfies A —b.

Theorem 2.3 Let O be a set of STRIPS operatoisa state, andl” = (Sy,...,S_1) €
(20)1. ThenT is a V-step plan forO and I if and only if there is a sequence of states
S0, . ..,5; such that
(1) so =1,
(2) si41 =apps;(s;) forall i € {0,...,1—1}, and
(3) fornoi € {0,...,1 — 1} and two operators (p, e, 0), (p’,¢’,0)} C S; there is
m € e such thatm is one of the conjuncts gf.

PrROOFE We first prove theonly if part. Sincel” is aV-step plan, it has an execution
o, ..., 8 as in Definition 2.1. We show that the three conditions on the right side of the
equivalence are satisfied by this sequence of states.

By the definition ofv-step plans, the first state of the execution is the initial sfate
Hence we get (1).

By (1) of Lemma 2.2 for alk € {0,...,I — 1} the setsE; = [Si]s, = U{el(p,e,0) €
S;} are consistent. By (2) of the same lemma the preconditions of all operatSysane
true ins;. Hence the statapps, (s;) is defined. The changes made by any total ordering of
S; equalE; because the effects of no operatoiSioverride any effect of another operator
in S;. Therefores; 1 = apps, (s;). This establishes (2).

For the sake of argument assume that there is literaind: € {0,...,I — 1} so that
m € e for some(p, e,) € S; andm is a conjunct of the preconditiopl of some other
(p',€',0) € S;. Then in every total ordering of the operators in whighe, #) immedi-
ately precedegy’, ¢/, 0) the latter would not be executable. This, however, contradicts the
definition ofv-step plans. Therefore (3).

Then we prove thé& part. Assume there is a sequenge. . ., s; satisfying (1), (2) and
(3). We show thaf” andsy, . . ., s; satisfy Definition 2.1 of/-step plans.

Thatsy = I is directly by our assumption (1).

We show thaBpp,,, (s:) = apps, (s;) foralli € {0,...,1 — 1} and all total order-
ingsos,...,o, of S;. Sinceapps, (s;) is defined, the precondition of evesyc S; is true
in s; andE; = J{e|(p, e, D) € S;} is consistent. Take any total ordering, . .., 0, of S;.
fined. Sincekl; is consistent, effects of no operator can be overridden by another operator
in S;. Henceapps, (s;) = si+1 = @pP,.....o,, (s:). Since this holds for any total ordering
of S;, the definition ofv-step plans is fulfilled. [

Testing whether a sequence of sets of STRIPS operatorg-g&ep plan can be done in
polynomial time. A simple quadratic algorithm tests the operators pairwise for occurrences
of a literal and its complement in the effects of the two operators and in the effect of one and
in the precondition of the other. Computing the successor states is similarly polynomial
time computation.

In the general case, however, the definitionvestep plans is computationally rather
complex. The next theorem gives the justification for restricting to a narrow classtep
plans in the following. The proof of the theorem shows that co-NP-hardness holds even
when operators have no conditional effects. Hence the high complexity emerges merely
from disjunctivity in operator preconditions.

Theorem 2.4 Testing whether a sequence of sets of operatorsvisstep plan is co-NP-
hard.

PrROOF The proofis by reduction from TAUT. Let be any propositional formula. Let
A = {ay,...,a,} be the set of propositional variables occurringpin The set of state
variables isA. Leto, = (¢,0,0). LetS = {({T,{a1},0),...,(T,{an},0),0.}. Lets and
s’ be states such thaty= o ands’ = a for all « € A. We show that is a tautology if and
only if T'= (S) is aV-step plan forS ands.
Assumep is a tautology. Now for any total ordering, . . ., o, 0f S the stat@pp,,.... o, (s)
is defined and equalks$ because all preconditions are true in all states, and the set of effects

of all operators isA (the set is consistent and making the effects trueyiields s’.) Hence
T is aV-step plan.

AssumeT is aV-step plan. Lew be any valuation. We show that= ¢. LetS, =
{(T,{a},0)|la € A,v = a}. The operatorsS can be ordered toy,...,o0, so that the
operatorsS, = {oo, . ..,or} precede, andS\ (S, U {o.}) follow o,. SinceT is aV¥-step
of o, is true inv = app,,.....o, (s). Hencev = ¢. Since this holds for any valuatian ¢ is
a tautology. O

Membership in co-NP is easy to show. There is a nondeterministic polynomial-time
algorithm that can determine that a sequence of sets of operators is/rgitp plan. It
first guesses an indexand a total ordering for the first— 1 steps and two total orderings
for step: and then computes the two states that are reached by applying the operators in
the firsti — 1 steps followed by one total ordering of steff the states differ or if not alll
operators are executable, then the definitiod-step plans is not fulfilled.

To obtain a tractable notion &fstep plans for all operators we can generalize the notion
of interference used for STRIPS operators to arbitrary operators. Lack of interference is a
sufficient but not necessary condition for a set of operators to be executable in every order
with the same results. First we define positive and negative occurrences of state variables
a € Ain aformula inductively as follows.

Definition 2.5 (Positive and negative occurrencesyVe say that a state variableoccurs
positively in¢ if positive(a, ¢) is true. Similarly,a occurs negatively i if negativea, ¢)
is true.
positiva,a) = true, foralla € A
positiva,b) = false, for all{a,b} C A such thata # b
positiva, ¢ A ¢') = positivea, ¢) or positivda, ¢’)
positiva, ¢ VV ¢') = positivda, ¢) or positivea, ¢’)
positiv€a, 7¢) = negativéa, ¢)

negativéa,b) = false, for all{a,b} C A
negativéa, ¢ A ¢') = negativéa, ¢) or negativéa, ¢')
negativéa, ¢ V ¢') = negativéa, ¢) or negativéa, ¢’)
negativéa, ~¢) = positivda, ¢)
A state variable: occurs ing if it occurs positively or occurs negatively i

Below we also consider positive and negative occurrences of state variables in effects.
A state variable: occurs positively as an effett operator(p, e, ¢) if a € e or if there is
f > d € csothata € d. A state variablex occurs negatively as an effeict operator
(p,e,c)if ma € e orthereisf > d € ¢ such that-a € d.

Definition 2.6 (Interference) Let A be a set of state variables. Operatars= (p, ¢, ¢)
ando’ = (p', ¢, ¢') over A interfereif there isa € A that

(1) occurs positively as an effect inand occurs inf for somef > d € ¢’ or occurs
negatively inp’,

(2) occurs positively as an effect it and occurs inf for somef > d € ¢ or occurs
negatively inp,

(3) occurs negatively as an effectérand occurs inf for somef > d € ¢’ or occurs
positively inp’, or

(4) occurs negatively as an effectéhand occurs inf for somef > d € ¢ or occurs
positively inp.

Proposition 2.7 Testing whether two operators interfere can be done in polynomial time
in the size of the operators.

There are simple examples of validstep plans in which operators interfere according
to the above definition. Hence the restriction to steps without interfering operators rules
out many plans covered by the general definition (Definition 2.1.)

Example 2.8 Consider a sefl of state variables and any sgf operators of the form
(T,0,{a > {—a}la e AYU{-a> {a}|a € A'})

whereA’ is any subset ofl (dependent on the operator.) Hence each operator reverses the
values of a certain set of state variables. Executing the operators in any order results in the
same state in every case. Her{&® is aV-step plan according to Definition 2.1 but any

two operators affecting the same state variable interfere. |

Before formally connecting the notion of interference to plans that satisfy/itep
semantics we define a more relaxed notion of interference that is dependent on the state.
In Section 3 we primarily use the state-independent notion of interference.

Definition 2.9 (Interference in a state) Let A be a set of state variables. Operaters=
(p,e,c) ando’ = (p', €', ') over A interfere in a state if there isa € A so that

(1) a € [o]s anda occurs ind for somed > f € ¢’ or occurs negatively ip’,

(2) a € [0]s anda occurs ind for somed > f € ¢ or occurs negatively ip,

(3) —a € [0]s anda occurs ind for somed > f € ¢’ or occurs positively in’, or
(4) —a € [0']s anda occurs ind for somed > f € ¢ or occurs positively im.

Lemma 2.10 Let s be a state and and o’ two operators. Ib ando’ interfere ins, theno
ando’ interfere.

ProoF Definition of interference has the form thatand o’ interfere if there is an
effect (conditional or unconditional) that fulfils some property. Interference imthe
same, except that a restriction to the subclass of effects activis imade.

As an example we consider one case. Other cases are analogous. So@assadime
interfere ins because (case (1)) theredse A such that € [o], anda occurs negatively
in the precondition o6’. Now case (1) of the definition of interference is fulfilled because
there isa € A that is an active effect of and occurs negatively in the precondition of
o. O

Lemma 2.11 Let s be a state andS a set of operators so that apps) is defined and
.0, (s) for any total ordering

01,...,0, Of S.

10

PROOFE Letoy,...,o0, be any total ordering 0. We prove by induction on the length
of a prefix ofoy, ..., 0, the following statement for all € {0,...,n — 1} by induction
oni: s = aif and only if app,,......,(s) = a for all state variables occurring in an
antecedent of a conditional effect or a precondition of operatars . . . , o,.

Base case = 0: Trivial.

Inductive case > 1: By the induction hypothesis the antecedents of conditional ef-
fects ofo; have the same value inand inapp,,......;_, (s), from which follows|o;]s =
[oi]appol;___mifl(s). Sinceo; does not interfere i with operatorso; 1, ..., 0,, NO State
variable occurring ino;]s occurs in an antecedent of a conditional effect or in the pre-
condition ofo;41,...,0,. Hence these state variables do not change. Sinte =
[0ilapp, .. ., ,(s)» this also holds when; is applied inapp,,;....,_, (s). This completes
the induction proof.

Sinceapps(s) is defined, the precondition of evevye S is true ins and|o], is con-
sistent. Based on the fact we have established above, the precondition ob eve$yis
true also inapp,,;...;0, () and[olapp, . ., (s) IS consistent for anyoy, ..., o} € S\{o}.
Hence any total ordering of the operators is executable. Based on the fact we have es-
tablished abovelo]; = [0]app,,. .., (s) fOr every{oi,... 0} C S\{o}. Hence every
operator causes the same changes no matter what the total ordering isaignes is
defined, no operator i undoes the effects of another operator. Hence the same state
s’ = apps(s) is reached in every casel]

Theorem 2.12 Let I be a stateO a set of operators, an’ = (Sy,...,S;_1) € (20)l
such that there is a sequengg s1, . . ., s; of states withsg = I ands; 1 = apps; (s;) for
allie{0,...,l—1}. Ifforno: € {0,...,l — 1} and{o, 0’} C S; such thai # o’ the
operatorso ando’ interfere ins;, thenT is aV-step plan forO and .

PrRooF Directly by Lemma 2.11. [

Theorem 2.13 Let I be a stateO a set of operators, an’ = (S, ..., S5;_1) € (20)l
such that there is a sequengg s1, . . ., s; of states withsg = I ands; ;1 = apps; (s;) for
alli e {0,...,1—1}. Iffornoi € {0,...,l — 1} and{o,0’'} C S; such thato # o’ the
operatorso ando’ interfere, therl" is aV-step plan forO andI.

PrROOF By Lemma 2.10 and Theorem 2.12(]

The state-dependent definition of interference in some cases allows more parallelism
than the state-independent definition.

Example 2.14 ConsiderS = {(T,0,{a > {-b}}),(T,0,{b > {—a}})}. The operators
interfere according to Definition 2.6. However, the operators do not interfere in states
such thats = —a A —b because no effect is active. |

A still more relaxed notion of interference that allows changing shared state variables as
long as the preconditions do not become false nor the values of antecedents of conditional
effects change leads to high complexity because states other than the current one have to be
considered. Even if none of the operators change the values of antecedents of conditional
effects or preconditions in the current state, they may do this in states reachable by applying
another operator. For example, the operdtoy b, {c}, () is not disabled by T, {—-a}, 0)

11

nor (T, {—b}, 0) alone, but in states reached by one of these operators the other operator
disables it.

The source of the high complexity of the general definition is that on different execution
orders, all of which must result in the same state, a different sequence of intermediate
states is visited, and it seems unavoidable to make these intermediate states explicit when
reasoning about the executions.

2.2 Process semantics

The idea of the process semantics is that we only consider thetp plans that fulfil the
following condition. There is no operatorapplied at timeg + 1 with ¢ > 0 such that the
sequence of sets of operators obtained by mowifrgm timet¢ + 1 to time¢ would be a
V-step plan that leads to the same state.

As an example consider a sg¢tf operators that are all initially executable and no two
operators interfere or have contradicting effects. If we have time points 0 and 1, we can
apply each operator alternatively at O or at 1. The resulting state at time point 2 will be
the same in all cases. So, undéestep semantics the number of equivalent plans on two
time points is2!5!. Process semantics says that no operator that is executable at 0 may be
a‘pp‘)lied later than at 0. Hence under process semantics there is only one plan instead of
2151,

The idea of the process semantics was previously investigated in connection with Petri
nets [Best and Devillers 1987]. It can be seen as a way of canonizitgp executions into
a normal form in which each operator of thiestep plan occurs as early as possible. This
canonical normal form is similar to the Foata normal form in the theory of Mazurkiewicz
traces [Diekert and tivier 1997; Heljanko 2001].

Definition 2.15 (Process plans)For a set of operatorg) and an initial statel a pro-
cess plan forO and I is a V-step plan{Sy,...,S;—1) for O and I with the execution
S0,--.,8; such that thereisne € {1,...,1 — 1} ando € S; so that(Syp,...,S;—1 U

{0}, Si\{o}, ..., Si—1) is aV¥-step plan fotO and I with the executiony, . . ., s; such that
sj=siforallje{0,...,i—1,i+1,... 1}

Note that it is possible that € S;_;, and when transforming ‘@& step plan to a corre-
sponding process plan, the number of operators in the plan may decrease. It is possible to
define an alternative process semantics so that moving an operator earlier is possible only
if the total number of operators is preserved.

The important property of process semantics is that even though the additional condition
reduces the number of valid plans, whenever there is a plantwitie steps undev-step
semantics, there is also a plan with at miotiine steps under process semantics that leads
to the same final state. From amystep plan a plan satisfying the process condition is
obtained by repeatedly moving operators violating the condition one time point earlier.

Theorem 2.16 Letw = (A4, 1,0, G) be a problem instance angy, ..., 5;—1) a V-step
plan for 7. Then there is a process pldsy, . ..,.S;_;) for .

ProoFr Define a mapping from plans to plans: plap(7T) is obtained fromI" by
moving one operator earlier according to Definition 2.15 if possible, and othep{ige=
T. Define the functiory ((So, ..., Si—1)) = Zi;é(i -18;]). Note thatf (p(T")) < f(T) if
p(T) # T. Sincef can take only positive values, only finitely many moves are possible.

12

Whenf(p(T)) = f(T), T is a process plan. Hence a process plan is obtained after finitely
many moves. []

Theorem 2.17 Testing whether a sequence of sets of operators is a process plan is poly-
nomial-time reducible to testing whether a sequence of sets of operatorsssep plan.

PrROOFE The definition of process plans gives a procedure for doing the test. Consider
(So,...,S1—1). For every operator il§; U- - - U S;_; we have to test the process condition.
There argS;| + - - - + |S;—1] such tests. OJ

We will later concentrate owi-step plans in which no two simultaneous operators inter-
fere, and hence itis convenient to define a narrower class of process plans that is compatible
with this narrower class of-step plans.

Definition 2.18 (i-Process plans)For a set of operators) and an initial statel a pro-
cess plan forO and I is a V-step plan{Sy,...,S;—1) for O and I with the execution
S0,..-,8; such that thereisne € {1,...,l — 1} ando € S; so that(Sp,...,S;—1 U
{0}, Si\{o},...,Si_1) is aV¥-step plan fotO andI with the executiony, . .., s; such that
sj = sy forallj €{0,...,i—1,i+1,...,1} and additionally, for na € {0,...,l — 1}
and{o, 0’} € S; such thab # o’ the operator® ando’ interfere.

2.3 3-Step semantics

We present a general formalization of a notion of parallel plans that was first considered
by Dimopoulos et al. [1997].

Definition 2.19 3-Step plans) For a setO of operators and an initial staté, a 3-step
planis T = (Sp,...,S;_1) € (2O)l together with a sequence of states. .., s; (the
execution of") for somel > 0 such that

(1) sp =1,and
(2) foreveryi € {0,...,1 — 1} there is a total ordering; < ... < o, 0f S; such that
Si41 = APPoy:..s0, (Si)-

The difference tov-step semantics is that instead of requiring that each Stegan
be ordered to any total order, it is sufficient that there is one order that maps state
si+1. Unlike in V-step semantics, the successgr; of s; is not uniquely determined
solely by.S;, as the successor depends on the implicit ordering; oHence the definition
has to make the execution, . .., s; explicit. There are also other important technical
differences betweef-step and/-step semantics, most notably the fact that the properties
given in Lemma 2.2 fok/-step semantics do not hold féfstep semantics.

The more relaxed definition af-step plans sometimes allows much more parallelism
than the definition of/-step plans.

Example 2.20 Consider a row ofi Russian dolls, each slightly bigger than the preceding
one. We can nest all the dolls by putting the first inside the second, then the second inside
the third, and so on, until every doll except the biggest one is inside another doll.

13

For four dolls this can be formalized as follows.

01 = (outlA out2A empty2 {1in2, —outl —empty2, ())
02 = {(0Ut2 A out3A empty3 {2in3, —out2 —empty3, ()
o3 = (out3A outd A empty4 {3in4, —out3 —empty4,)

The shortest-step plan that nests the dolIS# }, {02}, {03}). The3-step plan{o1, 02, 03})
nests the dolls in one step. |

Theorem 2.21 (i) EachV-step plan is al-step plan, and (ii) for every-step plani’ there
is aV-step plan whose execution leads to the same final state as that of

PROOF (i) Consider av-step planl” = (S, ..., S;—1). Any total ordering ofS;,: €
{0,...,1 — 1} takes state; to the sames; ;. Hence T is a3-step plan. (ii) For &-step

planT = (Sy,...,S;—1), aV-step plan whose execution leads to the same final state as
thatof Tis {093}, ..., {o% },.... {0\ '}, ..., {041, } where for every € {0,...,1 — 1},

the sequencéoi}, ..., {0, } is a total ordering ofS; given by Condition 2 of Defini-

tion 2.19. O

Next we identify restricted intractable and tractable classesstép plans.

Theorem 2.22 LetO be a set of operators anfla state. Testing wheth&t = (Sy,...,S;_1) €

(20)l is a3-step plan forO and I with some executiosy, .. ., s; is NP-hard, even when
the set of atomic effects of operatorsdpfor every: € {0,...,l — 1} is consistent.

PROOF By reduction from SAT. Lety be any propositional formula. Let be the set
of propositional variables occurring i Let s ands’ be states such that [~ « for all
a € Aands’ |= aforalla € A. We claim thaty is satisfiable if and only ifS) with
S ={(T,{a},0)|a € A} U {{(4,0,0)} is a3-step plan with executios, s’.

So assume is satisfiable and : A — {0,1} is a valuation satisfying. Then for
any total order onS such that exactly the operatoss = {(T,{a},0)|a € A,v(a) =
1} precedeny, = (¢, 0, 0) satisfies the definition ofi-step plans because executifg
produces the state/valuatiorthat satisfies the precondition of.

Assume(S) is a3-step plan. Hence there is a total ordering. . ., o, of S such that
apm, ...;0, () is defined. Hencapp,,.. .o, (s) = ¢ whereoy, ..., 0; are the operators
precedingy. Thereforep is satisfiable. O

The preceding theorem (Theorem 2.22) and the following (Theorem 2.23) can be strength-
ened so that all operators f) are executable ig;. This shows that our later restriction to
setsS; so thatapps, (s;) is defined does not directly reduce complexity.

From the above proof we see that NP-hardness holds even when there are no conditional
effects and the effects of the operators are not in conflict with each other. However, the
proof assumes disjunctivity in preconditions becatisgay be any formula. The question
arises if the problem is easier for STRIPS operators.

Theorem 2.23 Let O be a set of STRIPS operators ahd state. Testing whethdr =

(So,y...,81-1) € (2O)l is a 3-step plan forO and I with some executiosg, ..., s; is
NP-hard.

14

PrROOF We reduce the NP-complete problem SAT to testing whether a sequence of
sets of operators is &step plan. LeC' be a set of clauses, = |C| and P the set of

propositional variables occurring ifi. Assign an index € {1,...,n} to each clause.
The state variables até = {c1,...,c,} U{U,|a € P}. Define
of = (U, {ﬁUa,citlw, .. "cifnt+}’@> foralla € P,
whereift, ... ,z‘f,L are the indices of clauses in whialoccurs positively
0 = (Uar{-~Usscio=y- s Cia- },0) foralla € P,
wherei{ ™, ... ;- are the indices of clauses in whialoccurs negatively

om = {c1 A+ Nep,{Uyla € P} D), and
S = {of|lae Ay U{o;|a € P}U{on}.

Let s ands’ be states such thatl= —c; A -+ A =ey A A\ jcpUa @ands’ = cp A--e A
cn A Nyep ~Ua. We show that(S) is a 3-step plan with execution, s" if and only if
C' is satisfiable. Assume that: P — {0,1} is a valuation that satisfieS. Take any
total ordering< of S such that for alu € P, of < o, iff v(a) = 1 ando, < oy, iff
v(a) = 0. Applying the operators preceding, makes the state variables, , ¢, true
(because is a valuation that satisfigS) and the state variablds,,a € P false. Now
om 1S executable and its application makesld)l « € P true again. Then the remaining
operators are executable, making evE€ya € P false. Hence that total ordering satisfies
the definition of3-step plans fof.S) with executions, s’.

For the other direction, assume th@) is a 3-step plan with executior, s’ which
means that the operators can be applied in some etderobtains’ from s. Since for
everya € P the operators;” ando; havelU, as the precondition and both malég false
and onlyo,, can makdJ, true, it must be that < o,, < 0, oro; < o, < of. Define
v:P —{0,1} byv(a) = 1iff of < o,,. Foro,, to be executable; A --- A ¢,, must be
true. Hence the operators applied beferecorrespond to a valuatianthat satisfies every
clause inC. Thereforev = C. O

Restrictions of the previous two theorems separately do not yield tractability, but to-
gether they do.

Theorem 2.24 Let O be a set of STRIPS operators aha state. Testing wheth&r =

(So,...,59_1) € (QO)Z with no.S; containing operators with mutually conflicting effects,
is ad-step plan forO and I with some executiosy, . . ., s; is polynomial time.

PROOF Since no two simultaneous operators have effects that conflict each other the
execution of the plan — if one exists — is unambiguously determined by the sets of ef-
fects of operators 0B, ..., 510 so = I ands;y1 = aPPY(T e,0)|(p,e,0y} (i) for all
i € {0,...,1 —1}. The question that we must answer in polynomial time is whether the
operators at each time point can be ordered so that the precondition is satisfied when an
operator is applied.

The test is performed by the procedure calls lineasize;) for all i € {0,...,1 —

1}. This procedure is given in Figure 1. It runs in polynomial time in the sizé& of
because the number of iterations of thiile loop is bounded by the cardinality 6fand
all the computation in one iteration is polynomial time in the siz&'ofVe show that the
procedure returnsue if and only if an executable ordering 6fexists.

15

procedure linearize,S)
while S # () do
if there iso = (p,e,0) € S
such thas = pande N {I|l € p'} = B forall (p’, e, 0) € S\{o}
then S := S\{o}
else returnfalse;
s1=app(s);
end while
return true;

COINITRWNE

Fig. 1. Algorithm for testing whether a set of non-conflicting STRIPS operators can be linearized

Assume linearize(.S) returnstrue. Hence there is a sequence of statgs. ., SfSI and
a sequencey, . . ., o5 _, of operators such tha, = s ands;, = app,(s;) for every
i1€{0,...,]|S] —1}. Henceapp,é;m;o?s‘il(s) = apps(s) which satisfies the conditions a
setS has to satisfy in the definition af-step plans.

Assume linearize(S) returnsfalse We show that no execution exists. Sirfedse
is returned, for everyp,e,0) € S’ C S eithers’ £ p (whereS’ ands’ are the last
values the variable§ ands have obtained) o¢ falsifies the precondition of at least one
of the operators i’ \{(p, e,) }. Letoy, ..., 0, be any total ordering af. We show that

Take the operatas; = (p;,e;, 0) € S’ that comes earliest in the ordering, . . ., 0,.

If s; =app,....0;, ,(s)is not defined (because the precondition of one of the operators
is false when the operator is applied), then agp,,. .., (s) is not defined. So assume
S, = aphy;....0;_, () is defined.

Since linearize{,S) returnsfalse eithers’ [~ p; or o; falsifies the precondition of at
least one 05"\ {o;}.

In the first case, as none of the operators'iip’ falsifies any literal in the precondition
of any operator irt’, it must be that [~ p;. Sinces’ [~ p;, there is at least one conjunct (a
literal) of p; that is not made true by any operatorS\S’. Since{os,...,0,_1} C S\,
this literal is also not true ir} and hence, [~ p;.

In the second case, asis the first operator of; in the ordering, one of the literals in the
precondition of at least one operatorSfi\{o;} becomes false whemn is applied. Since
the operators irb are pairwise non-conflicting, there is no operator that could make this
literal and precondition true again (here we use the assumptioy tbasists of STRIPS
operators.) Hencapp,,....., (s) is not defined, and the definition @fstep plans is not
satisfied. [

To obtain a tractable notion aFstep plans for operators in general we introduce, simi-
larly to V-step semantics, a syntactic notion characterizing dependencies between operators
that leads to a simple graph-theoretic test for plans.

Our quest for tractable notions @fstep plans is motivated by the need to effectively
encode the planning problem in the propositional logic (Section 3.) Even though Theo-
rem 2.24 allowsi-step plans in which the preconditions of some of the operataofs ame
false ins;, we will not consider encodings of this generality. Allowing this would seem
to require making the implicit intermediate states explicit, which would directly contradict
the motivation of studying parallel encodings in the first place.

16

Definition 2.25 (Affect) Let A be a set of state variables and = (p,e,c) and o’ =
(p', €,) operators overd. Theno affectso’ if there isa € A such that

(1) a € (eUU{d|f > d € ¢}) anda occurs inf for somef > d € ¢ or occurs
negatively inp’, or

(2) —a € eor —a € dfor somef > d € ¢ anda occurs inf for somef > d € ¢’ or
occurs positively inp'.

This is like Definition 2.6 but considers only one direction of interference: @hd o’
interfere, then eithes affectso’ or o’ affectso.

Lemma 2.26 Leto; < --- < o, be an ordering of a sef of operators so that ib < o
theno does not affect’. Lets be a state so that = p and[o]; is consistent for every
(p,e,c) € S. Then the following hold.

(1) app,;....0;(s) = p; foreveryi € {1,...,n—1}andj € {i +1,...,n} wherep;
is the precondition ob;.

(2) [oj]s = [ojlapp,,.. .., (s) foreveryi e {1,....,n— 1} andj € {i +1,...,n}.

(3) For everyi € {1,...,n}, if app,,,1(s) is defined, then app.. .., (s) =
APPo, ... 0,} (5)-

PrROOF By induction on.

Base case = 0: Trivial.

Inductive case > 1: First we note thaépp,,, (s) is defined because by the induc-
tion hypothesis for case (1) the preconditionogfis true inapp,,......, ,(s), and by the

Now considerany € {i + 1,...,n}.

Case (1): By the induction hypothesisp,,, ,(s) = p;. Sinceo; does not affect

Case (2): By the induction hypothesis;]s = [0jlapp,,. ... ,(s)- Sinceo; does not
affecto;, o; does not change the value of any state variable occurring in the antecedent of
a conditional effect 0b;. Hencelo;]s = [0;]app, (s)-

Case (3): By the induction hypothesisaip,, ,....., .} (s) is defined, theapp,,;....o,, (s) =
apPo,.....0,_,}(5). SO assume alsappy,, ,.....,}(s) is defined, that isjo;], does not con-
tradict [{o1,...,0,-1}]s. By (2) [0i]s = [oi]app,,. .., ,(s)- Since the effects of; do
not override the effects of any operator earlier in the sequence, wapggt . .., (s) =
apPo,.....0,3(8). O

Theorem 2.27 Let O be a set of operatord, a state,T” = (Sp,...,S;_1) € (20)1, and
o, - - -, 8 @ Sequence of states. If
(1) so =1,
(2) foreveryi € {0,...,1—1} there is a total ordering< of S; such thatifo < o’ then
o does not affect’, and

(3) si+1 = apps, (s;) foreveryi € {0,...,1 -1},
thenT is a3-step plan forO and .

17

PROOF Since by assumptioapps, (s;) is defined, the preconditions of all operators
in S; are true ins; and[o],, is consistent for every € S;. Hence the assumptions of
Lemma 2.26 are satisfied and by ép,,......,, (si) = apps, (s;) for some total ordering
01,...,0, 0f S;. O

For STRIPS operators the subclass3e$tep plans definable by using the notion of
affectsin Theorem 2.27 is not very restrictive. In comparison to arbitfaustep plans,
the only restrictions are that seff simultaneous operators have no contradicting effects
and all operators are executable in the current state in other words, thaapps(s) is
defined. This is stated in the following theorem.

Theorem 2.28 Letm = (A, 1,0, G) be a problem instance so that every operatoin
is a STRIPS operator and 16t = (S, ..., .S;—1) be a3-step plan forr with execution
s0,---,8; S0 thatsy = I ands; 1 = apps,(s;) for everyi € {0,...,1 —1}. Then for
everyi € {0,...,l — 1} there is a total ordering< of S; such that ifo < o’ theno does
not affecto’.

PrRoOF For STRIPS operators an operatoaffectso’ if and only if o has an effecin
andm is one of the conjuncts in the preconditioncdf The result follows from the proof of
Theorem 2.24. The proceduirearizerepeatedly selects an operator that does not affect
any of the remaining operators(]

Even though the class @fFstep plans based affectsis narrower than the class sanc-
tioned by Definition 2.19, much more parallelism is still possible in comparison to the class
of V-step plans satisfying the non-interference condition. For instance, nesting of Russian
dolls in Example 2.20 belongs to this class.

Similarly to the notion of interference in a state (Definition 2.9), we could define a state-
specific notion ofaffects This would lead to a slightly more relaxed but still efficient test
of whether3-step semantics is fulfilled.

It is possible to combine thé-step semantics and the process semantics, but we leave
this to future work.

3. PLANNING AS SATISFIABILITY

Planning as satisfiability was introduced by Kautz and Selman [1992]. In addition to being
a powerful approach to planning, it is also the basi®afinded model checkiH@iere,
Cimatti, Clarke, and Zhu 1999]

In this section we present encodings of the different semantics of parallel plans in the
propositional logic. A basic assumption in all these encodings is that foss&tsimulta-
neous operators applied in statthe stateapps(s) is defined, that is, all the preconditions
are true ins and the set of active effects of the operators is consistent. Given this assump-
tion, the encodings of all the semantics share a common part which is described next.

3.1 The base encoding

Planning can be performed by propositional satisfiability testing as follows. Produce for-
mulaegg, ¢1, P2, - . . such thaty, is satisfiable iff there is a plan of lengthThe formulae

1Bounded model checking was developed at CMU after Alessandro Cimatti gave there a seminar talk on the
techniques used in the 1998 AIPS planning competition in which the BLACKBOX planner by Kautz and Selman
participated [Cimatti 2003].

18

are tested for satisfiability in the order of increasing plan length, and from the satisfying
assignment that is found a plan is constructed. The encodings of the different semantics
for parallel plans differ only in the formulae that restrict the simultaneous application of
operators. Next we describe the part of the encodings that is shared by all of the semantics.
For the problem instance = (A, I,0,G) let the (Boolean) state variables be=
{a',...,a"} and the operator® = {o!,...,0™}. For every state variable € A we
have the propositional variables which express the value af at different time points
t € {0,...,1}. Similarly, for every operatos € O we haveo, for expressing whether
is applied at € {0,...,l — 1}. For formulaep about the values of the state variables we
denote the formula with all state variables subscripted with the index to a timetgmynt
bt
Given a problem instance = (A, I, 0, G), a formula® ; is generated to answer the
following question. Is there an execution of a sequendesets of operators fror® that
reaches a state satisfyiggfrom the initial state/? The formula® ; is conjunction ofl,
(formula describing the initial state with propositional variables subscripted by time point
0), Gy, and the formulae described below, instantiated with all{0, ..., I — 1}.
First, for everyo = (p, e, c) € O there are the following formulae. The preconditipn
has to be true when the operator is applied.

Ot — Pt (1)
If o is applied, then its unconditional effectsre true at the next time point.
O — €t+1 (2)

Here we view sets of literals as conjunctions of literals. For evefy> d € c the effects
d will be true if f is true at the preceding time point.

(0t A ft) = dit1 (3)

Second, the value of a state variable does not change if no operator that changes it is ap-
plied. Hence for every state variakieve have two formulae, one expressing the conditions
for the change ofi from true to false,

(ae A —apt1) = ((0p A (EPCa(0"))e) V-V (0] A (EPCa (™)), (4)
and another from false to true,
(mar Aagsr) = ((0p A (EPGy(01))e) V -+ V (0] A (EPGy(0™))1)). (5)
These formulae can be simplified by using the obvious equivalencesE®@n, (o) = L.
The formulae® . ;, just like the definition obpps(s), allow sets of operators in parallel
that do not correspond to any sequential plan. For example, the op€eatdrd}, () and
(b, {—a},) may be executed simultaneously resulting in a state satisfying —b, even
though this state is not reachable by the two operators sequentially. Plans following the

three semantics of parallel plans can always be executed sequentially. Further formulae
that are discussed in the next sections are needed for capturing the three semantics.

Theorem 3.1 Letwm = (4, I, O, G) be a problem instance. Then therdis= (Sy,...,S;—1) €

(20)Z so thatso, ..., s; are states so thaf = sg, s; = G, ands; 11 = apps, (s;) for all
i €{0,...,l— 1} if and only if there is a valuation satisfying the formua ;.

19

PrROOF For the proof from left to right, we construct a valuatiormas follows. For all
i €0,...,1} and all state variables€ A definev(a;) = s;(a). Foralli € {0,...,1—1}
and all operators € O definev(o;) = 1iff 0 € S;.

We show thav |= @, ;. From this it directly follows thab = Iy A G;. It remains to
show satisfaction of instances of the schemata (1), (2), (3), (4) and (5).

(1) Consider anyi € {0,...,l — 1} ando = (p,e,c) € O. If o € S;, thenv }~= o,
and immediately = o; — p; (Formula 1). So assumec S;. By assumptiors; is a
state such thapps, (s;) is defined. Hence the precondition®fs true ins;. Hence
v E 0; —p; (Formula 1).

(2) Consider any € {0,...,l — 1} ando = (p,e,c) € O. If o € S;, thenv }~ o;
and immediately = o; — e;11 (Formula 2). So assume e S;. Aso € S;, the
unconditional effects of o are true ins;;1 = apps,(s;). Hencev = 0; — et
(Formula 2).

(3) Consider any € {0,...,l — 1} ando = (p,e,c) e Oandf >d €c. Ifo € S,
thenv [~ o; and immediately = (o; A f;) — e;1 (Formula 2). So assumec S;.
Now v = (0; A f;) —d;+1 (Formula 3) because i = f then the literalsl are active
effects and are true sy ; and consequently = d; 1.

(4) Consider any € {0,...,l — 1} anda € A. According to the definition of; ;; =
apps, (s;), a can be true iry; and false irs;+; only if —a € [o], for someo € S;. By
Lemma 1.2-a € [0, if and only if s; = EPC.,(0), whereo = (p, e, c). So if the
antecedent ofa; A —a;11) — ((0} A (EPCLa(0%))i) V-V (0" A (EPCLq(0™));))
is true, then one of the disjuncts of the consequent is true, whete{o!, ..., 0™}.
This yields the truth of instances of Formula 4.

Proof for Formula 5 is analogous.

For the proof from right to left, assumeis a valuation satisfying the formuta,. ;. We
construct a plafSy, . .., S;—1) and a corresponding executieg . . ., s;

Define for alli € {0,...,![} the states; as the valuation ofd such thats;(a) = v(a;)
for everya € A. DefineS; = {o € OJv(o;) =1} forall j € {0,...,1 —1}.

Obviouslyl = sg ands; = G. We show that; ; = apps, (s;) foralli € {0,...,l—1}.

The preconditiorp of every operatoo € S; is true ins; because = o; andv | 0; —
p; € ¢, ; (Formula 1).

si+1 [[0]s, for everyo € S; because = o; andv | o; — e;41 € D, for the
unconditional effects of o (Formula 2) ands = (o; A f;) — d;41 for conditional effects
f > dof o. This also means tha$,],, is consistent andpps, (s;) is defined.

For state variables not occurring in[S;];, we have to show that;(a) = s;+1(a).
Sincea does not occur iS;],, for everyo € {o',...,0™} = O eithero ¢ S; or both
a ¢ [o]s;, and—a & [o]s;. Hence eithew [~ o; or (by Lemma 1.2p |= —(EPGC,(0)); A
ﬁ(EPQa());. This together with the assumptions that= (a; A —a;1+1) — ((o} A
(EPC.a(0))i) V -+ V (0f* A (EPC-a(0™));)) (Formula 4) andb |= (ma; A aiv1) —
((of A (EPG,(01));) \/(0 A (EPGC,(0™));)) (Formula 5) implies = (a; — a;41) A
(ma; ——a;41). Th erefore every, € A not occurring in[S;]s, remains unchanged. Hence
Si+1 = appPs; 31) O

Proposition 3.2 The size of the formulé ; is linear in{ and in the size of.

20

Theorem 3.1 says that a sequence of operators fulfilling certain conditions exists if and
only if a given formula is satisfiable. The theorems connecting certain formulae to certain
notions of plans (Theorems 3.3, 3.6, 3.11, 3.12, 3.13) provide an implication only in one
direction: whenever the formula for a given value of paramétersatisfiable, a plan of
[time points exists. The other direction is missing because the formulae in general only
approximate the respective semantics and there is no guarantee that the formula for a given
[is satisfiable when a plan withtime points exists. However, the formula with some
higher value of is satisfiable. This follows from the fact that whenevét-step or3-step
plan(Sy,...,S;—1) with n. = |Sp| + --- + |S;_1| occurrences of operators exists, there
is a plan consisting of singleton sets, and the corresponding formuae, A ®¢, ,, are
satisfiable. The formula@g, ,, encode the parallel semanticgor formulaeO.

An exact match between théstep semantics and its encodings holds for problem in-
stances with STRIPS operators only (Theorem 3.4.)

The implications of the approximative nature of thstep semantics encodings for pro-
cess semantics are more serious. For STRIPS operators the encodings for process seman-
tics are exact: the formula for time points is satisfiable if and only if a process plan of
lengthn exists. However, in the general case the inexactness of the undevhgtegp en-
coding leads to a mismatch between process semantics and the formulae. The problem is
that the movement of an operator to an earlier time point may be prevented by the too strict
V-step semantics encoding even when it is allowed by Definition 2.1. Hence the process
semantics has to be understood in relation to particular classéstep plans: an oper-
ator has to be moved earlier only if there is a correspondistep plarbelonging to the
subclass in questigrfor example, the subclass @fstep plans in which no two parallel
operators interfere. This is the reason why we introduced the notion of i-process plans in
Definition 2.18.

In planning as satisfiability it is often useful to use constraints that do not affect the set
of satisfying valuations but help pruning the set of incomplete solutions encountered dur-
ing satisfiability testing and therefore speed up plan search. The most important type of
such constraints for many planning problemiiariantswhich are formulae that are true
in all states reachable from the initial state. Typically, one uses only a restricted class of
invariants that are efficient (polynomial time) to identify. There are efficient algorithms for
finding many invariants that are 2-literal clauses [Blum and Furst 1997; Rintanen 1998].
Theorem 3.1 does not hold if invariants are included because they contain information
about the set of states that are not reachable by any sequential plan. For example, the for-
mulaca V b is an invariant that would rule out states satisfyingA —b that are reachable
from any state satisfying A b by simultaneous application ¢&, {—b}, #) and(b, {—a}, 0)
but not sequentially reachable by these operators. However, the additional constraints in
the following sections which restrict the parallel application of operators guarantee that
only sequentially reachable states are considered. Therefore in the presence of the addi-
tional constraints for the different semantics invariants do not affect the set of satisfying
valuations.

3.2 V-Step semantics

We have showed in Section 2.1 that the classeg-stiep plans definable in terms of the
notions of interference and interference in a state are tractable, in contrast to the general
definition that is co-NP-hard.

21

In this section we present two encodings of the subclass of plans follo#vastgp se-
mantics in which no two parallel operators interfere. The first encoding is similar to the
one used by Kautz and Selman in the BLACKBOX planner [Kautz and Selman 1999] and
has a size that is quadratic in the number of the operators. The size of the second encoding
is linear in the size of the operators. Encodings for the more relaxed notion of interference
in a state can be given, including an encoding with a linear size, but we do not discuss them
in detail in this work.

3.2.1 A quadratic encoding.The simplest encoding of the interference condition in
Definition 2.6 is by formulae

=04 V 0] (6)

for every pair of interfering operators and o’. Note that according to our definition,
operators that could never be applied simultaneously (because of conflicting preconditions
or effects) may interfere. The formulae (6) for these kinds of pairs of operators are of
course superfluous. Defir\é\éStlepl as the conjunction of the formulae (6) for all time
pointst € {0,...,1 — 1} and for all pairs of interfering operatofs, o'} C O that could

be applied simultaneously. There &é/n?) such formulae for. operators.

Theorem 3.3 Letw = (A4, I, O, G) be a problem instance. There i¥/sstep plan of length

Lfor mif &,y A OSTP is satisfiable.

PrRooOF Directly by Theorems 2.13 and 3.1]

A similar quadratic-size encoding can also be given for state-dependent interference.
The state-dependence is easy to encode by a formula that has a size proportional to the
two operators: the simultaneous execution is allowed if none of the operators has an active
effect that changes a state variable in the precondition or antecedent of a conditional effect
of the other. Note that for STRIPS operators the state-dependent and state-independent no-
tions of interference coincide, and even further, the above encoding 'dfstep semantics
is perfectly accurate.

Theorem 3.4 Letm = (A,I,0,G) be a problem instance wher is a set of STRIPS
operators. There is &-step plan of lengttfor = if and only if®, ; A@éﬁtf”l is satisfiable.

PrRoOOFE Theif direction is by Theorem 3.3. It remains to show tmdy if direction. So
assume there is\&step planl’ = (Sy,...,S;—1). By Theorem 3.1 there is a valuation
such that = ®,,;. We show that also = q)éftlepl, that is, any conjuncto; VV =0, of
Pt fori € {0,...,1— 1} and{o,0'} C Ois satisfied by.

Since—o; vV -0, is in @5 P, 0 and o’ interfere. By Definition 2.6 this means for
operators without conditional effects that there is a literauch thatn is an effect ob and
m is a conjunct of the precondition of, or the other way round. Hence by Theorem 2.3
{o,0'} Z S;. By the construction of in the proof of Theorem 3.4 = —o; V —0}. Hence
every conjunct ofb ;" is satisfied by. O

3.2.2 Alinear encoding.As the size ofd . ; is linear in/ and the size of, the quadratic

encoding of the interference constraints may dominate the sidg pi\ @éﬁtlem. We give

a linear-size encoding for the interference constraints.

22

2,m 4,m 5,m
ay Ay Ay
l 5
AA Ot
1,m2 2,m2 4,m,2
Ay Ay ay

Fig. 2. Alinear-size encoding of interference constraints

The idea of the encoding is to order all operators that may make a state variahle
false (respectively true) or that have a positive (respectively negative) occurrepée of
the precondition or any occurrence in an antecedent of a conditional effect arbitrarily as
o',...,o™. Whenever an operatorthat falsifiesp is applied, a sequence of implications
prevents the application of every operatdrpreceding or followingo whenevero’ has
positive occurrences gf in the precondition or any occurrences in the antecedents of
conditional effects. One chain of implications, through a set of auxiliary propositional
variables, goes to the right in the ordering and another chain to the left.

We define a formula for every literak € A U {-p|p € A} for preventing the simulta-
neous application of operators that falsifyand operators that require to remain true.
Leto!,...,o" be any fixed ordering of the operators. Lgt, be the set of operators that
may falsifym, and letR,,, be the set of operators that may requit¢o remain true.

The formulais the conjunction @hain(o!, ..., 0o"; E,,,; R,,;m') andchain(o”, . .., 0'; By Ry; m?)
for all literalsm where

chain(o, ..., 0™ E; R;m) = /\{0§—>a{’"f|i <j,ot € E, o € R {0, ..., 0 1} N R =0}
U{ay™ —al™i < j,{o",0} C R, {o'T,..., 0" } N R =0}
U{ay™ ——otlo® € R}.

The parametem is needed to make the names of the auxiliary variables uniquenifhe

andm? are two names distinguishing the auxiliary variables for the two sets of formulae
for literal m.

Example 3.5 Consider the following operators.

o' = (z,{~z,y},0)
o? = {(x,{~z,2},0)
0° = (z,{~z},0)
ot = <‘Ta {Z}a®>
0® = <£B, {ﬁf}»@
The formulae that encode the constraints on the simultaneous application for these opera-
tors and the state variahteare depicted in Figure 2. |
The number of 2-literal clauses ahain(o!, . .., o"; E,,,; R,,; m?) is at most three times

the number of operators in which occurs and hence the number of 2-literal clauses in

chain(o!,...,0"; Eyy; R;m!) Achain(o”, ..., o' Ep; Ry m?)

23

is at most six times the number of operators. Since we have these formulae for every literal
m, the number of 2-literal clauses is linearly bounded by the size of the set of operators.
Let cI>VStep2 be the conjunction of the above formulae for all literalsand time points

te {O =13

Theorem 3.6 Letw = (A, I, O, G) be a problem instanceb,. ; A @VStepl is satisfiable if
and only if®,; A <I>V5‘e”2 is satisfiable. Hence there is\astep plan forr of lengthi if

Doy A @szm is satisfiable.

®JIP!. We construct a valuationf that sat-
we haveu’(:c) = v(z). Additionally,

PROOF Letwv be a valuation such that=
isfies®;'"P2. For all variables occurring i

zm

v’ assigns vaIues to the auxiliary varlabhééw anday’

Letv' (a]™) = liffthereiso’ € E,, suchthat < j andv(o}) = 1. Letv/(a{*mQ) =1
iff there iso® € E,,, such that > j andv(o}) = 1.

We consider only the components of the first conjunat@in(o®, . . ., 0™; E,,; Ry; mb)A
chain(o™,...,o'; E; R,,; m?). The second conjunct is analogous.

. . 1
Considerol — a;™ such that < j, o' € E,,, 07 € Ry, {0, ..., 0" 1INk, =0
. . 1 .
If v'(0}) = 1, then by the definition of’ alsov’(a?™) = 1 because < j andv’(o?) = 1.
1
ConS|deroLZ m ai”” such thati < j,{0%,0’} C Ry, {0"*,..., 0 1IN R, =10
1 ./ ./
If v(ay™) =1, thentherei®’ € E,, suchthat’ < i andv’(o}) = 1. Therefore by the
.1
definition ofv” we havev'(a]™) = 1.
. 1 . . . 1 .7

Considera;™ — -0} such thav’ € R,,. If v(a;y™) = 1, then there i®* € E,, such
thati’ < i andv’(o!) = 1. Sincev’ |: -0l V —ol, it must be that' = —o!.

Hence all conjuncts afhain(o!, ..., 0"; E,,; R,,; m') are true inv’.

For the other direction, let be a valuation such that = @VStepz. We show that

v = 5P Take any conjuncto, V—o; of 85" If v [£ o, then the truth immediately
foIIows AssumeJ E o;. Sinceo = {p,e,c) ando = (p/, ¢,) interfere, there is a state
variablea € A that occurs as a negative effectoénd either ind for somef > d € ¢
or positively inp’ (or, the roles ofo ando’ are the other way around, or the polarity of
the occurrences af is complementary: the proofs of these cases are analogous.) Now
o € E, ando’ € R,. We assume that the indexis lower than that ob’. The case

occurring only ind P2,

with a higher index is analogous: insteadabfain(o!,...,o"; E,; R,;a') we consider
chain(o®,...,o'; E,; Ry; a?).

We show that because~= chain(o ,0": Eg; Ry at)y, alsov = —of.

The formulachain(o!, ..., 0"; E,; Ra, a'); contains a sequence of implications—

alvt —alrt —>a§’“ —mo’" whereo’* = ¢o’. Since these implications are trueuin
v b~ o). Thereforev = —o; V —o,. Since this holds for all conjuncts @', we have

v ®5PL Sincev = @y A 03P by Theorem 3.3 there is'éstep plan of lengtt
for . E]

The number of auxiliary propositional variables is linearly proportional to the number of
operators and state variables. Hence this linear-size encoding of the interference constraints
may lead to formulae with a much higher number of propositional variables than with the

24

guadratic size encoding of the constraints. The higher number of propositional variables
may negatively affect the runtimes of satisfiability algorithms.

A compromise between the size of the constraints and the number of propositional vari-
ables is possible. There is an encoding of the constraints with only a logarithmic number of
new propositional variables and with orf)(n log n) clauses which improves the quadratic
encoding with respect to the number of clauses and the linear encoding with respect to the
number of propositional variables. We describe the idea of the encoding without formaliz-
ing it and proving it correct.

The idea of the encoding is similar to that dfain(o?, ..., 0"; E,,; R,,;) in that an
arbitrary ordering is imposed on the operators and the application of an operator prevents
the application of operators later in the ordering. For each literate encode a binary
number betweef and|R,,| — 1 in a logarithmic number of state variables. Then there
is a formula for each operaterin E,, stating that the binary number fat has a value
that is at least as high as the index of the first operata®,jnthat followso. For each
operatoro’ in R, there is similarly a formula that says thatis not applied if the value
of the binary number is lower than the indexdf Hence no operator iR,,, following an
applied operator ik, is applied.

The linear-size encoding and the abaving n-size encoding can both be made state-
dependent by observing the applicatiorvafith respect to the constraints related to literal
m only if m is an active effect ob.

3.3 Process semantics

The encoding of process semantics extends the encodivigtefp semantics. We take all
formulae for the latter (for exampke, ; A <I>(V)Stle”2) and have further formulae specific to
process semantics. 7

The encoding of the underlyingstep semantics encoding and the additional constraints
for process semantics are tightly coupled: when the constraints force the movement of an
operator to the preceding time point, thiestep semantics constraints for the preceding
time points must be compatible with the move. In this section we discuss the encoding of
the process constraints for the subclasg-efep plans based on interference (Definition 2.6
and Section 3.2.) Constraints compatible with broader classéstaip plans (for example
based on Definition 2.9) are more complicated.

The formulae for process semantics prevent the application of an opegdtthmet + 1
if moving o to timet also resulted in a valitf-step plan according to Definition 2.1 and
the state at time + 2 stayed the same.

An operatoto may be applied at time+ 1 only if at least one of the following conditions
hold.

—The precondition ob became true at+ 1 (and is false at.)

—The operaton interferes with an operator at time pointDefinition 2.6.)
This includes the following pairwise tests.
—Could one operator falsify the precondition of the other?
—Could one operator change the set of active effects of the other. In other words, could
it change the value of the antecedent of a conditional effect of the other?
Note that if none of the operatorstahterfere with the operator &at-1 then the operator
would have the same effectstads it has at + 1.

—The active effects of are in conflict with the active effects of an operatot.at

25

We give a linear-size encoding of these conditions. Let the set of state variables be
A= {a',... a"}. We introduce the following auxiliary propositional variables.

—The variableszi’1 denote that an operator at timg- 1 makes (may make)’ true, and
hence a justification for not moving the operator earlier is that
—there is an operator atwith anegativeoccurrence ofi’ in its precondition, or
—there is an operator atwith an occurrence af’ in the |hs of a conditional effect,

—The variablesai'ﬁ1 denote that an operator at time- 1 makes (may make)’ falsg and
hence a justification for not moving that operator earlier is that
—there is an operator atwith a positiveoccurrence ofi’ in its precondition, or
—there is an operator atwith an occurrence af’ in the lhs of a conditional effect.

—The variables:.””> denote that an operator at time- 1 has an occurrence af in the
antecedent of a conditional effect, and hence a justification for not moving that operator
earlier is that there is an operatortahat changes the value of.

—The variableszi’3 denote that an operator at time- 1 has apositiveoccurrence of;?
in the precondition, and hence a justification for not moving that operator earlier is that
there is an operator athat makes (may makey) false

—The variablesai‘3 denote that an operator at time- 1 has anegativeoccurrence ofi*
in the precondition, and hence a justification for not moving that operator earlier is that
there is an operator athat makes (may makey) true.

—The variablesai’4 denote that an operator at timer- 1 (actually) makes:* true, and
hence a justification for not moving that operator earlier is that there is an operator at
that (actually) makes’ false

—The variableﬂ;zji’ﬁ4 denote that an operator at time- 1 (actually) makes: falsg and
hence a justification for not moving that operator earlier is that there is an operator at
that (actually) makes® true.

Note that the definition of interference in Definition 2.6 is about occurrences of a state
variable in the effects of one operator and in the precondition or in the antecedents of
conditional effects of another operator. This is the reason why in the above description we
have stated that an operatoay makea state variable true or false. Below we make this
more explicit.

We need the following formulae for each state variabland allt € {0,...,l —1}.

ayy—(0f VooV of) ()
whereo!, ..., o™ are all the operatorsthat have an occurrence @fin the Ihs of a condi-
tional effect, or anegativeoccurrence ofi” in the precondition.

ayy—(of Voo Vop) 8)
whereo!, ..., o™ are all the operatorsthat have gositiveoccurrence of,’ in the precon-
dition, or an occurrence af in the Ihs of a conditional effect.

ayfy— (0} V-V op) (9)
whereo!, ..., o™ are all the operators in whiatt occurs in an effect.

ay} —(of V-V o} (10)

26

whereo!, ..., o" are all the operatorsthat have the effecta’ (possibly conditional).
ayy—(of V- Vop) (11)
whereo!, ..., o" are all the operatorsthat have the effect’ (possibly conditional).

Additionally, for each operatos € O we need a formula that lists all the possible
justifications for not moving the operator one step earlier. These formulae are

ot — (=pt—1V @) (12)
wherep is the precondition o6 and¢ is the disjunction of the propositional variables

—af ! such that’ is an effect (possibly conditional) of
ab ™! such that-a’ is an effect (possibly conditional) of
—at ? such that:’ occurs in the antecedent of a conditional effec,of
ai’s such that’ occurs positively in the precondition of and
—a? ™ such that:’ occurs negatively in the precondition @f

i,—4

For the variablesa anda, ™ we replace each positive occurrencezpfn the conse-
i,74

quent of the implicat|0n of Formula 3 by A ay A a;”y) and each occurrence efu!

by (-ai Aal* AabTH forallt e {1,...,1— 1}. This is to indicate that’ or —a’ is an

active effect of the operator at time

The variables:\?, a* anda; ™ and the associated formulae are not needed if all op-
erators are STRIPS operators For STRIPS operators the use of vaa?‘blaad aZ 4
could be replaced by the usg' anda} ™.

Let the formula®?; 7°“** be a conjunction of all the above formulae. The sizé@§f;
is linear in the size of the sé of operators because there are at n¥stariable occur-
rences for every state variable occurrence in every operator.

CESS

Theorem 3.7 Letw = (A, 1,0, G) be a problem instance. There is i-process plaof
lengthl for 7 if @, A @VStepQ A ®F7°°" is satisfiable.

PROOF Assumev is a valuation such that = &, ; A @VS“’”Q PY9°°** Define for
all i € {0,...,1} the states; as the valuation ofA such thats (a) ; v(a;) for every
a € A DeflneS = {o € Olv(o;) = 1} forall j € {0,...,0 —1}. By Theorem 3.6
T =(S,..., Sl,1> is aV-step plan.

Assume thaf" is not an i-process plan because for sorae{1,...,l —i} ando® € S,

= (Sp,...,5-1U{0"},Si\{0"},...,S;_1) is aV-step plan in which no two simulta-
neous operators interfere. We show that this leads to a contradiction with the assumption
thatv |= &g 7.

Con5|deroi — (=pf_y Vgt vV ™). Assume thav satisfies this formula. Since
v = of (aso® € 5;), at least one of the disjuncts in the right side is true.irt cannot
be thatv = —p?_, wherep” is the precondition 06” because otherwis# would not be
executable attimée— 1in 7".

So some other disjunct gft v --- Vv j” must be satisfied by. This leads to a long
and tedious case analysis. We only give as an example the proof for the d'tsjdnﬁcxr
a state variable? that is a positive effect of*. If v = a2, then because = a?' —
(o} {V---Vol)whereol,... o" are all the operators that have an occurrence! df
the lhs of a conditional effect or a negative occurrence in the precondition. Hence there is

27

an operatop? € S;_; that has an occurrence of in the lhs of a conditional effect or a
negative occurrence in the precondition. Hen€andoV interfere, and both are at- 1
in 77, which contradicts our assumptions.

Therefore it must be the case tHats an i-process plan.[J

3.4 3-Step semantics

We give three encodings of the constraints that guarantee that the plans follavstiye
semantics. The first two (Sections 3.4.2 and 3.4.3) exactly encode the acyclicity test, al-
lowing maximum parallelism with respect to a given disabling graph (as defined in Sec-
tion 3.4.1). However, the first of these encodings has a cubic size and the second involves
guessing a topological ordering for the set of operators, and therefore these encodings
would not appear to be practical. The third encoding (Section 3.4.4) is based on assigning
a fixed ordering on the operators and allowing the simultaneous application of a subset of
the operators only if none of the operators affects the operators later in the ordering. The
size of this encoding is linear in the size of the set of operators, but it sometimes allows
less parallelism than the first two encodings. However, in our experiments this encoding
has turned out to be very efficient.

To improve the efficiency of the encodings we consider a method for utilizing the struc-
tural properties of planning problems in the formdigabling graphsn Section 3.4.1. The
idea is to identify operators for which the existence of a total ordering required by the
J-step semantics can be guaranteed, no matter in which state the set of operators is simul-
taneously applied. The set of operators is partitioned to subsets of operators potentially
involved in a cycle that cannot be totally ordered for execution. Constraints guaranteeing
the ordering property need to be given only for such subsets. The decomposition method in
some cases splits the set of all operators to singleton subsets. If all sets are singleton, the or-
dering property is guaranteed for any subset of operators applied simultaneously, and there
is no need to introduce further constraints on operator application. The technique improves
all the three encodings of thestep semantics on many types of structured problems.

3.4.1 Disabling graphs.The motivation for using disabling graphs is the following.
Define acircularly disabled setis a set of operators that is executable in some state and
on all total orderings of the operators at least one operator affects an operator later in
the ordering. Now any set-inclusion minimal circularly disabled set is a subset of a strong
component (or strongly connected component, abbreviated as SCC) of the disabling graph.

Definition 3.8 Letw = (A, I, O, G) be a problem instance. A graghy, E) is adisabling
graphfor 7 whenE C O x O is the set of directed edges so thato’) € E if

(1) there is a state such thats is reachable fron? by operators irO and ap,,./1(s)
is defined, and

(2) o affectso’.

For a given set of operators there are typically several disabling graphs because the graph
obtained by adding an edge to a disabling graph is also a disabling graph. Also the com-
plete graph(O, O x O) is a disabling graph. For every set of operators there is a unique
minimal disabling graph, but computing minimal disabling graphs is NP-hard because of
the consistency tests and PSPACE-hard because of the reachability tests @bndi-

tion 1. Computing non-minimal disabling graphs is easier because the consistency and
reachability tests may be approximated.

28

We may allow the simultaneous application of a set of operators from the same SCC if
the subgraph of the disabling graph induced by those operators does not contair?a cycle.

Lemma 3.9 Let O be a set of operators an@ = (O, F) a disabling graph forO. Let
Cy,...,C,, be the strong components@f Lets be a state. Le©’ be a set of operators
so that appy (s) is defined. If for every € {1,...,m} the subgraphC; N O’,E N
((C;NO") x (C;nO")) of G induced byC; N O’ is acyclic, then there is a total ordering
01,...,0, 0f O such that app,... ..., (s) = appo(s).

PrROOF Let the indices ofC,...,C,, be such that for alt € {1,...,m — 1} and
j € {i+1,...,m} there are no edges from an operato€into an operator irC;. Such a
numbering exists because the s€sare strong components 6f (the strong components
always form a tree.) Since the subgraph induced’by O’ is acyclic for every: €
{1,...,m}, we can impose an ordering <; ... <; o,, onC; N O’ so that ifo <; o
then there is no edge fromto o, that is,o does not affect’.

Now we can construct a total order < - - - < o, onO’ as follows. For alfo, o'} € O/,
o <o if {o,0'} C C,forsomei € {1,...,m} ando <; o', oro € C; ando’ € C; and
i < j. Nowforall{o,0'} C O, if o < o theno does not affect’. Henceapp,,... .., (s) =
appo- (s) by Lemma 2.26. OJ

Note that acyclicity is a sufficient but not a necessary condition for a set of operators to
be executable in some order, even for minimal disabling graphs. This is because the edges
are independent of the state, exactly like the notion of interference in Definition 2.6. As in
Example 2.14 two operators may form a cycle in the disabling graph but can nevertheless
be executed in any order with the same results. However, for STRIPS operators and min-
imal disabling graphs acyclicity exactly coincides with executability in some order, as we
show in Lemma 3.10. This fact was implicitly used in Theorem 2.28.

Lemma 3.10 Letw = (A4, I, 0, G) be a problem instance an@, E') a disabling graph
for such that(o, o’) € E only if o affectso’. Lets be a state reachable frothby some
sequence of operators if? and letS = {oy,...,0,} be a set of STRIPS operators so
that app,......, (s) and apg(s) are defined for some ordering, . .., 0, of S. Then the
subgraph of O, E) induced bys is acyclic.

PROOF. Fact A: Sinceapps(s) is defined, there are nfp, e, (), (p’,¢’,0} C S and
a € Asothata € eand—a € ¢'.
Sinceapp,,.....o, (s) is defined, there are noc {1,...,n—1}andj € {i +1,...,n}
such thab; affectso;. If there werep; would make one of the literals in the precondition
of o, false and by Fact A no operatoy, k € {i+1,...,j—1} could make the precondition
true again, and hena@p,,o, (s) would not be defined. As no operator $haffects a
later operator, and there is an edge from an operator to another only if the former affects
the latter, the subgraph 60, E') induced byS is acyclic. O

Next we discuss three ways of deriving constraints that guarantee that operators occu-
pying one SCC of a disabling graph can be totally ordered to a valid plan.

2In V-step semantics simultaneous application is allowed only if the subgraph induced by all applied operators
does not havanyedges.

29

3.4.2 Encoding of sized(n?). We can exactly test that the intersection of one SCC
and a set of simultaneous operators do not form a cycle. The next encoding allows the
maximum parallelism with respect to a given disabling graph, but it is expensive in terms
of formula size. N

We use auxiliary propositional variable’ for all operators with indices and; indi-
cating that the operatots, o', 02, ..., 0", o/ are applied and each operator affects its im-
mediate successor in the sequence.di@ndo’ belong to the same SCC of the disabling
graph and let there be an edge frohto oi’. Then we have the formuldei A of) — c&*"
and(oi A ¢!) — ¢ for all j such that’ # j # i. Further we have formulag(oi A ¢! %)
for preventing the completion of a cycle.

There is a cubic number of formulae, each having a constant size (two or three variable
occurrences). The number of propositional variakigsis quadratic in the number of
operators in an SCC. Some problems have SCCs of hundreds or thousands of operators, and
this would mean millions or billions of formulae, which makes the encoding impractical.

Theorem 3.11Let® = (A,I,0,G) be a problem instance. There isFstep plan of
lengtht for 7 if &, ; A d5IP! is satisfiable.

PROOF Letw be a valuation such that= @, A &5 ", Define for alli € {0, ..., 1}
the states; as the valuation oft such thats;(a) = v(a;) for everya € A. DefinesS; =
{o € OJv(oj) = 1} forall j € {0,...,1 — 1}. By Theorem 3.1 we only have to test the
condition that for(Sy, ..., S;—1), its executionsy, ..., s; and everyi € {0,...,l — 1}
there is a total ordering,, . . ., 0, Of S; such thapp,,....., (si) = apps, (s;)-

By Lemma 3.9 it suffices to show that the subgraph of the disabling graph induced by
S; N C for every SCQC of the disabling graph is acyclic. For the sake of argument assume
that the subgraph has a cycle. Hence there are opexdtors. , o' in S; such that’’/
affectso”*1 forall j € {1,...,m — 1} ando'™ affectso’!. But the formulae

/m—1 / m—1m Im— m—1,m m—2,m / 2,m 1,m / 1,m
TN O oM —c; Jolt Ae oo™ Ae™)

0; C; , 0; i s Z c;

together witho!!, . . ., o/™ are inconsistent. Since these formulae are conjuncts’®fP!,

?

there can be no cycle in the subgraph inducedby C. O

3.4.3 Encoding of siz&(elog, n). A more compact encoding is obtained by assigning
alog, n-bit binary number to each of the operators and by requiring that the number of
operatoro is lower than that ot/ if there is an edge from’ to o in the disabling grapf.
The size of the encoding ©(elog, n) wheree is the number of edges in the disabling
graph and: is the number of operators.

For every operatas and time point we introduce the propositional variabla§s°, . ig”’“
wherek = [log, n] — 1 for encodingo’s index at time point.

So, for any operators ando’ so thato’ affectso use the following formula for guaran-
teeing that the edges are always from an operator with a higher index to a lower index.

(00 A0 —GT (00, ... i % i . i) (13)

Above GT(i§/’07 . ,z’flf’“; %, ... ,i%") is a formula comparing twé:-bit binary num-
bers. There are such formulae that have a size that is linear in the number of bits.

3This encoding has also been independently discovered by Victor Khomenko [2005a].

30

Theorem 3.12Let® = (A4,I,0,G) be a problem instance. There isFstep plan of

lengtht for 7 if @, A @5 " is satisfiable.

PrROOF Similarly to the proof of Theorem 3.11, we have to show that the subgraph
induced by every set of simultaneous operators is acyclic. Formula 13 guarantees that the
index of an operator to which there is an edge from another operator is lower than the
index of the latter. The existence of a cycle would mean that there are also edges from an
operator with a lower index to an operator to a higher index but as such edges do not exist,
there are no cycles in the graph]

Note that given a set of literals describing which operators are applied at a given time
point, for the encoding in Section 3.4.2 unit resolution is sufficient for determining whether
there is a cycle, but not for the encoding in Section 3.4.3.

3.4.4 Alinear-size encoding based on a fixed ordering of operat@rgr third encoding
does not allow all the parallelism allowed by the preceding encodings but it leads to small
formulae and seems to be very efficient in practice. With this encoding the set of formulae
constraining parallel applicatids a subsebf those for the less permissivestep seman-
tics. One therefore receives two benefits simultaneously: possibly much shorter parallel
plans and formulae with a smaller size / time points ratio.

The idea is to impose beforehand an (arbitrary) ordering on the opetétors, o™ in
an SCC and to allow parallel application of two operatdrando’ such thab® affectso’
only if i > j. Of course, this restriction to one fixed ordering may rule out many sets of
parallel operators that could be applied simultaneously according to some other ordering
than the fixed one.

A trivial implementation of this idea (similar to thestep semantics encoding in Sec-
tion 3.2.1) has a quadratic size because of the worst-case quadratic number of pairs of
operators that may not be simultaneously applied. However, we may use one half of
the implications in the linear-size encoding fistep semantics from Section 3.2.2. The
linear-size encoding for the constraints fostep semantics is thus simply the conjunction
of formulae

chain(o% eeey 0" By Riyym)

for every literalm whereE,, is the set of operators that may falsify (7 occurs as an
atomic effect) and?,,, is the set of operators that may requireto remain trues occurs
in the antecedent of a conditional effect or positively in the precondition).

Theorem 3.13Letm = (4,1,0,G) be a problem instance. There isFstep plan of

lengtht for 7 if @, A @5 " is satisfiable.

PROOF. Letw be a valuation such that= @, A &5 "*. Define for alli € {0, ..., 1}
the states; as the valuation ofi such thats;(a) = v(a;) for everya € A. DefineS; =
{0 € Olv(oj) =1} forall j € {0,...,l —1}. Consider an SCC of the disabling graph
and the fixed ordering’®, ..., o™ of the operators i€’ N S; for somei € {0,...,1—1}.

The formulaechain(o?, .. ., 0™; Ep; Ryym) in @57 for all literalsm guarantee that
if 07 affectso’”, thenk < j. By Lemma 2.2€apps, (si) = app,, ., (s:). Hence the
definition of 3-step plans is satisfied]

31

4. EXPERIMENTS

The shortest encodings of the three semantics in Sections 3.2.2, 3.3 and 3.4.4 have sizes
that are linear in the size of the problem instance and the number of time points, and are
therefore asymptotically optimal. The question arises whether the potentially much smaller
number of time points make$step semantics more efficient therstep semantics and
whether the potentially much smaller number of plans makes the process semantics more
efficient tharnv-step semantics. In this section we answer these questions by comparing the
different encodings of the three semantics with respect to a number of planning problems.

We consider two problem classes. First, as a way of measuring the efficiency of the
encodings on “average” problem instances, we sample problem instances from the space
of all problem instances characterized by certain parameter values, following Bylander
[1996] and Rintanen [2004b]. The problem instances we consider are rather small, 40 state
variables and up to 280 operators, but rather challenging in the phase transition region.

Second, we consider some of the benchmarks used by the planning community. These
problem instances have a simple interpretation in terms of real-world planning tasks, like
simple forms of transportation planning. In contrast to the problem instances in the phase
transition study, the numbers of state variables and operators in these problems are much
higher (up to several thousands of state variables and tens of thousands of operators), and
most of these problems can be solved rather easily by domain-specific polynomial time
algorithms when no optimality criteria (for example minimal number of operators in a
plan) have to be satisfied.

4.1 Implementation details

We briefly discuss details of the implementation of our translator from the planning domain
description language PDDL [Ghallab, Howe, Knoblock, McDermott, Ram, Veloso, Weld,
and Wilkins 1998] into propositional formulae in conjunctive normal form.

The planning domain description language PDDL allows describing schematic opera-
tors that are instantiated with a number of objects. For some of the standard benchmark
problems the number of operators produced by i@enastantiation procedure is astro-
nomic, and indeed all practical planner implementations rely on heuristic techniques for
avoiding the generation of ground operators that could never be part of a plan because no
state satisfying the precondition of the operator can be reached.

After instantiating the schematic PDDL operators, we perform a simple polynomial-time
reachability analysis for the possible values of state variables to identify operators that can
never be applied. For example, in the 1998 and 2000 AIPS planning competition logistics
problems there are operators for driving trucks between locations outside the truck’s home
city, but the truck can never leave its home city. Hence the state variables indicating that
the truck’s location is a non-home city can never be true. This analysis allows eliminating
many irrelevant operators and it is similar to the reachability analysis performed by the
GraphPlan [Blum and Furst 1997] and BLACKBOX [Kautz and Selman 1999] planners.

Similarly to BLACKBOX [Kautz and Selman 1999] and other implementations of satis-
fiability planning, our translation includes formulgev [} for invariants v I’ as produced
by the algorithm by Rintanen [1998]. This algorithm is defined for STRIPS operators only
but can be generalized to arbitrary operators [Rintanen 2005].

In the experiments we use disabling graphs that are not necessarily minimal but can be
computed in polynomial time. The test of whether two operators can be simultaneously

32

applied in some state is not exact: we only test whether the unconditional effects con-
tradict directly or through an invariant and whether the preconditions have conjuncts that
are complementary literals or contradict through an invariant. For STRIPS operators the
graphs are minimal whenever the invariants are sufficient for determining whether a state
in which two operators are both executable is reachable.

The orderings in thé-step encoding of Section 3.4.4 were the ones in which the opera-
tors came out of our PDDL front-end. Better orderings that minimize the number of pairs
of operatorso ando’ such tha precedes and affects could be produced by heuristic
methods. They can potentially increase parallelism and improve runtimes.

The AIPS 2000 planning competition Schedule benchmarks contain conditional effects
m > T, sometimes simultaneously with effecis The purpose of this is apparently
to make it difficult for planners like GraphPlan [Blum and Furst 1997] or BLACKBOX
[Kautz and Selman 1999] to apply several operators in parallel. Replacing effest&
by preconditiongn whenever alsan is an unconditional effect and by effeetswhenever
m is not an unconditional nor a conditional effect of the operator, is a transformation that
preserves the semantics of the operators exactly and for this benchmark allows much more
parallelism. The front-end of our translator performs this transformation.

The SAT solvers we use only accept formulae in conjunctive normal form (CNF) as
input. Therefore all the propositional formulae have to be transformed to CNF. We use a
simple scheme for doing this. For any subformula of the fGfmA ¢-) Vv ¢ we introduce
an auxiliary variabler, replace the subformula hyv ¢ and addr — ¢, andz — ¢4 to our
set of formulae. Note that almost all of the formulae in our encodings are already in CNF
(modulo equivalences like(¢ A) — —¢ V —1).) Exceptions to this are the precondition
axioms for operators with disjunctive preconditions and effect axioms for operators with
conditional effects.

For effect axioms; — e; we only include those effects inthat are not consequences
of other effects and invariants. For example, many operators in the standard benchmarks
have effectat(A,L1)\—-at(A,L2)for representing the movement of an object from location
2 to location 1. Thenmat(A,L1)v—at(A,L2)is an invariant that is included in the problem
encoding. Since-at(A,L2)is a consequence of the invariant together veit(A,L1) the
effect axiom 2 does not have to state this explicitly. This reduces the size of the formulae
slightly and has a small effect on runtimes.

4.2 Experimental setting

For the experiments we use a 3.6 GHz Intel Xeon processor with 512 KB internal cache
and the Siege SAT solver version 4 by Ryan of the Simon Fraser University.

In addition to Siege V4, we ran tests with the May 13, 2004 version of zChaff. The
runtimes are close to the ones for Siege, often worse but in some cases slightly better. We
could solve some of the biggest structured instances (Section 4.4) in a reasonable time only
with Siege. BerkMin and some of the best solvers in the 2005 SAT solver competition are
also rather good on the planning problems.

As Siege V4 uses randomization, its runtimes vary, in some cases considerably. For
the structured problems the tables give the average runtimes over 100 runs and 95 percent
confidence intervals for the average runtimes. As it is not known what the distribution
of Siege runtimes on a given instance is, we calculate the confidence intervals by using a
standard bootstrapping procedure [Efron and Tibshirani 1986; Efron and Tibshirani 1993].
From the sample of 100 runtimes we resample (with replacement) 4000 times a sample of

33

Model A: Runtimes

n
n
® 4 10 3
8 3 7]
8 £
0 [y
£ ©
o 1, o
o] °
C
% =
a e
kS)] o
c IS
) =
= 101 &
9] o
o - ©
g
S g
o @
0 ‘ ‘ ‘ 0.01

2 25 3 35 4 4.5 5
ratio # operators / # state variables

Fig. 3. Runtimes oB-step,V-step and process semantics on problem instances with 40 state variables sampled
from the phase transition region.

100 runtimes and then look at the distribution of these averages. The 95 percent confidence
interval is obtained as the 2.5 and 97.5 percentiles of this distribution.

4.3 Problem instances sampled from the phase transition region

We considered problem instances wijth) = 40 state variables, corresponding to state
spaces witl24® ~ 10'? states, and STRIPS operators with 3 literals in the preconditions
and 2 literals in the effect, following Model A of Rintanen [2004b] in which precondition
literals are chosen randomly and independently, and effect literals are chosen randomly so
that each propositional variable has about the same number of occurrences in an atomic
effect, both negatively and positively. In the initial state all state variables are false and in
the unique goal state all state variables are true. Problem instances of this size are very
hard for existing planning algorithms; see further discussion in Section 6.3. We generated
about 1000 soluble problem instances for ra@#of operators to state variables varying
from 1.85 to 5 at an interval of about 0.3. The number of operators then varied from 74 to
280. To find 1000 soluble instances for the smaller ratios we had to generate up to 45000
instances most of which are insoluble. Since we did not have a complete insolubility test,
we do not know how many of the instances that we could not solve within our limits on
plan length (60 time points) and CPU time (3 minutes per formula) are really insoluble. For
theV-step and the process semantics the number of instances solved within the time limit
was slightly smaller than for theé-step semantics, so the actual performance difference is
slightly bigger than what the diagram suggests.

Figure 3 depicts the average runtimes of Siege withZstep (the linear-size encod-
ing from Section 3.4.4)y-step (the linear-size encoding from Section 3.2.2) and process
semantics (the linear-size encoding from Section 3.3 based on the linesrst@ encod-
ing from Section 3.2.2). There are two sources of imprecision in the runtime comparison,
the variation of runtimes of Siege due to randomization and the random variation in the

34

Model A: Operators in plans

) e 80
ubility C
a Astep %
[0]
o A-step e 1" g
S process = -a
2 |
O o
e : 8
| o
8 ©
8 -13*5’:3(. 8
| .:t:if:fEW: - g
g g s
a -
| o
a o
)
s
0 ‘ ‘ ‘ 30

2 2.5 3 3.5 4 4.5 5
ratio # operators / # state variables

Fig. 4. Numbers of operators in plans féistep,V-step and process semantics on problem instances with 40
state variables sampled from the phase transition region.

properties of problem instances sampled from the space of all problem instances. For this
reason we give estimates on the accuracy of the averages of runtimes. The diagrams de-
picting the runtimes give error bars indicating the 95 percent confidence intervals for the
runtimes. Note that the scale of the runtime diagram is logarithmic.

Figure 4 depicts the average numbers of operators in the plans. Figure 5 depicts the
average number of time points in the plans. The process/astdp semantics share the
curve because the shortest number of time points of a plan for any problem instance is the
same for both.

As is apparent from the diagrams, thestep semantics is by far the most efficient of the
three. The efficiency is directly related to the fact that withtep semantics the shortest
plans often have less time points than with thetep and process semantics. The encod-
ing for the process semantics is the slowest, most likely because of the higher number of
propositional variables and clauses and the ineffectiveness of the process constraints on
these problems.

Interestingly, the number of operators in thstep and/-step plans is almost exactly the
same despite the fact that thiestep semantics needs more time points. On the other hand,
process semantics imposes stricter constraints on the plans théstiye semantics, and
the number of operators is therefore slightly smaller.

4.4 Structured problem instances

We evaluate the different semantics on a number of benchmarks from the AIPS planning
competitions of years 1998, 2000 and 2002. For a discussion of these benchmarks and their
properties see Section 5.5. We also tried the benchmarks from the year 2004 competition,
but, although most of them are easy to solve, they result in very big formulae, and the
relative behavior of the encodings of the different semantics on them is similar to the
benchmarks we report in this paper. Hence we did not run exhaustive tests with them.

35

Model A: Time points in plans

T - 25 o

. ubility =

2 E-step —+ - =
e A-step/process v c
S 120 -
S -
@ =
s o
2 15 o
re) 1 [}
3 E
2 . =z
5 e T
o g | N
5 T T - 8
o e, £
= g s =
2 s &
S S
< g
o

>

0 : L 1 0 ©

2 2.5 3 3.5 4 4.5 5
ratio # operators / # state variables

Fig. 5. Numbers of time points in plans farstep,v-step and process semantics on problem instances with 40
state variables sampled from the phase transition regionV4step and process semantics the number of time
points is always the same.

For all other benchmarks we use the STRIPS version, but for the Schedule benchmark
we use the ADL version because with the STRIPS version our translator has problems with
the very high number of operators. However, the simplification mentioned in Section 4.1
transforms also these operators to STRIPS operators.

In Tables I, X, XI, XII, Xlll XIV, XV, XVI and XVII (all but the first are in the ap-
pendix) we present for each problem instance the runtimes for the formulae corresponding
to the highest number of time points without a plan (truth value F) and the first satisfi-
able formula corresponding to a plan (truth value T). The rows marked with the question
mark indicate that none of the runs successfully terminated and we therefore do not know
whether the formulae are satisfiable or unsatisfiable. The coliagtepis for the3-step se-
mantics encoding in Section 3.4.4, the colupracesgor the process semantics encoding
in Section 3.3, the columi-stepfor the worst-case quadratitstep semantics encod-
ing in Section 3.2.1, and the colunvhstep . for the linearv-step semantics encoding in
Section 3.2.2.

Runtimes for3-step semantics are in most cases reported on their own lines because
its shortest plan lengths differ from the other semantics. Each runtime is followed by the
upper and lower bounds of the 95 percent confidence intervals. We indicate by a dash - the
formulae for which not all runs finished within 180 seconds.

In Table Il we compare the semantics in terms of the number of operators in plans.
Blocks World problems are sequential (only one operator can be applied at a time) and
numbers of operators equal numbers of time points. The average number of operators is
followed by the lowest and the highest number of operators any plan we found had.

In Table Il we present data on formula sizes.

4.4.1 3-step semantics v¥-step semanticsThe lowest runtimes are usually obtained
with the 3-step semantics. It is often one or two orders of magnitude faster. For problem

instance len val 3-step process V-step V-step I.

log-16-0 7 FHO0.01 991

log-16-0 8 T[0.03 9:0%

log-16-0 12 H 0.62 927 0.30 5357 0.79 2%

log-16-0 13 T 746 53¢ 135 113 2.27 393

log-17-0 8 FO0.15 §i:

log-17-0 9 T[0.02 3:%3

log-17-0 13 H 3.06 3% 197 35 225 Zi:

log-17-0 14 T 14.401371 3.22 32 4.48 197

log-18-0 8 FHO0.13 §13

log-18-0 9 T|0.33 §3f

log-18-0 14 H 8.18 i 5.83 33v 6.77 %%

log-18-0 15 T - 7.84 505 14.951%33

log-19-0 8 FO0.23 932

log-19-0 9 T|0.33 J:3;

log-19-0 14 H 10.23,555 11.22:9357 13.3913%5

log-19-0 15 T - 29.1033:52 -

log-20-0 8 FHO0.25 53¢

log-20-0 9 T[0.88 9:%7

log-20-0 14 H 12.3015:45 10.63,735 12.01:15:8°

log-20-0 15 T - - 41.17%:5%
Table . Runtimes of Logistics problems

instance len 3-step process V-step V-step I.

depot-16-4398 B 53.00 33 43.22 35 43.40 &5 38.97 %

driver-4-4-8 g 54.19 ¢

driver-4-4-8 11 55.45 39 52.32 33 51.47 2

gripper-3 g 23.21 3

gripper-3 15 23.00 # 23.00 23 23.00 2

log-16-0 8§122.741%

log-16-0 13 146.47137 123.911% 125.321%%

freecell5-4 13 32.99 32 32.65 32 34.02 3i 32.46 33

elev-str-f24 17 58.38 33

elev-str-f24 32 40.00 1 40.00 15 40.00 15

satel-17 4191.55.,%

satel-17 @ 95.00 .53 122.14,22 96.73 .55

sched-30-0 11 43.88 33 50.79 i3 45.06 23 41.63 3

zeno-5-10 4 34.36 33

zeno-5-10 6 43.32 i3 46.80 23 40.63 33
Table Il. Numbers of operators in plans

36

37

instance len I-step process V-step V-step I.
L G MBl 5 S MBl B S MB[& S B

block-18-0 58 58.9 696.8 10.264.9 1218.8 24.958.9 696.8 10.2201.0 1120.1 18.9
block-20-0 60 74.9 937.8 14.8338.4 1607.2 32,974.9 937.8 14.8257.7 1482.0 25.2
block-22-0 72108.3 1431.0 22,3190.5 2406.9 49.408.3 1431.0 22.874.6 2225.5 38.4
depot-17-6587 |1 24.1 256.3 3.9154.7 611.6 12.824.1 269.8 4.1144.2 586.2 9.7
depot-18-1916 12 75.7 864.9 13.j484.2 2052.0 45.475.7 899.4 14.2457.7 1968.3 34.2
depot-15-4534 2093.0 882.8 14.5594.8 2360.2 53.793.0 918.8 15.(650.2 2243.9 39.4
driver-2-3-6e 12 254 1106 1.6 66.2 206.4 3.7 21.5 157.0 2.3429 1741 26
driver-3-3-6b 11 22.3 934 14549 178.2 3.318.0 1449 2.1 39.2 1535 23
driver-4-4-8 11 48,5 210.7 3.3117.0 401.3 7. 37.7 3825 58894 3523 54
gripper-2 11 1.0 47 0.1 29 88 01 10 53 01 15 72 01
gripper-3 15 1.8 87 01 50 161 03 1.8 9.7 01 27 132 0.2
gripper-4 17 24 125 02 69 231 04 24 139 0.2 3.7 190 03
log-16-0 13 18.7 1054 1546.6 1743 3.118.7 139.1 2.027.0 146.3 2.2
log-20-0 15 29.1 1748 25724 2846 5.129.1 236.6 3.5425 2406 3.6
log-24-0 15 37.8 2408 35943 3851 6.937.8 333.0 49559 3282 50
elev/str-f8 12 1.0 24 00 41 81 01 10 3.0 00 21 57 0.1
elev/str-f12 14 24 58 0.1 103 214 03 24 77 01 57 156 0.2
elev/str-f16 22 64 157 02278 607 11 64 210 0.3 16.2 447 0.7
elev/str-f20 26 115 284 0.4 505 1125 20115 383 0.630.2 837 13
elev/str-f24 28 175 434 07775 1747 3.1175 589 09472 1310 20
satel-14 8 37.7 129.6 2.0108.1 347.0 6.f 37.7 267.0 4.1 985 3094 438
satel-15 8 49.0 168.5 2.7142.0 454.0 9.249.0 327.3 5.1130.1 405.3 6.6
satel-16 6 46.8 1615 2.6136.6 430.1 8.646.8 333.7 5.2125.7 386.3 6.3
satel-17 6 54.0 185.6 3.0160.6 500.1 10.154.0 346.7 5.41485 4498 75
satel-18 8 31.7 1085 1.791.3 290.2 55317 221.1 3.4824 2581 4.0
sched-10-0 vy 73 402 0.6 165 584 11 34 735 1.0 113 53.0 0.8
sched-20-0 D18.2 1015 1.640.7 1484 30 84 2850 39285 1348 21
sched-30-0 11329 1853 3.0729 2717 55151 700.0 10.351.4 246.6 3.9
sched-40-0 1558.8 334.3 5.4129.6 492.4 10.027.0 1595.3 24.691.8 4459 7.1
sched-50-0 17 82.7 480.3 7.8182.0 704.7 15.938.0 2720.7 42.29.2 638.5 10.9
zeno-3-8b 6 9.1 490 0.7 420 1394 2.6 9.1 1441 2.0 395 130.7 2.0
zeno-5-10 6 39.2 220.8 3.p195.2 653.8 13.939.2 814.8 12.3190.1 618.9 10.5
zeno-5-15 6 59.0 332.7 5.5291.0 979.0 21.159.0 1639.5 25.(#83.6 926.6 16.0
zeno-5-15b 6 78.0 309.5 5.5391.9 1182.9 26.378.0 2111.3 32.383.6 1114.4 19.5
Table lll. Sizes of formulae under the different encodings. The colt—fﬁg}ngives the number of propositional

variables in thousands, the colun—iggg the number of clauses in thousands, and the column MB the size of the
DIMACS encoded formulae in CNF in megabytes. The data are on the satisfiable formulae corresponding to the
length of shortest existing plans undéstep semantics. The shortésstep plans are in many cases shorter, and

the required formulae then correspondingly smaller.

38

instances that are more difficult than those depicted in the tables the runtime differences
are still bigger. Most of the benchmark problems allow parallelism, and in most of these
casesd-step semantics allows more operators in parallel tharvibep semantics. For
example in many of the problems involving transportation of objects by vehicleswith
step semantics a vehicle can leave a location simultaneously with loading or unloading an
object to or from the vehicle. The smaller parallel plan lengths directly lead to much faster
planning.

For the Schedule benchmatkstep semantics does not allow more parallelism than
theV-step semantics. The linear-siZestep semantics is as efficient as the linear-size
step semantics encoding and slightly less efficient than the quadrati¢-siep semantics
encoding as far as the unsatisfiable formulae are concerned. Interestingly, the relative
efficiency of the encodings reverses for satisfiable formulae corresponding to plans. As
shown in Table IV, for satisfiable formulae the SAT solver runtimes more closely reflect
the relative sizes of the encodings: the linear-Sizep encoding is the fastest, followed
by the linear-siz&'-step encoding and the quadratic sizstep encoding.

Numbers of operators in plans for the different encodings do not seem to follow any
regular pattern. In same cases the process semantics plans have the most operators, in
others thev-step or thel-step plans.

4.4.2 Process semantics v¥-step semanticsContrary to our expectations based on
the earlier results by Heljanko [2001] on Petri net deadlock detection problems, process
semantics does not provide an advantage @w&ep semantics on these problems although
there are often far fewer potential plans to consider. When showing the inexistence of
plans of certain length, the additional constraints could provide a big advantage similarly
to symmetry-breaking constraints.

Differences to the results by Heljanko are likely to be because of differences between
the application area and the type of SAT solvers and encodings used. The problem with the
planning problems would appear to be the high number of long clauses that usually do not
lead to pruning the search space and just add an overhead. In an earlier paper we rejected
full process semantics and only considered clauses with a length below a small constant
[Rintanen, Heljanko, and Nien&@&P004]. In some cases the constraints substantially im-
proved runtimes, but in most cases there was no effect because of the very small number
of additional short clauses.

4.4.3 Linear vs. quadrati¢/-step encodinglt is interesting to make a comparison be-
tween the quadratic and linear size encodings ofvtséep semantics constraints respec-
tively discussed in Sections 3.2.1 and 3.2.2. Even though the worst-case formula sizes are
smaller with the linear encoding, this did not directly translate into smaller formulae and
improved runtimes. First of all, even though the encoding from Section 3.2.1 is worst-case
guadratic, the number of clauses \V —¢’ is often small because not all pairs of operators
interfere. Also many pairs of interfering operators cannot be simultaneously applied, and
hence the corresponding clauses are not needed.

The only benchmark series in which the linear-size encoding substantially improves on
the worst-case quadratic-size encoding is Schedule. This is because in this benchmark
there is a very high number of pairs of interfering operators that can be applied simultane-
ously, and the quadraticity therefore very clearly shows up. Hence the linear-size encoding
leads to much smaller formulae. Better runtimes are however obtained only for plan lengths
higher than the shortest existing plans, as shown in Figure IV. On still bigger instances the

39

instance \Ien val 3-step V-step V-stepl.
sched-35-0 13 T[3.43 155 3.86 i;;g 3.14 336
sched-35-0 14 T|2.10 37§ 3.08 2.5 1.63 |37
sched-35-0 15 T|1.39 122 281 235 1.83 33%
sched-35-0 16 T|1.41 }22 230 392 1.43 122
sched-35-0 17 T|1.28 113 3.08 g;gg 143 133
sched-35-0 18 T|1.22 197 3.95 225 152 1328
sched-35-0 19 T|1.20 192 562 §is 1.40 125
sched-35-0 20 T|1.31 117 477 %15 1.41 13
sched-35-0 21 T|1.04 993 4.80 2325 1.07 ¢33
sched-35-0 22 T|1.37 123 1497133 138 2%
sched-35-0 23 T|1.16 192 6.17 3¢ 1.26 119
sched-35-0 24 T|1.64 132 10.14,580 213 1%
sched-35-0 25 T|1.68 147 20.5235:3% 1.83 335
sched-35-0 26 T|1.54 };?Z 17.6515:1 2.11 ;;i;
sched-35-0 27 T|1.77 333 13.461: %8 1.56 I35
sched-35-0 28 T|1.56 138 22963239 222 189

Table IV. Runtimes for the satisfiable formulae for different plan lengths

instance SCCs
block-34-0 2312x 1
depot-22-181722252x 1

gripper-5 98x 1
elev/str-f60 3600x 1
log-41-0 7812x 1
satel-20 4437x 1

zeno-5-25b | 31570x 1

driver-4-4-8 16 x 10 16x 9 32x 8 48x 7 16x6 32x5 32x4 1312x 1
sched-51-0 1x1173 1x51 1x1

freecell8-4 1x 6882 99x 1

Table V. Sizes of SCCs of Disabling Graphsx m means that there are SCCs of sizen.

differences are still more pronounced. These differences between the linear and quadratic
size encodings often mean much bigger differences in total runtimes on planners that use
more sophisticated evaluation algorithms than the standard sequential one, for example the
algorithm we consider in Section 5.3.

4.4.4 Sizes of strong components of disabling grapBeme of the sizes of SCCs of
disabling graphs are depicted in Table V. We only give the SCC sizes for one instance of
each benchmark series because the SCC sizes for all instances of each series are similar.
For example, all SCCs of all instances of the Blocks World, Depot, Gripper, Elevator,
Logistics, Satellite and ZenoTravel have size 1. For the other benchmarks, the SCC sizes
are a function of some of the problem parameters, like the number of vehicles.

Only few or no constraints on parallel operators are needed if all the strong components
of the disabling graphs are small. This directly contributes to the small size of the formulae
for the 3-step semantics. However, it is not clear whether this per se is a reason for the
efficiency of3-step semantics. For problems in which shorfestep and shortest-step
plans have the same length, for example the blocks world problestep encoding is not
more efficient than the correspondivigstep semantics encoding.

40

instance len val V-step blackbox
block-12-1 33 H 0.06 995 0.20 §3Y
block-12-1 34 T 0.05 59 0.22 933
block-14-1 35 H 0.35 935 18.02153,
block-14-1 36 T 012 §ii 565 §5
block-16-1 53 H 0.65 9.3 33.383: 40
block-16-1 54 T 0.38 33 13.8512:32
block-18-0 57 H 229 33 -

block-18-0 58 T 1.07 933 24.15%
log-17-0 13 R 1.97 ;52 0.42 719
log-17-0 14 T 3.22 32 1.06 9353
log-18-0 14 R 5.83 3is 3.25 325
log-18-0 15 T 7.84 i 221 1%
log-19-0 14 HR11.22:557 4.55 139
log-19-0 15 T29.1025:35 13.74:1:%9
log-20-0 14 HR10.63,73 7.88 I3
log-20-0 15 T - 15.941337

depot-14-7654 11 F 1.41 13 030 9%
depot-14-7654 12 T 3.48 312 117 19
depot-16-4398 7 F 0.01 99 0.01 o901
depot-16-4398 8 T 0.07 J9%¢ 0.01 o9}
depot-18-1916 11 F 0.17 91S 28.41%7;
depot-18-1916 12 T — -
driver-2-3-6d 15 F19.091522 43.44 1002
driver-2-3-6d 16 T 8.04 715 18.94%7 72
driver-2-3-6e 11 K 1.13 {97 0.60 035
driver-2-3-6e 12 T 1.27 148 151 %
driver-3-3-6b 10 FH 0.82 377 0.60 o3¢
driver-3-3-6b 11 T 1.07 %2 0.76 oS
driver-4-4-8 10 H 1.30 135 056 922

T

F

1

F

1

driver-4-4-8 11 5.92 23 19.3530%5

gripper-2 10 0.08 595 0.34 532
gripper-2 11 0.02 39; 0.2 312
gripper-3 14 3.91 330 41.07:3%%
gripper-3 15 0.32 512 2.82 2%

Table VI. Runtimes of the quadratitstep semantics encoding vs. the BLACKBOX encoding

4.4.5 Quadraticv-step encoding vs. the BLACKBOX encodifigne BLACKBOX plan-
ner by Kautz and Selman [1999] is the best-known planner that implements the planning
as satisfiability paradigfn Our quadratic encoding of thestep semantics (Section 3.2.1)
is closest to the planning graph based encoding used in the BLACKBOX planner. We give
a comparison between the runtimes for our quadiatitep semantics encoding and the
encoding used by BLACKBOX in Table \Aand between the formula sizes in Table VII.

4Surprisingly, the SAT encodings of planning by the SATPLANO4 planner of Kautz et al. (unpublished work)
which participated in the 2004 planning competition are for many benchmark problems much slower than the
BLACKBOX encodings, and only in few cases it is somewhat faster.

5We were not able to test all the benchmarks with BLACKBOX because of certain bugs in BLACKBOX.

41

instance len V-step blackbox
P C P C
¢ 15 MB| 1 s MB

block-12-1 3415.71 152.4 2.2313.12 1035.3 14.80
block-14-1 3G 22.44 233.7 3.4Y24.88 2938.5 44.59
block-16-1 54 43.54 485.1 7.5142.73 6012.7 94.72
block-18-0 58 58.88 696.8 10.9261.79 11091.9 176.58

log-17-0 14 20.12 149.8 2.1610.41 4318 6.15
log-19-0 1529.08 236.6 3.4p15.47 897.1 12.98
log-21-0 16 30.98 252.3 3.7019.97 1301.6 19.43
log-23-0 16 40.22 355.1 5.2924.13 19735 29.97
log-25-0 1556.66 556.3 8.4228.70 3419.9 52.70

depot-14-7654 1230.99 357.5 5.5212.79 1952.6 27.96
depot-16-4398 813.72 1435 2.10 4.12 237.7 3.33
depot-18-1916 1P75.67 899.4 14.1833.42 14599.4 230.82
driver-2-3-6d 16§23.00 168.5 2.5115.60 1809.6 26.44
driver-2-3-6e 1221.52 157.0 2.3211.45 1432.2 20.47
driver-3-3-6b 1117.97 1449 212 886 9729 13.87
driver-4-4-8 1137.73 382.5 5.8115.54 3406.7 49.92

gripper-2 11 1.01 5.3 0.06 1.15 15.2 0.19
gripper-3 15 1.76 9.7 0.12 2.13 36.7 0.48
gripper-4 19 2.72 155 0.20 3.39 71.6 0.97

Table VII. Formula sizes of the quadratiestep semantics encodings vs. the BLACKBOX encoding

The planning graph [Blum and Furst 1997] is a data structure that represents constraints
-0 V —oj, for pairs of interfering operators, 2-literal invariants, as well as 1-literal and 2-
literal clauses that indicate that certain values of state variables and application of certain
operators are not possible at given time points. The 2-literal clauses in planning graphs are
calledmutexes A peculiarity of planning graphs is the NO-OP operators which are used
as a marker for the fact that a given state variable does not change its value. The problem
encoding used by BLACKBOX is based on translating the contents of planning graphs into
1-literal and 2-literal clauses.

For some of the easiest problems the BLACKBOX encoding is more efficient than the
guadraticv-step semantics encoding (the Logistics problems and some instances of the
Depot problem), but in many cases it is much less efficient, most notably on the Blocks
World, Driver and Gripper problems. We believe that BLACKBOX's efficiency on the
easier problems is due to the explicit reachability information in the planning graph that
with our V-step semantics encoding has to be inferred, and the inefficiency in general is
due to the bigger formulae BLACKBOX produces.

The BLACKBOX encoding results in much bigger formulae than the quadvasiep
encoding, for the biggest instances by factors up to 25. The main reason for this is the very
straightforward translation of planning graphs into propositional formulae BLACKBOX
uses. This includes many redundant interference mutexes for operators that can also be
otherwise inferred not to be simultaneously executable as well as many mutexes between
NO-OPs and operators.

TheV-step semantics formulae often have almost twice as many propositional variables
as the BLACKBOX formulae. This is due to the reachability information in the planning
graphs that allows to infer that only certain operators are executable and that only certain

42

state variable values are possible at some of the early time points. Roughly the same re-
duction could be obtained for olfrstep semantics formulae by performing unit resolution
and then eliminating all occurrences of propositional variables occurring in a unit clause
by subsumption.

We conclude that the BLACKBOX encoding is roughly comparable to our quadratic
encoding for thev-step semantics and hence in many cases much less efficient than our
encoding for thed-step semantics. Further, the formulae for the BLACKBOX encoding
are often several times bigger.

5. EVALUATION ALGORITHMS FOR PLANNING AS SATISFIABILITY

Earlier research on classical planning that splits plan search into finding plans of given
fixed lengths, for instance the GraphPlan algorithm [Blum and Furst 1997] and planning as
satisfiability [Kautz and Selman 1996] and related approaches [Rintanen 1998; Kautz and
Walser 1999; Wolfman and Weld 1999; van Beek and Chen 1999; Do and Kambhampati
2001], have without exception adopted a sequential strategy for plan search. This strategy
starts with (parallel) plan length 0, and if no such plans exist, continues with length 1,
length 2, and so on, until a plan is found.

This standard sequential strategy is guaranteed to find a plan with the minimal number
of time points. If only one operator is applied at every time point then the plans are also
guaranteed to contain the minimal number of operators.

It seems that for finding a plan with the minimal number of time points the sequential
strategy cannot in general be improved. For example, a strategy that increases the plan
length by more than one until a satisfiable formula is found and then performs a binary
search to find the shortest plan does not typically improve runtimes because the cost of
evaluating the unsatisfiable formulae usually increases exponentially as the plan length
increases.

However, when the objective is to find any plan, not necessarily with the minimal num-
ber of time points, we can use more efficient search strategies for plan search. The standard
sequential strategy is often inefficient because the satisfiability tests for the last unsatisfi-
able formulae are often much more expensive than for the first satisfiable formulae. Con-
sider the diagrams in Figures 6 and 7 that represent some standard benchmarks problems
as well as the diagrams in Figure 8 that represent two difficult problem instances with 20
state variable sampled from the phase transition region [Rintanen 2004b]. Each diagram
shows the cost of detecting the satisfiability or unsatisfiability of formulae that represent
the existence of plans of different lengths. Black bars depict unsatisfiable formulae and
grey bars satisfiable formulae.

When the plan quality (the number of time points) is not a concern, we would like
to run a satisfiability algorithm with the satisfiable formula for which the runtime of the
algorithm is the lowest. Of course, we do not know which formulae are satisfiable and
which have the lowest runtime. With an infinite number of processors we could find in the
smallest possible time a satisfying assignment for one of the formulae: let each processor
i € {0,1,2,...} test the satisfiability of the formula fartime points. However, we do
not have an infinite number of processors, and we cannot even simulate an infinite number
of processors running at the same speed by a finite number of processors. But we can
approximate this scheme.

Our first algorithm uses a finite numbebf processes/processors. Our second algorithm
uses one process/processor to simulate an infinite number of processes but the simulation

43

Evaluation times: gripper10

Evaluation times: logistics39-0

e

$095S Ul BN

700

600 -

500 -

300 -

o
S
53

$095S Ul BLN

200

100 -

30 40 50 60

time points

20

25

20

15

10

time points

Fig. 6. SAT solver runtimes for two problem instances and different plan lengths

Evaluation times: depot15

Evaluation times: blocks22

|z

.

\
20

L

e

15

10
time points

200

920

80

—

70
time points

60

50

40

35

30 |

L o
[

$095S Ul BN

Fig. 7. SAT solver runtimes for two problem instances and different plan lengths

Evaluation times: random8597

Evaluation times: random1024

)

40 50 60

30
time points

2|

20

10

25

) =} [t} S}

20 |

$095S Ul BN

50

]
T
B
T
">
T

40

T
)

30

20

10

14

AN o ®© © ¥ o o

$095S Ul BwN

time points

Fig. 8. SAT solver runtimes for two problem instances and different plan lengths

44

cost of evaluation

1 2 3 4 5 6 7 8 9 planlength
1 2 3 1 2 3 1 (1) (1) runby process

Fig. 9. Evaluation cost of the unsatisfiable formulae for plan lengths 1 to 6 and the satisfiable formulae for plan
length 7 and higher. With 3 processes, process 1 finds the first plan (satisfying assignment) after evaluating the
formulae for plan lengths 1, 4 and 7 in 0.1+1+0.5 = 1.6 seconds. THis<id.6 = 4.8 seconds of total CPU

time. The sequential strategy neéds + 0.1 + 0.2 + 1+ 5+ 10 + 0.5 = 16.9 seconds. With 4 processes a

plan would be found by process 32 + 0.5 = 0.7 seconds, which id x 0.7 = 2.8 seconds of total CPU

time.

runs the processes at variable rates so that for every forfpad everyk > 0 there is a
time point whent seconds of CPU time has been spent for testing the satisfiability. of
If all processes were run at the same rate, this property could not be fulfilled.

Except for the rightmost diagram in Figure 7 and the leftmost diagram in Figure 8, the
diagrams depict steeply growing costs of determining unsatisfiability of a sequence of for-
mulae followed by small costs of determining satisfiability of formulae corresponding to
plans. This pattern could be abstracted as the diagram in Figure 9. The strategy imple-
mented by our first algorithm distributes the computatiom tconcurrent processes and
initially assigns the firsh formulae to then processes. Whenever a process finds its for-
mula satisfiable, the computation is terminated. Whenever a process finds its formula un-
satisfiable, the process is given the first unevaluated formula to evaluate. This strategy can
avoid completing the evaluation of many of the expensive unsatisfiable formulae, thereby
saving a lot of computation effort.

An inherent property of the problem is that unsatisfiable (respectively satisfiable) formu-
lae later in the sequence are in general more expensive to evaluate than earlier unsatisfiable
(respectively satisfiable) formulae. The difficulty of the unsatisfiable formulae increases as
1 increases because the formulae become less constrained, contradictions are not found as
quickly, and search trees grow exponentially. The increase in the difficulty of satisfiable
formulae is less clear. For example, for the first satisfiable formulthere may be few
plans while for later formulae there may be many plans, and the formulae would be less
constrained and easier to evaluate. However, as formula sizes increase, the possibility of
getting lost in parts of the search space that do not contain any solutions also increases.
Therefore an increase in plan length also later leads to an increase in difficulty.

The new algorithms are useful if a peak of difficult formulae precedes easier satisfiable
formulae, for example when it is easier to find a plan of lengthan to prove that no plans
of lengthn — 1 exists, or if the first strongly constrained satisfiable formulae corresponding
to the shortest plans are more difficult to evaluate than some of the later less constrained
ones. The experiments in Section 5.5 show that for many problems one or both of these
conditions hold.

We discuss the standard sequential algorithm and the two new algorithms in detail next.

45

1: procedure AlgorithmS()
2: =0
3: repeat
4: test satisfiability ofp;;
5: if ¢; is satisfiableghen terminate;
6: =i+ 1;
7: until 1=0;
Fig. 10. Algorithm S
1: procedure AlgorithmA(n)
2. P:={do,...,In-1}
3: uneval :=n;
4: repeat
5: P =P;
6: for each¢ € P’ do
7: continue evaluation af for e seconds;
8: if ¢ was found satisfiablthen gotofinish
9: if ¢ was found unsatisfiabkbhen
10: P =P U{¢yneval \{¢}
11: uneval := uneval + 1;
12: end if
13: end do
14: until 0=1
15: finish:

Fig. 11. Algorithm A

5.1 Algorithm S: sequential evaluation

The standard algorithm for finding plans in the satisfiability and related approaches to plan-
ning tests the satisfiability of formulae for plan lengths 0, 1, 2, and so on, until a satisfiable
formula is found [Blum and Furst 1997; Kautz and Selman 1996]. This algorithm is given
in Figure 10. This algorithm, like the ones discussed next, can be extended so that it ter-
minates whenever no plans exist. This is by the observation thatnvbolean state
variables there are at mo3t reachable states and hence if a plan exists, then a plan of
length less thar™ exists. This, however, provides only an impractical termination test.
More practical tests exist [Sheeran, Singh, ar&r8arck 2000; McMillan 2003; Mneim-

neh and Sakallah 2003].

5.2 Algorithm A: multiple processes

The first new algorithm (Figure 11) which we call Algorithm A is based on parallel or
interleaved evaluation of a fixed numbeof formulae byn processes. As the special case
n = 1 we have Algorithm S. Whenever a process finishes the evaluation of a formula, it is
given the first unevaluated formula to evaluate. The consgtdetermines the coarseness
of CPU time division during the evaluation. TFa eachloop in this algorithm and in the
next algorithm can be implemented so that several processors are used in parallel.
There is a simple improvement to the algorithm: when formtjlas found unsatisfi-
able, the algorithm terminates the evaluation of¢glfor j < i because they must all be
unsatisfiable. However, this modification does not usually have any effect because of the
monotonically increasing evaluation cost of the unsatisfiable formylaevould already
have been found unsatisfiable whgnwith ¢ > j is found unsatisfiable. We ignore this
improvement in the following.

46

1: procedure AlgorithmB(y)
2. t:=0;
3: foreachi > 0 do dond:] = false;
4: foreach: > 0 dotime[i] = 0;
5. repeat
6: t:=t+4;
7: for eachi > 0 such that donfg] = falsedo
8: if time[] + ne < t+* for some maximah > 1 then
9: continue evaluation ap; for ne seconds;
10: if ¢; was found satisfiablthen gotofinish
11: timefi] := timefi] + ne;
12: if ¢; was found unsatisfiabklen donds] := true;end if
13: end if
14: end do
15: until 0=1
16: finish:

Fig. 12. Algorithm B

5.3 Algorithm B: geometric division of CPU use

In Algorithm A the choice ot is determined by the (assumed) width and height of the peak
preceding the first satisfiable formulae, and our experiments indicate that small differences
in n may make a substantial difference in the runtimes: consider for example the problem
instance logistics39-0 in Figure 6 for which runtime of Algorithm A with= 1 is more

than 10 times the runtime with = 2.

Our second algorithm which we call Algorithm B addresses the difficulty of choosing
the valuen in Algorithm A. Algorithm B evaluates in an interleaved manner an unbounded
number of formulae. The amount of CPU given to each formula depends on its index:
if formula ¢y, is givent seconds of CPU during a certain time interval, then a formula
¢i,i > k is giveny'~*t seconds. This means that every formula gets only slightly less
CPU than its predecessor, and the choice of the exact value of the copstantl | is far
less critical than the choice affor Algorithm A.

Algorithm B is given in Figure 12. Variablé, which is repeatedly increased by
characterizes the total CPU tirqe_% available so far. As the evaluation ¢f proceeds

only if it has been evaluated for at mast — ¢ seconds, CPU is actually consumed less
than -, and there will be at timq% only a finite numbey < log,, ; of formulae for
which evaluation has commenced.

In a practical implementation of the algorithm, the rate of incréaskt is increased as
the computation proceeds; otherwise the irfioezachloop would later often be executed
without evaluating any of the formulae further. We could chabga example so that the
first unfinished formula; is evaluated further at every iteration-£ -<).

The constanta and~ respectively for Algorithms A and B are roughly related{y=
1-— %: of the CPU capacit)% = 1 —~ is spent evaluating the first unfinished formula, and
the lower bound for Algorithm B is similarly related to the lower bound for Algorithm A.
Algorithm S is the limit of Algorithm B wheny goes to 0.

5.4 Properties of the algorithms
We analyze the properties of the algorithms.

47

Algorithm B with parameter 0.5

40 —
30 | 1
25 1
20 | b
15

Lk |I||“ \MHHHHHHH
60 65 85

50 55 70 75 80
time points

time in secs

Algorithm B with parameter 0.8
40

35 1

20 - 1

time in secs

15 1
10 1
5 L 4
Lk |||| il

55 60 65 70 75 80 85
time points

Fig. 13. lllustration of two runs of Algorithm B. Whefn = 0.5 most CPU time is spent evaluating the first
formulae, and when the first satisfiable formula is detected also the unsatisfiability of most of the preceding un-
satisfiable formulae has been detected. Witk 0.8 more CPU is spent for the later easier satisfiable formulae,
and the expensive unsatisfiability tests have not been completed before finding the first satisfying assignment.

48

Definition 5.1 (Speed-up) Thespeed-upmf an algorithm X (with respect to Algorithm S)
is the ratio of the runtimes of Algorithm S and the Algorithm X.

If the speed-up is greater than 1, then the algorithm is faster than Algorithm S.

In our analysis we assume that the constaim Algorithm A is infinitesimally small,
and hence, after a process finishes with one formula, the evaluation of the next formula
starts immediately, and the algorithm terminates immediately after a satisfiable formula is
found.

If there is no peak because the last unsatisfiable formulae are not more difficult than
some of the first satisfiable ones, then Algorithm A with> 2 may needn times more
CPU than Algorithm S because— 1 satisfiable formulae are evaluated unnecessarily. We
formally establish worst-case bounds for Algorithm A.

Theorem 5.2 The speed-up of Algorithm A witlh processes is at Iea.é,nt. This lower
bound is strict.

PROOFE The worst case% can show up in the following situation. Assume the first
satisfiable formula is evaluated in timghe preceding unsatisfiable formulae are evaluated
in time 0, and the following satisfiable formulae are evaluated in time Then the total
runtime of Algorithm A istn, while the total runtime of Algorithm S i

Assume the runtimes (CPU time) for the formulae &g, ...,ts, ..., andg; is the
first satisfiable formula. The total runtime of Algorithm S§i§_, ¢,. This is also an upper
bound on the CPU time consumed by Algorithm A@y . . ., ¢s. Additionally, Algorithm
A may spend CPU evaluatings 1, ¢s+2,. ... The evaluation of these formulae starts at
the same time or later than the evaluation of the first satisfiable forshwulaAs n — 1
processes may spend all their time evaluating these formulae after the evaluagipn of
has started, the total CPU time spent evaluating them may be at(mest)t;. Hence
Algorithm A spends CPU time at most

S
D ti+ (n— 1)t
=0

in comparison to

>t
=0
with Algorithm S. The speed-up is therefore at least
Yizoti _ 1 1 1

= > = —.
Yicotit(n=Dts 1+(n—1)sry ~ l+n—1 n

t;

i=0 Vi

O

In the other direction, there is no finite upper bound on the speed-up of Algorithm A
in comparison to Algorithm S for any number of processes 2. Consider a problem
instance with evaluation timiy, ¢; andt, respectively for the first three formulae, the first
two of which are unsatisfiable and the third satisfiable. dget 5 andt; = cts. The
constant could be arbitrarily high. Algorithm S runs if@ + 2)t¢ time, while Algorithm
A with n = 2 runs in2t¢, time. Hence the speed—ég‘2 can be arbitrarily high.

49

Next we analyze the properties of Algorithm B assuming that the constaats e
are infinitesimally small and the evaluation of all of the formudaetherefore proceeds
continuously at rate’.

Theorem 5.3 The speed-up of Algorithm B is at ledst- ~. This lower bound is strict.

PrROOFE As with Algorithm A the worst case is reached when all unsatisfiable formulae
preceding the first satisfiable formutg are evaluated and the evaluation of many of the
satisfiable ones has proceeded far. The disadvantage in comparison to Algorithm S is the
unnecessary evaluation of many of the satisfiable formulae. Hence Algorithm B spends

CPU time at most
S S
. 1
Dttt =)ttt
1=0 i>1 1=0
in comparison to

s
Dt
=0

with Algorithm S. The speed-up is therefore at least

=g ti 1 1
i=0 "t — >
Yiootit i ts—ts

ts — L a—tg

1 ﬁt57 14 1=
+ P + T

s

il S

This lower bound is strict: ify; is satisfiable, evaluation times fgr;, j < ¢ are 0, and
evaluation times for;,7 > 1 are not lower than that af;, then the speed-up is only
1—~. O

The worst-case speed-ups of these algorithms are the same if we observe the equation
v =1 — L relating their parameters.

Algorithm B does not have plan quality guarantees but Algorithm A has.

Theorem 5.4 If a plan exists, Algorithm A with parameter> 1 is guaranteed to find a
plan that is at most. — 1 steps longer than the shortest existing one.

PROOF So assume Algorithm A finds a plan withsteps. This means that the process
for formula¢, determined that the formula is satisfiable. There are at mest processes
for formulae¢; with s < ¢, and all formulaep for s < t for which a process terminated
are unsatisfiable.

All formulae preceding an unsatisfiable formula are unsatisfiable. Consider formula
¢t—n-

If the process evaluating, _,, has terminated, the formula must have been unsatisfiable,
and hence the plan from; is at mostn — 1 steps longer than the shortest existing one
which much have length over— n.

If the process evaluating,_,, has not terminated, then the evaluation of one of the
n — 1 formulae¢;_, 41, ..., $:—1 must already have been terminated, because there are
processes and two of them were evaluating,, and¢,. Since¢, was the first one found
satisfiable, one of the formulag_.,. 1, . . ., ¢, that was evaluated was unsatisfiable, and
hence the formula;_,, must also be unsatisfiable, yielding the same lower bound for the
plan length. I

50

5.5 Experiments

Algorithms A and B increase efficiency for problem instances sampled from the set of
all problem instances (Section 4.3). The improvements in comparison to Algorithm S are
biggest for easy problem instances right of the hardest part of the phase transition region
with 100 state variables or more. For the most difficult instances in the middle of the phase
transition region the satisfiable formulae are often as difficult as the unsatisfiable ones and
hence Algorithms A and B do not seem to bring as much benefit. We did not carry out ex-
haustive experimentation because of the extremely high computational resource consump-
tion and the difficulty to derive exact characterizations of the performance improvement
when most of the problem instances could not be practically solved by using Algorithm S.

We illustrate properties of the algorithms on a collection of problems from the AIPS
planning competitions. Plans for most of these problems can be found in polynomial
time by simple domain-specific algorithms, and planners using heuristic search [Bonet
and Geffner 2001] have excelled on these problems, while they had been considered dif-
ficult for planners based on satisfiability testing or CSP techniques. In this section we
demonstrate that the new algorithms change this situation.

Many of these benchmark problems follow the same scheme in which objects are trans-
ported with vehicles from their initial locations to their target locations (Logistics, Depots,
DriverLog, ZenoTravel, Gripper, Elevator), with one of them (Depots) combining trans-
portation with stacking objects as in the well-known Blocks World problem. Some others
(Satellite, Rovers) are variations of the transportation scenario in which different locations
are visited to carry out some tasks. Some of the benchmark problems have the form of
a scheduling problem (Elevator, Schedule) but do not involve any restrictions on resource
consumption and therefore only test the property of feasibility which for these problems
can be tested in low polynomial time by a simple algorithm.

To demonstrate the usefulness of the algorithms for a wider range of problems, in addi-
tion to the planning competition problems which are solvable by simple domain-specific
algorithms in polynomial time, we also consider hard instances of an NP-hard planning
problem. The planning competition problems are easy because they do not make restric-
tions on resource consumption and satisfying one subgoal never makes it more difficult
to satisfy another. Hence we also consider a planning problem with critical restrictions
on resource consumption. We call this problem the Mechanic problem. The objective is
to perform a maintenance operation to a fleenircraft. The aircraft fly according to
some schedule and visit one of three airports five times during a time pertodbgt. A
mechanic/equipment can be present at one of the three airports on any given day, and can
perform the maintenance operation to all aircraft visiting that airport that day. This prob-
lem can be viewed as a form of a set covering problem but we make it a sequential decision
making problem so that we can talk about completing the maintenance witkir first
days of the time period. We solve the problem far-a 30, 40, 50, ... and set, = 3¢. With
n = 3t the problem is rather strongly constrained but still usually soluble. Fonldvis
easier to find a plan because there are only few aircraft, and for much highere are
too many aircraft and no plan necessarily exists.

For each problem instance we generate formulae for plan lengths up to 10 or 30 be-
yond the first (assumed) satisfiable formula according talthgep semantics encoding in
Section 3.4.4. We use the linear-size encoding of the parallelism constraints if it is less
than half of the size of the quadratic encoding that does not require introducing auxiliary

51

propositional variables to avoid exceeding Siege’s upper bound of 524288 propositional
variables.

Then we test the satisfiability of every formula and cancel the run if the satisfiability is
not determined in 60 minutes of CPU time. Like in the experiments in Section 4, we use
the Siege V4 SAT solver by Lawrence Ryan of the Simon Fraser University on a 3.6 GHz
Intel Xeon computer.

Then we compute from the runtimes of all these formulae the total runtimes under algo-
rithms A and B with different values for the parameterand~. Algorithm S is the special
casen = 1 of Algorithm A. The constantsandd determining the granularity of CPU time
division are set infinitesimally small. Formulae that are beyond the plan-length horizon or
that take over 60 minutes to evaluate are considered as having infinite evaluation time. The
times do not include generation of the formulae. The two expensive parts of the formula
generation are the computation of the invariants and the disabling graph. For most of the
benchmark problem instances these both take a fraction of a second, but for some of the
biggest instances of the Logistics, Depot, and Driver problems 10 or 20 seconds, and a total
of 6 minutes for the biggest ZenoTravel instance and 3 minutes for the biggest Logistics
instance. A more efficient implementation would bring these times down to seconds.

The runtimes for a number of problems from the AIPS planning competitions of 1998,
2000 and 2002 and for the Mechanic problem are given in Table VIIl. For most bench-
marks we give the runtimes of the most difficult problem instances, which in some cases
are the last ones in the series, as well as some of the easier ones. Most of the runtimes that
are not given in the table are below one second for every evaluation strategy. Some of the
benchmark series cannot be solved until the end efficiently, and we give data just for some
of the most difficult instances that can be solved. We discuss these benchmark problems
below.

The column “easiest” gives the shortest time it took to determine the satisfiability of any
of the satisfiable formulae corresponding to a plan. These times in almost all cases are very
low, even when the total runtime of Algorithms S, A and B is high. Hence in almost all
cases the total runtime is strongly dominated by the unsatisfiability tests.

52

Algorithm A'with n Algorithm B with easiesf HSP] FF
instance 1 2 4 8 16| 0.5000 0.7500 0.8750 0.93y5
block-18-0 8.6 7.8 76 5.8 6.6 8.0 7.9 7.7 9.3 0.1 6.4 =
block-20-0 11.3] 12.2 13.8 16.9 155 13.0 16.5 20.1 183 0.2 82.1] 0.0
block-22-0 122.4] 106.9 96.7 77.0 354/ 106.0 62.2 335 27.00 0.3 79.6/ 05
block-24-0 2877.52675.7 1854.0 829.0 167.4| 2087.3 583.3 284.8 246.8 0.7 - -
block-26-0 5347.55000.0 4640.1 3103.9 539.0, 4116.7 1140.0 242.6 126.3 0.9 46.8/ 0.0
block-28-0 3447.83413.4 3246.8 1984.3 813.3] 2867.0 1746.1 1027.6 336.4 1.1 - 27.2
block-30-0 - — 13949.9 7541.0 6349.1/13934.0 6577.4 1717.4 503.9 1.9 - 0.0
block-32-0 - - — 28695.414326.9 > 27h 36417.3 8182.8 2245.7, 11.3 - 0.0
block-34-0 227.6| 227.8 2242 2315 208.8] 2384 2482 264.6 1885 1.9 -| 0.1
driver-4-4-8 0.5 0.6 0.3 0.5 0.8 0.6 0.6 0.7 1. 0.1 29 01
driver-5-5-10 731.2) 549.5 631.6 237.7 440.2] 969.8 507.0 4724 651.1 275 - -
driver-5-5-15 724 36.1 504 1004 200.6 56.0 72,7 1205 219.8 12.5/ 72.21 -
driver-5-5-20 1018.20 690.1 792.4 940.7 17.8) 967.5 148.2 35.4 240 0.5/1428.0 -
driver-5-5-25 —|6433.9 2218.9 3542.3 4132.2 4553.4 4100.7 5800.5 7865.5 258.2 —|609.5]
driver-8-6-25 - — 13333.911081.4 22162.6 27447.3 24120.522377.131375.3 1385.2 859.0) -
satel-12 311 51 14 18 2. 4.0 2.5 31 46 0.2 33| 01
satel-13 14.8) 14.2 18.2 14.9 17.9 21.0 29.0 241 228 05| 101 03
satel-19 45.1| 284 21.6 5.0 5.6 423 13.1 9.4 10.1) 0.3 8.8/ 0.3
satel-20 -|1806.4 266.6 33.0 35.0, 187.1 69.3 55.3 63.5 21| 232 49
gripper-5 3443.21053.7 355 7.2 5.0 317 16.2 21 0.9 0.0 0.0 0.0
gripper-6 - - 2679.6 234 104 1219 45.6 4.1 1.7 0.0 0.0 0.0
gripper-7 - - - 4913 28.3| 1968.0 128.2 79 28 0.0 0.0 0.0
gripper-8 - - — 13285.5 293.1/57298.9 790.1 273 47 0.0 0.0 0.0
gripper-9 - - - — 8326 >27h 589.7 37.7 13.0 0.1 0.1 0.0
gripper-10 - - - — 216.3/31496.5 569.3 126.8 17.1/ 0.1 0.1 0.0
gripper-11 - - - - —| > 27h 87479.2 2308.0 3354 0.8 0.1 0.0
gripper-12 - - - - —-| > 27h >27h 8306.4 1117.5 0.8 0.1] 0.0
zeno-5-10 0.3 0.3 0.2 0.2 0.5 0.3 0.2 0.3 0.6 00 242 01
zeno-5-15 154.20 77.1 8.7 2.3 45 17.7 51 4.8 6.6 0.3 185 0.3
zeno-5-15b 40.5 25.3 7.1 9.4 9.1 244 146 17.6 17.1 0.5 104.5 0.4
zeno-5-20 - — 9036.9 6422.6 2896.0/16459.9 1364.2 126.8 64.8 1.1 188.4 14
zeno-5-20b - - — 10822.918744.687164.6 23385.821683.030471.31171.5 411.5 1.4
zeno-5-25 - - — 12987.125914.9 > 27h 37341.029810.9 39109.31619.7, 332.4] 4.4
sched-33-0 79.0] 53.7 130 5.0 6.7 228 109 101 113 0.2 - 07
sched-35-0 2225.211435.5 19.5 3.6 2.9 14.3 7.8 4.9 5.2 0.2 - 07
sched-37-0 346.2| 184.4 92.8 8.6 9.6 80.4 242 194 195 0.6 - 05
sched-39-0 - - — 592.2 140.3| 5889.8 1084.6 437.6 221.9] 1.9 - 1.7
sched-41-0 - - — 479.1 35.4| 3040.7 237.1 91.7 80.7 1.3 - 1.0
sched-43-0 —|1565.2 239 116 174/ 473 200 214 2371 04 - 22
sched-45-0 - — 1398.1 1095 41.6| 786.6 257.8 100.2 73.3 15 - 1.0
sched-47-0 - - — 14066.9 245.0/62768.3 1708.6 607.0 2154 2.2 - 43
sched-49-0 - - — 095117 561.6(24913.2 2609.9 426.4 169.2] 2.1 -| 6.0
sched-51-0 - - - — 11512 > 27h 8327.0 1692.6 889.2] 7.6 -1 3.1
depot-09-5451 1471 2438 439 858 1715 248 46.3 89.1 1748 10.7 =07
depot-12-9876 255.4 509.7 1018.6 2036.9 4073.6 509.9 1019.1 2037.5 4074.2254.6| - 31
depot-15-4534 428/ 793 1548 3054 609/9 809 157.1 309.6 614/4 38.1 - 34
depot-18-1916 59| 112 21.9 435 86.0 114 22.2 43.9 874 54 - 0.8
depot-19-6178 0.2 0.2 0.3 0.4 0. 0.3 0.3 0.5 0. 0.0 - 0.2
depot-20-7615 34.2| 66.7 131.9 262.1 104 67.0 35.6 185 18.7/ 0.4 -] 14.3
depot-21-8715 0.2 0.1 0.2 0.3 0.6 0.2 0.3 0.4 0.4 0.0 514 03
depot-22-1817 27.1] 50.8 989 1948 3894 514 100.1 1975 3922 24.3 —| 55.3
[og-20-0 34 238 0.6 0.7 0.5 13 11 0.9 0.8 0.0 22 01
log-24-0 0.9 0.4 0.6 1.0 1.6 0.6 0.8 1.2 1.8 0.0 3.1 0.1
log-28-0 87.7 53.3 13.8 1.9 3.5 15.0 4.1 3.8 3.9 0.1 28.0] 1.2
log-32-0 -| 53.1 18.9 374 163 379 33.7 26.6 16.6| 0.3] 43.4| 45
log-36-0 -| 101.1 20.2 30.1 11.8 58.7 46.5 29.2 145 02| 811 26
log-40-0 - - 1112 4.6 7.2 37.5 10.6 9.9 135/ 0.4| 267.8 4.5
log-41-0 - - 52.4 20.0 54| 1753 14.8 9.1 9.8 0.3| 247.1 4.2
mechanic-30-90 0.5 0.4 0.3 0.4 0.3 0.4 0.4 0.4 05 00 471 01
mechanic-40-120, 0.5 0.4 0.5 0.6 0.5 0.5 0.6 0.6 0.4 0.0 141 0.2
mechanic-50-150, 1.1 1.0 1.0 1.7 2.9 1.2 1.4 2.0 21 0.1 226.7 0.4
mechanic-60-180, 13.1 6.9 33 2.0 1.0 43 16 12 13 0.0| 56.46| 0.7
mechanic-70-210, 4.5 2.9 24 1.0 1.3 3.3 18 15 18 0.1 - -
mechanic-80-240, 2.0 3.0 1.1 15 2.4 24 17 2.0 2.8 0.1] 2139 3.1
mechanic-90-270, 15.1 2.1 2.4 3.2 2.9 3.0 3.1 3.9 3.9 0.1 339.00 3.6
mechanic-100-300 77.0| 47.2 52.2 17.3 8.0 64.5 37.5 25,6 14.7] 0.2 - -
mechanic-110-330 162.0| 192.5 117.8 81.4 42.2| 164.7 90.2 64.6 403 0.6 - -
mechanic-120-360 991.4| 717.5 273.5 61.3 30.6] 185.8 72.8 56.6 62.4 09 - -

Table VIII. Runtimes of Algorithms A and B. Columm = 1 is Algorithm S. Dash indicates a missing upper
bound on the runtime when some formulae were not evaluated in 60 minutes. The best runtimes for Algorithms
A and B are highlighted for each problem instance (sometimes this is the special case Algorithm S.) The column
“easiest” shows the lowest runtime for any of the satisfiable formulae.

53

Algorithm A with n Algorithm B with e
instance 1 2 4 8 160 0.500 0.750 0.875 0.938
blocks-34-0 [12471241257124 1257124 1257124 1257 1pW57124 1257124 1357129 13571p9
driver-8-6-25 - - 12/193 14/206 14/20611/178 14/206 14/206 14/206
satell-20 - 10/230 11/166 12/285 17/32111/166 12/285 15/309 15/309
gripper-10 - - - — 25/69 25/65 25/65 49/150 49/180
zeno-5-15b 5/87 5/87 7/98 9/140 14/191 7/98 7198 14/191 14/191
sched-37-0 13/60] 13/60 13/60 16/57 20/69 14/52 16/57 16/57 20/69
depot-19-6178 10/98 10/98 10/98 10/98 10/98 10/98 10/98 10/98 10/98
depot-20-7615 14 /153 14/153 14/153 14/153 23/17014/153 23/170 23/170 29/193
log-20-0 9/176| 10/151 11/199 12/163 20/24911/199 12/163 20/249 20/249
log-28-0 9/243| 10/298 11/288 13/309 15/34013/309 13/309 13/309 24/443

Table IX. Numbers of time points and operators in plans found by Algorithms A and B. Column1 is
Algorithm S. Dash indicates missing data when some formulae were not evaluated in 60 minutes.

Table IX shows the numbers of time points and operators in the plans obtained for some
of the benchmark problems reported in Table VIII. In many cases the easiest satisfiable
formulae are not the first ones, and these formulae typically have satisfying assignments
that correspond to plans having many useless operators, which for algorithms A and B can
lead to plans with many more operators than for algorithm S. However, the benchmarks
have a simple structure and these plans with more operators are usually not genuinely
different: the additional operators are either irrelevant for reaching the goals or contain
pairs of operators and their inverses. It would be easy to eliminate these types of useless
operators by a simple postprocessing step.

The Movie, MPrime and Mystery benchmarks from the 1998 competition and Rovers
from 2002 are very easy for every evaluation strategy (fraction of a second in most cases)
but we cannot produce the biggest MPrime instance because of a memory restriction.

The Logistics (1998 and 2000) and Satellite (2002) series are solved completely. Proving
inexistence of plans slightly shorter than the optimal plan length is in some cases difficult
but the new evaluation algorithms handle this efficiently.

The Depots (2002) problems are also relatively easy but in contrast to the rest of the
benchmarks the new evaluation algorithms in some cases increase the runtimes up to the
theoretical worst case.

The DriverLog and ZenoTravel (2002) problems are solved quickly except for some of
the biggest instances. We cannot find satisfiable formulae for the last ZenoTravel problem
within our time limit, and finding plans for the preceding two instances of ZenoTravel and
the last two of DriverLog is also slow. The difficulty lies in finding tight lower bounds for
plan lengths by determining the unsatisfiability of formulae.

Blocks World (2000) problems lead to very big formulae (size over 100 MB and over
524288 propositions), and we can solve only two thirds of the series.

Elevator (2000), Schedule (2000) and Gripper (1998) are a challenge because only very
loose lower bounds on plan length are easy to prove. Finding plans corresponding to a
given satisfiable formula is very easy (some seconds at most) but locating these formulae
is very expensive. Increasing parametei@ndy improves runtimes.

The formulae generated for FreeCell (2002) are too big (hundreds of megabytes) for the
current SAT solvers to solve them efficiently. This benchmark series along with the blocks
world problems are the only ones that are not solved almost entirely.

6The number of propositions in formulae for plan lengths much higher than the presumed shortest plan length
exceeds Siege’s upper bound 524288.

54

All'in all, it seems that a conservative use of the new algorithms (especially Algorithm
B with v € [0.7..0.9]) leads to a general improvement in the runtimes in comparison to
Algorithm S.

Decrease in plan quality is indirectly related to decrease in runtime. This depends on
whether the first satisfiable formulae are the easiest ones. In general, satisfying valuations
that are found for plan lengths much higher than the shortest plan length correspond to
plans with more operators, but not always.

6. RELATED WORK
6.1 Encodings of planning in the propositional logic

Kautz and Selman [1992] introduced the idea of doing planning by using satisfiability al-
gorithms. Following the introduction of the GraphPlan algorithm that successfully utilized
parallel plans [Blum and Furst 1997], Kautz and Selman [1996, 1999] extended their ap-
proach to parallel plans.

Ernst et al. [1997] investigated different encodings planning in the propositional logic.
A difference to other works on planning as satisfiability is that some of the encodings
utilize the regularities that are obvious in the schematic representations of operators.

Following the work by Kautz and Selman, translations of planning into other formalisms
have been proposed [Dimopoulos, Nebel, and Koehler 1997; Kautz and Walser 1999; Wolf-
man and Weld 1999; van Beek and Chen 1999; Do and Kambhampati 2001] but all these
works — with the exception of Dimopoulos et al. — use the notions of parallel and sequential
plans already used by Kautz and Selman.

Dimopoulos et al. [1997] noticed that the notion of parallel plans used by Blum and
Furst [1997] can be relaxed to what we have formalized-atep semantics. They called
this ideapost-serializabilityand showed how to transform operators for some planning
problems to make them post-serializable. They did not propose a general translation from
arbitrary planning problems as we have done in this work. Rintanen [1998] implemented
this idea in a constraint-based planner and Cayrol et al. [2001] in the GraphPlan frame-
work.

The preconditions-effects graphs of Dimopoulos et al. [1997] are a subclass of our
disabling graphs. Dimopoulos et al. used these graphs for defining a notion of plans
similar to our3-step plans but did not use them for deriving efficient encodings of planning
problems. The definition of preconditions-effects graphs often requires many more edges
than the definition of disabling graphs does, and consequently the SCCs of the former may
be much bigger than the SCCs of the latter. The small size of the SCCs of disabling graphs
is often critical for obtaining compact and efficient problem encodings.

Outside planning, an idea similar Iastep semantics has recently been used by Ogata
and Tsuchiya [2004] in the context of 1-safe Petri nets. Khomenko et al. [2005b] have
recently used an improved encoding for acyclicity tests as required farskep semantics
in Section 3.4.

The fact that the sequence of formulae that encode the plan existence problem for dif-
ferent plan lengths has a certain regularity has been utilized in earlier research on bounded
model checking [En and $rensson 2003; Heljanko, Junttila, and Latvala 2005].

55

6.2 Evaluation algorithms

Algorithm B in Section 5 is new, and the idea of Algorithm A has independently been
discovered by Nabeshima et al. and briefly described but not formally analyzed in a short
published abstract [2002]. The idea behind the algorithms has some resemblance to par-
allelized Las Vegas algorithms, see for example the work by Luby and Ertel [1994], and
randomized restarts in combinatorial search [Gomes, Selman, Crato, and Kautz 2000], but
the problems are not directly related. In our case, we have an infinite sequence of problem
instances (existence of a plan of len@th, 2, . . .) with a certain presumed runtime profile
(exponential growth in runtimes of the unsatisfiable formulae preceding the satisfiable for-
mulae), whereas in the other two works the question is about utilizing the properties of the
distribution of runtimes of one problem instance with a randomized algorithm. The concur-
rent use of several SAT solvers for solving a model checking problem has been considered
earlier [Zarpas 2004] but was not analyzed as in our work [Rintanen 2004a].

6.3 Heuristic state-space search planners

Heuristic state-space search has become a very popular approach to non-optimal classical
planning [Bonet and Geffner 2001], especially in the planning competition community.
The last 8 years have seen the development of a collection of techniques to make state-
space search planners more efficient for the standard benchmark problems introduced in
the AIPS/ICAPS planning competitions. However, most of these techniques have been
directly motivated by the benchmarks themselves, and have not been shown to improve ef-
ficiency for computationally more challenging problems, for example ones having critical
resource constraints like in scheduling problems. The emphasis has been more in making
the planners scalable to bigger instances of the types of problems used in the planning
competitions.

Since the emphasis in research on planning with SAT has been in the use of efficient
general-purpose satisfiability algorithms, a similar development specific to the standard
planning benchmarks has been missing. However, some of the techniques introduced for
the planning competitions could be used in connection with a SAT-based planner just as
well, for example the use of a fast incomplete planner for solving the simplest problems,
and only starting the more powerful general-purpose search algorithm if the simpler in-
complete planner has failed. Our experiments suggest that using a SAT-based planner and
the techniques developed in this paper could be more powerful for the second complete
stage than a planner that uses heuristic state-space search.

We compare the planning as satisfiability approach with our improved problem encod-
ings and new plan search algorithms to two well-known heuristic state-space search plan-
ners, HSP by Bonet and Geffner [2001] and FF of Hoffmann and Nebel [2001].

HSP is a pure general-purpose planner for solving classical planning problems. It is
not guaranteed to find shortest plans. It is based on state-space search with heuristics that
estimate the distances between states.

The basic approach in the FF planner is the same as in HSP, but to obtain a better perfor-
mance it employs a search algorithm and pruning techniques that were obtained by exper-
imentation with the standard benchmark sets [Hoffmann and Nebel 2001]. This approach
for improving planner efficiency on the standard benchmarks is similar to many other re-
cent planners proposed by the planning competition community. Many of the techniques
used by FF are not completeness-preserving and the planner therefore switches to a more

Model A: Success rates of three planners

0

o

=} 1 + 1
=

E .

— .

Z 08 0.8
° y

g A&

S 06 0.6
0

8

g 04 0.4
(2]

£

5

g 02 SP solubility 02
8 HSP solubility =

g FF solubility =

8 0 A 1 1 1 1 O
g 2 3 4 5 6

56

ratio # operators / # state variables

Fig. 14. Percentage of problem instances with 40 state variables solved in 10 minutes by our planner, HSP and
FF.

general and complete search algorithm if it is otherwise not able to find a plan. For many
of the standard benchmarks the specialized solution techniques are sufficient and lead to
extremely good runtimes. However, these techniques cannot be viewed as general-purpose
planning techniques and, as we will see below, at least one of them seriously impairs FF’s
ability to solve problems with a different structure, even for some classes of very easy
problem instances.

Figure 14 contains a comparison of our planner (Algorithm S from Section 5.1, encoding
from Section 3.4.4), HSP and FF with respect to problem instances from the phase transi-
tion region (Section 4.3). For the most difficult problem instances with operators-to-state
variables ratio between 2 and 2.5 our planner solves more than twice as many problem
instances as HSP or FF with a timeout of 10 minutes. Right of the hardest part of the phase
transition region where the problem instances become easier HSP’s performance quickly
improves. FF, however, has a poor performance even with the very easy instances that have
operators-to-state-variables ratio 4 and more: our planner solves all instances in less than
a second but FF does not solve up to 40 per cent of these instances in ten minutes. The
performance of HSP and FF worsens further relative to our planner when the number of
state variables increases [Rintanen 2004b].

The last two columns in Table VIII give runtimes of HSP [Bonet and Geffner 2001]
and FF [Hoffmann and Nebel 2001] for some of the standard benchmark problems. These
runtimes are not directly comparable to the runtimes of given for planning as satisfiability
with the Algorithms S, A and B in the same table because the latter runtimes do not include
the time spent in generating the propositional formulae (see Section 5.5 for details.) HSP
performs worse than our planner with Blocks World, Schedule, Depot, Logistics and Me-
chanic. HSP seems to scale better only with Gripper and ZenoTravel. FF's performance
is worse or incomparable with Blocks World, Driver and Mechanic. The Blocks World
runtimes are better until instance 34 but similarly to our planner FF is not able to solve the

57

last third of the series. Performance of HSP and FF is worse also for some problems that
are not listed in the table, for example the Mystery benchmarks from the 1998 competition.

An important factor in the better performance of FF with respect to HSP ibehful
actionspruning heuristic that restricts the computation of the heuristic values to only a sub-
set of the successor states of a state [Hoffmann and Nebel 2001]. For this technique to be
useful the heuristic estimates have to be very good, which is the case for most of the stan-
dard benchmark problems but certainly not for planning problems in general, especially
for ones that are inherently difficult. The helpful actions pruning technique is a main factor
in the performance difference between FF and HSP for the problem instances in Table VIl
because of the high cost of computing the heuristic values for every state. However, it
is also responsible for FF’'s poor performance with the problems in Figure 14: the tech-
nique eliminates actions and successor states that are necessary for finding a plan quickly.
A version of FF with the pruning technique disabled has a performance much closer to
HSP’s performance. Hence FF’s good performance on many of the standard computation-
ally easy benchmarks has been bought at the price of a dramatically worse performance
on structurally more complex problems: the shortcuts FF takes are useful for problems for
which the heuristics work well but dramatically fail FF with more difficult problems.

Performance of our planner with Algorithm B and paramétet 0.9375 in comparison
to HSP is in most cases as good or better. Performance in comparison to FF is worse on
many of the standard benchmark problems but this is due to FF’'s incomplete techniques,
not due to the performance of FF's complete domain-independent search algorithm. FF
scales much worse on much smaller but more complex problems, for instance the Mechanic
problem.

Results given in Table VIII and in Figure 14 show that planning as satisfiability can
indeed be very competitive with heuristic state-space planners. Also, none of the three
planners dominate any other, and the strengths of the planners are in different types of
problems.

7. CONCLUSIONS

We have given translations of semantics for parallel planning into SAT and shown that one
of them, for3-step semantics, is very efficient, often one or two orders of magnitude faster
than previous encodings. This semantics is superior because with our encoding the number
of time steps and parallelism constraints is small. Interestingly, the process semantics, a
refinement of the standard-step semantics that imposes a further condition on plans,
typically did not improve planning efficiency in our tests.

The 3-step encoding combined with the novel strategies for finding satisfiable formu-
lae that correspond to plans sometimes leads to substantial improvements in efficiency of
planning as satisfiability, and also demonstrate that the approach is for many problems
competitive with the fastest planners that are based on heuristic state-space search.

Acknowledgments

We thank Lawrence Ryan for his assistance with Siege.

Keijo Heljanko gratefully acknowledges the financial support of the Academy of Fin-
land (projects 53695, 205431, 206287, 207074, 211025, 213397 and academy research
fellow position), FET project ADVANCE contract No IST-1999-29082, and EPSRC grant
93346/01. llkka Niemél gratefully acknowledges the financial support of the Academy of
Finland (projects 53695 and 211025).

58

Jussi Rintanen’s research at the Albert-Ludwigs-Univatdireiburg was partly sup-
ported by DFG grant RI 1177/2-1 and partly by the National ICT Australia (NICTA) in
the framework of the SuperCom project. NICTA is funded through the Australian Gov-
ernment'sBacking Australia’s Abilityinitiative, in part through the Australian National
Research Council.

References

BEST, E. AND DEVILLERS, R. 1987. Sequential and concurrent behavior in Petri net th&heporetical
Computer Science 58, 87-136.

BIERE, A., CIMATTI, A., CLARKE, E. M., AND ZHuU, Y. 1999. Symbolic model checking without
BDDs. In Tools and Algorithms for the Construction and Analysis of Systems, Proceedings of 5th Inter-
national Conference, TACAS'9W. R. Cleaveland, EdLecture Notes in Computer Scienegl. 1579
(1999). Springer-Verlag, 193-207.

BLuM, A. L. AND FURST, M. L. 1997. Fast planning through planning graph analysitficial Intelli-
gence 901-2, 281-300.

BONET, B. AND GEFFNER H. 2001. Planning as heuristic seargntificial Intelligence 1291-2, 5-33.

BYLANDER, T. 1996. A probabilistic analysis of propositional STRIPS planniAgificial Intelli-
gence 811-2, 241-271.

CAYROL, M., REGNIER, P.,AND VIDAL, V. 2001. Least commitment in Graphplartificial Intelli-
gence 1301, 85-118.

CIMATTI, A. 2003. personal communication.

DIEKERT, V. AND METIVIER, Y. 1997. Partial commutation and traces.Handbook of Formal Lan-
guagesG. Rozenberg and A. Salomaa, Eds., vol. 3, 457-534. Springer-Verlag.

DimopPouLOS, Y., NEBEL, B., AND KOEHLER, J. 1997. Encoding planning problems in nonmonotonic
logic programs. IrRecent Advances in Al Planning. Fourth European Conference on Planning (ECP’97)
S. Steel and R. Alami, Eds., Lecture Notes in Computer Science no. 1348 (1997). Springer-Verlag, 169—
181.

Do, M. B. AND KAMBHAMPATI, S. 2001. Planning as constraint satisfaction: Solving the planning
graph by compiling it into CSFArtificial Intelligence 1322, 151-182.

EEN, N. AND SORENSSON N. 2003. Temporal induction by incremental SAT solviidectronic Notes
in Theoretical Computer Science,88 543-560.

EFRON, B. AND TIBSHIRANI, R. 1986. Bootstrap methods for standard errors, confidence intervals, and
other measures of statistical accuregtatistical Science, 54—-75.

EFRON, B. AND TIBSHIRANI, R. 1993. An Introduction to the BootstrafChapman and Hall, New York.

ERNST, M., MILLSTEIN, T., AND WELD, D. S. 1997. Automatic SAT-compilation of planning prob-
lems. InProceedings of the 15th International Joint Conference on Artificial IntelligeMcé@ollack, Ed.
(1997). Morgan Kaufmann Publishers, 1169-1176.

GHALLAB, M., Howg, A., KNOBLOCK, C., MCDERMOTT, D., Ram, A., VELOSO, M., WELD, D.,

AND WILKINS, D. 1998. PDDL - the Planning Domain Definition Language, version 1.2. Technical
Report CVC TR-98-003/DCS TR-1165 (Oct.), Yale Center for Computational Vision and Control, Yale
University.

GOMES, C. P., $LMAN, B., CRATO, N., AND KAUTZ, H. 2000. Heavy-tailed phenomena in satisfia-
bility and constraint satisfaction problendaurnal of Automated Reasoning,24-2, 67—100.

HELJANKO, K. 2001. Bounded reachability checking with process semantidadeceedings of the 12th
International Conference on Concurrency Theory (Concur'20Q&rcture Notes in Computer Science
vol. 2154 (2001). Springer-Verlag, 218-232.

HELJANKO, K., JUNTTILA, T. A., AND LATVALA, T. 2005. Incremental and complete bounded model
checking for full PLTL. InComputer Aided Verification, 17th International Conference, CAV 2005, Edin-
burgh, Scotland, UK, July 6-10, 2005, Proceedirgscture Notes in Computer Scienad. 3576 (2005).
Springer-Verlag, 98-111.

HOFFMANN, J.AND NEBEL, B. 2001. The FF planning system: Fast plan generation through heuristic
searchJournal of Artificial Intelligence Research 1253-302.

KAUTZ, H. AND SELMAN, B. 1992. Planning as satisfiability. Frroceedings of the 10th European
Conference on Artificial Intelligen¢®. Neumann, Ed. (1992). John Wiley & Sons, 359-363.

59

KAUTZ, H. AND SELMAN, B. 1996. Pushing the envelope: planning, propositional logic, and stochastic
search. IrProceedings of the 13th National Conference on Atrtificial Intelligence and the 8th Innovative
Applications of Artificial Intelligence Conferen¢aug. 1996). AAAI Press, 1194-1201.

KAUTZ, H. AND SELMAN, B. 1999. Unifying SAT-based and graph-based planningrbteedings of
the 16th International Joint Conference on Atrtificial Intelligen€eDean, Ed. (1999). Morgan Kaufmann
Publishers, 318-325.

KAUTZ, H. AND WALSER, J. 1999. State-space planning by integer optimizatioRréceedings of the
16th National Conference on Atrtificial Intelligence (AAAI-99) and the 11th Conference on Innovative
Applications of Artificial Intelligence (IAAI-99)1999). AAAI Press, 526-533.

KHOMENKO, A., VICTOR AN KONDRATYEV, KOUTNY, M., AND VOGLER, W. 2005a. Merged pro-
cesses - a new condensed representation of Petri net behaviour. Technical report CS-TR 884 (Jan.), School
of Computing Science, University of Newcastle upon Tyne.

KHOMENKO, A., VICTOR AN KONDRATYEV, KOUTNY, M., AND VOGLER, W. 2005b. Merged pro-
cesses - a new condensed representation of Petri net behaviB@NGUR 2005 - Concurrency Theory,
16th International Conference, CONCUR 2005, San Francisco, CA, USA, August 23-26, 2005, Proceed-
ings M. Abadi and L. de Alfaro, EdsLecture Notes in Computer Scienaal. 3653 (2005). Springer-
Verlag, 338—-352.

LuBY, M. AND ERTEL, R. 1994. Optimal parallelization of Las Vegas algorithmsPtaceedings of the
Annual Symposium on the Theoretical Aspects of Computer Science (STACS%Y) Springer-Verlag,
463-474.

McMILLAN, K. L. 2003. Interpolation and SAT-based model checkingdoceedings of the 15th Inter-
national Conference on Computer Aided Verification (CAV 20@B)A. Hunt Jr. and F. Somenzi, Eds.,
Lecture Notes in Computer Science no. 2725 (2003). 1-13.

MNEIMNEH, M. AND SAKALLAH, K. 2003. Computing vertex eccentricity in exponentially large
graphs: QBF formulation and solution. 8AT 2003 - Theory and Applications of Satisfiability Testing
E. Giunchiglia and A. Tacchella, Eds., Lecture Notes in Computer Science no. 2919 (2003). 411-425.

NABESHIMA, H., INVANUMA, K., AND INOUE, K. 2002. Effective SAT planning by speculative com-
putation. InAl 2002: Advances in Artificial Intelligence: 15th Australian Joint Conference on Artificial
Intelligence, Canberra, Australia, December 2-6, 2002. ProceediRg$. McKay and J. Slaney, Eds.,
Lecture Notes in Computer Science no. 2557 (2002). Springer-Verlag, 726—727.

OGATA, S., TSUCHIYA, T., AND KIKUNO, T. 2004. SAT-based verification of safe Petri netsAln
tomated Technology for Verification and Analysis: Second Internation Conference, ATVA 2004, Taipei,
Taiwan, ROC, October 31-November 3, 2004. ProceediRg8vang, Ed., Lecture Notes in Computer
Science no. 3299 (2004). Springer-Verlag, 79-92.

RINTANEN, J. 1998. A planning algorithm not based on directional searcRrilrciples of Knowledge
Representation and Reasoning: Proceedings of the Sixth International Conference (K& 88LTohn,

L. K. Schubert, and S. C. Shapiro, Eds. (June 1998). Morgan Kaufmann Publishers, 617-624.

RINTANEN, J. 2004a. Evaluation strategies for planning as satisfiabilitfe @Al 2004: Proceedings
of the 16th European Conference on Artificial IntelligenBe Lopez de Mintaras and L. Saitta, Eds.,
Frontiers in Atrtificial Intelligence and Applicationsol. 110 (2004). I0OS Press, 682—687.

RINTANEN, J. 2004b. Phase transitions in classical planning: an experimental studlyintiiples of
Knowledge Representation and Reasoning: Proceedings of the Ninth International Conference (KR
2004) D. Dubois, C. A. Welty, and M.-A. Williams, Eds. (2004). AAAI Press, 710-719.

RINTANEN, J. 2005. State-space traversal techniques for planning. Report 220, Albert-Ludwigs-
Universi@at Freiburg, Institutiir Informatik.

RINTANEN, J., HELJANKO, K., AND NIEMELA, |I. 2004. Parallel encodings of classical planning as sat-
isfiability. In Logics in Artificial Intelligence: 9th European Conference, JELIA 2004, Lisbon, Portugal,
September 27-30, 2004. Proceedings). Alferes and J. Leite, Eds., Lecture Notes in Computer Science
no. 3229 (2004). Springer-Verlag, 307-319.

SHEERAN, M., SINGH, S.,AND STALMARCK, G. 2000. Checking safety properties using induction and
a SAT-solver. InFormal Methods in Computer-Aided Design, Third International Conference, FMCAD
2000, Austin, Texas, USA, November 1-3, 2000, Proceedmigs. Hunt and S. D. Johnson, Edsecture
Notes in Computer Sciengel. 1954 (2000). Springer-Verlag, 108-125.

VAN BEEK, P.AND CHEN, X. 1999. CPlan: A constraint programming approach to planningrin
ceedings of the 16th National Conference on Atrtificial Intelligence (AAAI-99) and the 11th Conference
on Innovative Applications of Artificial Intelligence (IAAI-99)999). AAAI Press, 585-590.

60

WOLFMAN, S. A.AND WELD, D. S. 1999. The LPSAT engine & its application to resource planning.
In Proceedings of the 16th International Joint Conference on Artificial IntelligemcBean, Ed., vol. |
(1999). Morgan Kaufmann Publishers, 310-315.

ZARPAS, E. 2004. Simple yet efficient improvements of SAT based bounded model checkiagnial
Methods in Computer-Aided Design: 5th International Confrence, FMCAD 2004, Austin, Texas, USA,
November 15-17, 2004. ProceedingsJ. Hu and A. K. Martin, Eds., Lecture Notes in Computer Science
no. 3312 (2004). Springer-Verlag, 174-185.

APPENDIX

instance len val 3-step process V-step V-stepl.

gripper-2 5 H 0.01 9%

gripper-2 6 T| 0.01 J:91

gripper-2 10 H 0.14 512 0.08 955 0.12 i3

gripper-2 11 | 0.04 $:9% 0.02 5:9% 0.05 53¢

gripper-3 7 H 0.23 3%

gripper-3 8 T 0.17 918

gripper-3 14 H 9.39,54 3.91 338 884 ;53

gripper-3 15 | 1.72 33% 0.32 332 0.69 938

gripper-4 9 H12.871:%

gripper-4 10 T 0.85 ¢:79

gripper-4 16 H - - -

gripper-4 17 7 - - -

gripper-4 18 7 - - -

gripper-4 19 T - - -
Table X. Runtimes of Gripper problems

instance len val 3-step process V-step v-step I.

satel-14 4 H 9.43 5%

satel-14 5 T 1.79 15

satel-14 7 H 38.2035:13 29.593%17 30.95335°

satel-14 8 T 6.20 35 438 195 582 33

satel-15 4 F10.44 93¢

satel-15 5 T 1.60 132

satel-15 7 H 33.0432:92 26.583>32 28.11257%2

satel-15 8 T 7.53 T4 4.83 258 6.23 382

satel-16 3 F 1.73 153

satel-16 4 T 3.36 3¢

satel-16 5 H 20.3415:58 8.80 519 20.093%%:

satel-16 6 ? - - -

satel-16 7 | 8.87 521 7.88 142 7.81 I35

satel-17 3 F 0.28 52

satel-17 4 T 2.85 255

satel-17 5 H 2.74 255 1.45 133 172 158

satel-17 6 | 3.46 322 222 %210 253 %3

satel-18 4 F 0.07 997

satel-18 5 T 0.22 5%

satel-18 7 H 0.60 537 0.30 329 0.54 232

satel-18 8 | 1.18 %% 054 3% 0.86 95

Table XI. Runtimes of Satellite problems

61

instance len val 3-step process V-step V-step I.
block-12-1 33 K 0.06 95: 0.17 o915 0.06 5:9¢ 0.16 51
block-12-1 34 T 0.05 3% 0.36 932 0.05 592 0.19 §28
block-14-1 35 R 0.34 932 1.45 135 0.35 932 1.01 998
block-14-1 36 T 0.14 312 1.18 13 0.2 §if 050 §i
block-16-1 53 R 0.67 9% 3.82 355 0.65 9% 1.77 152
block-16-1 54 T 0.35 332 495 25 0.38 538 1.86 139
block-18-0 57 R 1.91 i5; 1520432 229 222 656 03
block-18-0 58 T 0.94 957 8.04 7 1.07 9% 3.42 313
block-20-0 59 R 2.49 337 834 58 257 333 5.37 20
block-20-0 60 T 1.86 73 9.55 922 1.80 i1z 4.93 %58
block-22-0 71 HR38.15353%2 - 38.4935:28 51.64355%
block-22-0 72 T 14.3412:55 - 14.3212:9% 26.722353
Table XII. Runtimes of Blocks World problems

instance len val dI-step process V-step v-step I.
driver-2-3-6b 4 HO0.01 §q;

driver-2-3-6b 5 T 0.01 90}

driver-2-3-6b 6 H 0.04 395 0.01 53f 0.02 352
driver-2-3-6b 7 T 0.09 §3 0.03 352 0.04 53¢
driver-2-3-6c 6 HO0.01 J:3!

driver-2-3-6¢c 7 T 0.01 301

driver-2-3-6c 8 F 0.03 993 0.03 §95 0.03 §:0%
driver-2-3-6c 9 T 0.24 932 0.0 599 0.14 933
driver-2-3-6d 12 FO0.44 {12

driver-2-3-6d 13 T0.63 &

driver-2-3-6d 15 H 34.1432% 19.093550 26.273737
driver-2-3-6d 16 T 1779153 8.04 52 9.59,900
driver-2-3-6e 7 FO0.01 5%

driver-2-3-6e 8 T 0.04 394

driver-2-3-6e 11 F 2.14 391 113 ;9% 155 1]
driver-2-3-6e 12 T 254 22 127 112 125 19
driver-3-3-6b 8 HO0.16 513

driver-3-3-6b 9 T1/0.08 3:97

driver-3-3-6b 10 F 215 137 0.82 Jir 1.40 1321
driver-3-3-6b 11 T 3.26 375 1.07 932 143 1%
driver-4-4-8 8 HFO0.14 313

driver-4-4-8 9 T/0.15 51

driver-4-4-8 10 H 468 s 1.30 135 2.84 5%
driver-4-4-8 11 T 23.69355 592 g 13.081i3¢

Table XIll. Runtimes of DriverLog problems

62

instance len val d-step process V-step V-step I
sched-10-0 6 F 0.01 9§; 0.01 95: 0.01 95: 0.01 351
sched-10-0 7 T 0.01 38 0.07 99 0.01 9% 0.01 §91
sched-15-0 8 F 8.74,5% 1457132 3.44 235 1152132
sched-15-0 9 T 0.16 %32 0.23 932 0.14 318 0.36 537
sched-20-0 8 F 1.11 1% 1.42 137 0.46 33 1.30 {2
sched-20-0 9 T 0.14 %15 0.24 32: 0.19 935 0.10 599
sched-25-0 8 | 7.85 $87 15.47135% 2.14 15¢ 853 i:if
sched-25-0 9 T 0.29 %3¢ 068 935 0.19 333 0.69 538
sched-30-0 10 F - - 8.12,5%3 -
sched-30-0 11 T 1.05 978 263 22 1.07 %5 0.90 95
sched-35-0 10 F26.22237% 34.3532:5% 10.26,5:%2 30.092%33
sched-35-0 13 T 3.43 35 353 38 3.86 3s 3.14 332
Table XIV. Runtimes of Schedule problems

instance len val 3-step process V-step V-step I.
zeno-3-7b 3 F 0.01 §o;

zeno-3-7b 4 T 0.01 591

zeno-3-7b 5 F 0.10 519 0.02 $92 0.05 395
zeno-3-7b 6 T 0.11 519 0.02 §93 0.06 358
zeno-3-8 3 F 0.01 91

zeno-3-8 4 T 0.01 351

zeno-3-8 5 H 0.08 955 0.02 905 0.05 §:¢2
zeno-3-8 6 T 0.49 9% 0.06 908 0.30 §3%
zeno-3-8b 3 F 0.01 591

zeno-3-8b 4 T 0.02 953

zeno-3-8b 5 F 0.17 1% 0.03 595 0.11 313
zeno-3-8b 6 T 054 347 0.16 918 0.31 3%
zeno-3-10 4 F 0.05 592

zeno-3-10 5 T 0.02 552

zeno-3-10 6 K 1.77 15 051 229 1.17 13
zeno-3-10 7 T 2.68 352 076 5% 1.79 357
zeno-5-10 3 F 0.10 §id

zeno-5-10 4 T 0.23 532

zeno-5-10 5 F 2.23 233 1.03 193 1.47 b4
zeno-5-10 6 T 9.34 578 3.17 312 6.53 $58
zeno-5-15 5 K -

zeno-5-15 6 T21.3432:%

zeno-5-15 5 F 3.52 330 176 I3 232 %8
zeno-5-15 6 7 - - —
zeno-5-15 7 T - 39.3435:5% -

Table XV. Runtimes of ZenoTravel problems

63

instance len val 3-step process V-step V-stepl.
depot-13-5646 7 F0.01 93!

depot-13-5646 8 T0.01 g1

depot-13-5646 8 F 0.02 593 0.01 997 0.01 §o:
depot-13-5646 9 T 0.27 935 0.04 $3: 0.08 2838
depot-14-7654 9 F0.05 J'3

depot-14-7654 10 T0.10 997

depot-14-7654 11 F 3.07 395 1.41 133 2.17 395
depot-14-7654 12 T 8.18 133 3.48 312 4.26 i3%
depot-16-4398 7 F0.01 §:91

depot-16-4398 8 T0.01 591

depot-16-4398 7 F 0.03 593 0.01 §91 0.02 253
depot-16-4398 8 T 0.43 34 0.07 598 0.12 §13
depot-17-6587 5 F0.01 93!

depot-17-6587 6 T0.01 §:91

depot-17-6587 6 F 0.24 ¢35 0.02 go3 0.13 §ii
depot-17-6587 7 T 0.69 955 0.03 393 0.27 933
depot-18-1916 11 F0.29 935

depot-18-1916 12 T15.80 .23

depot-18-1916 11 F 1.12 1% 0.17 21§ 051 038
depot-18-1916 12 T - - -

Table XVI. Runtimes of Depot problems

instance len val 3-step process V-step V-stepl.
freecell2-4 4 R 0.01 357 0.01 9% 0.01 §5¢ 0.01 391
freecell2-4 5 T 0.01 §§; 0.02 {93 0.01 §0; 0.01 931
freecell3-4 7 R 0.45 532 077 3i1 025 932 053 929
freecell3-4 8 T 0.13 {45 0.25 932 0.18 §if 0.11 239
freecell4-4 6 H 0.01 391 0.01 551 0.01 3951 0.01 391
freecelld-4 7 T 0.05 3% 0.12 31 0.02 992 0.08 993
freecell5-4 12 F13.601335; 17.3415%1 6.75 537 9.19 522
freecell5-4 13 T159.573%¢s 63.783735 35.70335: 53.5940 17

Table XVII.

Runtimes of FreeCell problems

64

