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Abstract. Landmarks for a planning problem are subgoals that are
necessarily made true at some point in the execution of any plan.
Since verifying that a fact is a landmark is PSPACE-complete, earlier
approaches have focused on finding landmarks for the delete relax-
ation Π+. Furthermore, some of these approaches have approximated
this set of landmarks, although it has been shown that the complete
set of causal delete-relaxation landmarks can be identified in poly-
nomial time by a simple procedure over the relaxed planning graph.
Here, we give a declarative characterisation of this set of landmarks
and show that the procedure computes the landmarks described by
our characterisation. Building on this, we observe that the procedure
can be applied to any delete-relaxation problem and take advantage
of a recent compilation of the m-relaxation of a problem into a prob-
lem with no delete effects to extract landmarks that take into account
delete effects in the original problem. We demonstrate that this ap-
proach finds strictly more causal landmarks than previous approaches
and discuss the relationship between increased computational effort
and experimental performance, using these landmarks in a recently
proposed admissible landmark-counting heuristic.

1 INTRODUCTION

Landmarks in the context of planning are propositions, or more gen-
erally formulas over propositions, that are necessarily made true in
some state during the execution of any plan. Landmark-based ap-
proaches to planning have recently enjoyed great success, with the
winner of the most recent International Planning Competition (IPC6)
employing a landmark-counting heuristic [11].

Planning techniques based on landmarks can be characterised in
terms of two orthogonal properties: landmark utilisation, the meth-
ods used to take advantage of the knowledge that a given formula
is a landmark, and landmark generation, the methods used to gener-
ate the set of landmarks. Earlier approaches to landmark utilisation
focused on using landmark information to provide a control loop,
feeding to a classical planner the next landmark to be achieved in a
given order as an intermediate goal [5]. More recent techniques have
used landmarks to generate heuristic functions for planning prob-
lems. In the satisficing setting this has taken the form of landmark-
counting heuristics that count the number of landmarks that remain
to be achieved or need to be reachieved [10]. In the optimal setting,
two recent state-of-the-art admissible heuristics take advantage of
landmark information. One of these is a cost-partitioning approach
in which the minimal cost of achieving each landmark is summed
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over the set of landmarks of the problem [6]. This heuristic is com-
plemented with an improved version of the optimal search algorithm
A∗, LM-A∗, which checks whether the landmarks achieved along
some path to a given state are necessarily achieved along all paths
to that state, and uses this information to boost the set of landmarks
that remain to be achieved and thus the heuristic estimate for the
state, while maintaining admissibility. The second heuristic uses the
delete-relaxation landmarks of a problem to closely approximate its
optimal delete-relaxation cost [4].

The principal contribution of this paper is in the area of landmark
generation. Since checking whether a given fact is a landmark for
a problem is PSPACE-complete, approaches to landmark generation
have generally concentrated on finding landmarks for the delete re-
laxation Π+ of the planning problem, and provided no guarantees
on the completeness of the set of landmarks that is found [5, 10].
However, one method has been proposed that guarantees complete-
ness according to the well-defined criterion of causality [12]. Here,
we give a set of equations whose solution describes the landmarks
computed by this method, and show that the equations can be ap-
plied to the Πm compilation of a planning problem [2] to obtain, for
the first time, both conjunctive landmarks and landmarks beyond the
delete relaxation. The method used is polynomial in the size of the
compiled problem, which grows exponentially in m. Furthermore,
for sufficiently largem the landmarks computed are the complete set
of causal landmarks for Π.

2 PRELIMINARIES

STRIPS planning. We use the propositional STRIPS formalism
augmented with non-negative actions costs (e. g., [7]).

Definition 1 (planning task)
A planning task is a 4-tuple Π = 〈F,A, I,G〉, where

• F is a finite set of propositional state variables,
• A is a finite set of actions, each with associated preconditions

pre(a) ⊆ F , add effects add(a) ⊆ F , delete effects del(a) ⊆ F
and cost cost(a) ∈ R+

0 ,
• I ⊆ F is the initial state, and
• G ⊆ F is the set of goals.

State variables of planning tasks are also called propositions or
facts. A state in our formalism is a subset of facts, representing the
propositions which are currently true. States can alternatively be de-
fined as assignments to state variables, but set notation is more conve-
nient for the purposes of this paper. Applying an action a in s results
in state (s \ del(a))∪ add(a), which we denote as s[a]. The notation
is only defined if a is applicable in s, i. e., if pre(a) ⊆ s.

Applying an action sequence a1, . . . , an to a state is defined in-
ductively as s[ε] := s and s[a1, . . . , ai+1] := (s[a1, . . . , ai])[ai+1].



A plan for a state s (s-plan, or plan when s is clear from con-
text) is an action sequence π such that s[π] is defined and satisfies
all goals (i. e., G ⊆ s[π]). The cost of plan π = a1, . . . , an is
cost(π) :=

Pn
i=1 cost(ai). The objective of optimal planning is to

find an I-plan of minimal cost (called an optimal I-plan) or prove
that no plan exists.

Landmarks. A landmark is a logical formula L (possibly consist-
ing of a single fact) over the set F such that for any I-plan a1, . . . , an

there exists a prefix a1, . . . , ai such that s[a1, . . . , ai] |= L. An ac-
tion landmark is an action a such that a ∈ π for any I-plan π. Given
two landmarksL1 andL2, there is a natural orderingL1 ≺n L2 if for
any I-plan a1, . . . , an, s[a1, . . . , aj ] |= L2 implies that there exists
i < j such that s[a1, . . . , ai] |= L1. There is a greedy-necessary or-
dering L1 ≺gn L2 if for any I-plan a1, . . . , an, s[a1, . . . , aj ] |= L2

and s[a1, . . . , ai] 6|= L2 for all i < j implies s[a1, . . . , aj−1] |= L1.

3 DELETE RELAXATION LANDMARKS
Given a planning task Π = 〈F,A, I,G〉, the delete relaxation Π+ =
〈F,A+, I, G〉 is obtained by removing from each action its set of
delete effects. Formally, the modified action setA+ of Π+ is given by
A+ = {a+ | a ∈ A}, where pre(a+) = pre(a), add(a+) = add(a),
del(a+) = ∅ and cost(a+) = cost(a).

The delete relaxation is a fundamental structure in recent ap-
proaches to planning, its main use being the extraction of a relaxed
plan whose cost can be used as a heuristic for the original problem.
The attraction of the delete relaxation stems from the fact that while
finding the optimal relaxed plan is NP-hard, finding some plan is in
P, and many good approximate approaches have been proposed. One
tool used to perform various computations on the Π+ problem is the
relaxed planning graph (RPG), which represents facts and actions
in alternating layers. The first layer of an RPG consists of the initial
set of facts I , while subsequent layers are constructed based on two
rules: an action a appears in layer i if all facts f ∈ pre(a) are present
in layer i − 1, and a fact f appears in layer j if f is also present in
layer j − 2 (via a no-op action) or if f ∈ add(a) for some a in layer
j − 1. These rules are applied until no new facts can be added.

In addition to the computation of heuristics, the RPG representa-
tion of the delete relaxation has also been widely used for the ex-
traction of landmarks. Most work has focused on methods based on
backchaining, beginning with a fact g known to be a landmark (e. g. a
goal of the problem) and discovering further landmarks by analysing
the actions Ag at the previous level that add g. One approach is to
take the intersection

T
a∈Ag

pre(a) of all precondition sets of actions
inAg , since if all actions adding g require f as a precondition, then f
is also a landmark [5]. Since this method typically does not find many
landmarks, the algorithm can be enhanced with a lookahead proce-
dure which works as follows: first, a temporary disjunctive landmark
is built by selecting, from each action in Ag , one of its preconditions
and creating a disjunction over these facts. Since one of the actions
in Ag must be applied, one of the facts in this disjunction will have
to be made true. Next, the approach checks all actions that add any of
the facts in the disjunction. If these actions share a precondition f ′,
then f ′ is a landmark. Alternatively, the algorithm can simply be ex-
tended to handle disjunctive landmarks directly, rather than only as
temporaries [10]. However, these techniques have their drawbacks.
For any n-step lookahead procedure a problem can be designed such
that a landmark appears n + 1 steps before the known landmark we
are backchaining from, while if disjunctive landmarks are admitted,
an arbitrary upper limit on the size of disjunctions or some other re-
striction must be specified in order to avoid encoding all possible

plans for the problem in the form of disjunctions.
However, there exists a simple algorithm due to Zhu & Givan [12]

that, rather than applying a backchaining criterion recursively, com-
putes landmarks via forward propagation in the RPG. This algorithm
is sound and complete according to the simple and intuitive criterion
of causality, which excludes “incidentally” achieved facts that are
added by some action in the plan, but not necessarily used as precon-
ditions by some other action:

Definition 2 (Causal Landmarks)
A fact f is a causal (fact) landmark for a problem Π if it is a goal of
Π or if for all valid plans π for Π, f ∈ pre(a) for some a ∈ π.

The algorithm works by associating with each action or fact node
at every level of the RPG a label consisting of the set of facts that
must be made true in order to reach it. In the first level of the RPG,
each initial state fact is associated with a label containing only itself.
The labels of the nodes appearing at following levels are obtained by
combining the labels of the nodes in previous layers in two different
ways:

• The label for an action node a at level i is the union of the labels
of all its preconditions at level i− 1.

• The label for a fact node f at level i is the intersection of the labels
of all action nodes adding it at level i−1 (possibly including no-op
actions), plus the fact itself.

Intuitively, these rules state that for a fact f to be a landmark for an
action a, it is sufficient that f be a landmark for some precondition of
a, and that for a fact f to be a landmark for another fact f ′ at a given
level, either f = f ′ or f must be a landmark for all action nodes that
can achieve f ′ at that level.

Given these propagation rules, the label associated with a fact or
action node at any level i is a superset of the set of causal landmarks
for this fact or action in Π+. If the RPG construction continues until
a fixpoint is reached, i. e. until no further changes occur in the node
labels from layer to layer, the landmarks for the goal nodes in the last
layer are exactly the causal landmarks for Π+ [12].

4 AND/OR LANDMARKS
In order to give a more general declarative characterisation of the
landmarks computed above, we first discuss AND/OR graphs and
how the delete relaxation can be understood as an instance of this
type of graph. For a fuller treatment of the subject, see the paper by
Mirkis and Domshlak [9].

An AND/OR graph G = 〈VI, Vand, Vor, E〉 is a directed graph with
vertices V := VI∪Vand∪Vor and edgesE, where VI, Vand and Vor are
disjoint sets called initial nodes, AND nodes and OR nodes, respec-
tively. A subgraph J = 〈V J , EJ〉 of G is said to justify VG ⊆ V if
and only if the following are true of J :

1. VG ⊆ V J

2. ∀a ∈ V J ∩ Vand : ∀〈v, a〉 ∈ E : v ∈ V J ∧ 〈v, a〉 ∈ EJ

3. ∀o ∈ V J ∩ Vor : ∃〈v, o〉 ∈ E : v ∈ V J ∧ 〈v, o〉 ∈ EJ

4. J is acyclic.

Intuitively, J is a justification for VG if J contains a “proof” that
all nodes in VG are “true” under the assumption that all nodes in VI

are true. The set V J represents the nodes that are proven to be true by
J , and the edges EJ represent the arguments for why they are true.
The four conditions then state that (1) all nodes in VG must be proven



true, (2) AND nodes are proven true if all their predecessors are true,
(3) OR nodes are proven true if they have some true predecessor, and
(4) the proof must be well-founded.

The delete relaxation can be understood as specifying an AND/OR
graph in which the facts in the initial state constitute the initial nodes,
other facts constitute OR nodes, and actions constitute AND nodes
[9]. Edges then correspond to the relations between the facts and
actions described by the preconditions and add effects of each action,
with a directed edge from an AND node a to an OR node f when
f ∈ add(a), and from f to a when f ∈ pre(a). Relaxed plans are
then justifications for the goal set. This graph differs from the RPG
used to compute landmarks or heuristics in that it only contains a
single copy of each fact and action. RPGs correspond to unrolled
versions of these graphs in which a copy of a node appears in every
level of the graph after the first level in which it appears.

Many problems related to the delete relaxation can be understood
as computations on this graph. For example, the h+ heuristic is the
cost of the lowest-cost justification J for the goal set G, where the
cost of J is defined as the sum of the costs of the actions corre-
sponding to the AND nodes it contains, and the hmax heuristic [1] is
the minimum, over all justifications J for G, of the cost of the most
costly path 〈f1, a1, f2, . . . , an−1, fn〉 in J , where f1 ∈ VI, fi ∈ Vor

for i 6= 1, fn ∈ G, and ai ∈ Vand, and where the cost of a path is
defined as above.

Definition 3 (AND/OR landmarks)
Given an AND/OR graph G = 〈VI, Vand, Vor, E〉, a node n is a land-
mark for VG ⊆ VI ∪ Vand ∪ Vor if n ∈ V J for all justifications J for
VG.

Intuitively, the landmarks for a set VG in an AND/OR graph can
be computed by considering the intersection of the vertex sets of all
justifications for VG, yet as the number of possible justifications is
exponential, this method is intractable. However, the landmarks for
VG can also be characterised by the following system of equations:

LM(VG) =
[

v∈VG

LM(v)

LM(v) = {v} if v ∈ VI

LM(v) = {v} ∪
\

u∈pred(v)

LM(u) if v ∈ Vor

LM(v) = {v} ∪
[

u∈pred(v)

LM(u) if v ∈ Vand

where pred(v) = {u | 〈u, v〉 ∈ E}.

Theorem 1 For any AND/OR graph G, the system of equations
LM(·) has a unique maximal solution, where maximal is defined with
regard to set inclusion, and this solution satisfies

u ∈ LM(v) ⇐⇒ u is a landmark for {v} in G.

Moreover, for any node set VG, LM(VG) is the set of landmarks for
VG in G.

Proof sketch: Let LMc(v) denote the complete set of landmarks
for v. A solution to the system of equations exists, as it is satis-
fied by setting LM(v) = LMc(v) for all v. To show that LMc is the
unique maximal solution, we show that all solutions to LM(·) satisfy
u ∈ LM(v) ⇒ u ∈ LMc(v). Define a counterexample X as a tuple
〈u, v, J〉 such that J is a justification for {v}, u ∈ LM(v), u /∈ J .

Assume a counterexample exists and choose one where |X| := |V J |
is minimal. Whether v ∈ Vand or v ∈ Vor, it is possible to con-
struct from this counterexample X a counterexample X ′ such that
|X ′| < |X|, contradicting the minimality of |X|. Hence, no coun-
terexample exists. This shows that u must be contained in all justifi-
cations for {v}, which implies u ∈ LMc(v).

The unique maximal solution to the LM(·) equations can be found
in polynomial time by algorithms such as value iteration or the
Bellman-Ford procedure, in the same way that these algorithms can
be adapted to compute the additive heuristic hadd [8]. One way to
compute the solution is to perform a fixpoint computation in which
the set of landmarks for each vertex except those in VI is initialized
to the set of all of the vertices of the graph G and then iteratively
updated by interpreting the equations as update rules. If the updates
are performed according to the order in which nodes are generated in
the relaxed planning graph (i. e., all nodes in the first layer, then all
nodes in the second layer, etc.), then we obtain exactly the RPG label
propagation algorithm by Zhu & Givan [12], computing action land-
marks as well as causal fact landmarks. If only fact landmarks are
sought, the equation for AND nodes can be modified to not include
{v} in LM(v).

Orderings. Orderings for AND/OR landmarks can be defined
analogously to orderings for planning landmarks, and they can be
easily inferred from the LM sets. In particular, if u and v are two
landmarks, we obtain a natural order u ≺n v whenever u ∈ LM(v).

For AND/OR graphs that represent delete relaxations, greedy-
necessary orderings can also be computed with a slight extension.
Let the set of first achievers for an OR node (fact) be defined as
FA(f) := {a | a ∈ pred(f) ∧ f /∈ LM(a)}. We can then infer
f ≺gn f ′ whenever f ∈ pred(a) for all a ∈ FA(f ′). Intuitively,
this rule states that f is ordered greedy-necessarily before f ′ if f is a
precondition for all actions that can possibly achieve f ′ for the first
time. These orderings can be discovered during the computation of
the landmarks and do not require any additional post-processing step.

5 LANDMARKS FROM THE Πm PROBLEM

One method for estimating the cost of the delete relaxation is the
previously mentioned hmax heuristic, which recursively estimates the
cost of a set of facts as the cost of the most expensive fact in the set
[1]. The hmax heuristic turns out to be a member of a more general
formulation, the parameterised hm family of heuristics which recur-
sively estimate the cost of a set of facts G as the cost of the most
expensive subset of G with size at most m [3]. For m > 1, this
heuristic takes into account delete information in the problem, as a
fact cannot be achieved in the context of a set to which it belongs
with an action that deletes some other fact in the set.

It was recently shown that the hm cost of a problem Π can be
computed as the h1 cost of a problem Πm that results from a trans-
formation of Π [2]. The facts of the new problem Πm represent sets
of facts of size m or less in the original problem. Its actions are ob-
tained by making explicit in the precondition and add effects of the
original actions those facts which, while not required or added by an
action, may occur in the state in which the action is applied and per-
sist after the application of the action, allowing them to be achieved
in conjunction with the effects of the action. This is done by creating
for each action a in Π a set of actions in the new problem, each hav-
ing as a precondition in addition to the precondition of a itself, a set
of facts C of size at most m− 1 such that C is disjoint from add(a)



and del(a). For a set C and action a, the action aC is then given by:

pre(aC) = {S | S ⊆ (pre(a) ∪ C) ∧ |S| ≤ m}
add(aC) = {S | S ⊆ (add(a) ∪ C) ∧ |S| ≤ m}
del(aC) = ∅

Πm is a problem with no delete effects that nevertheless encodes
in its facts and actions some of the information about delete ef-
fects specified in the original problem. Any procedure applicable to
a delete relaxation problem Π+ can also be applied to Πm to obtain
information that can be translated back into the facts and actions of
the original problem and used in that setting. In particular, the solu-
tion to the set of equations given above when the input is the Πm

problem defines conjunctive landmarks of size m or less that take
into account delete information in the original problem Π.

Just as the hm family of heuristics approaches optimality as m
goes to infinity [3], it can be shown that the set of landmarks com-
puted by the above procedure for Πm will approach the complete and
sound set of causal landmarks for the original problem Π. Yet since
the complexity of computing Πm and its size grow exponentially in
m, this is unlikely to be feasible for high values of m.

Example. Consider the blocksworld problem of Figure 1. Apart
from trivial landmarks such as those facts belonging to the initial
state or goal, the complete set of causal delete-relaxation landmarks
and orderings is clear B ≺gn holding B, implying that holding B must
be made true in some state by any valid plan, and that clear B must
be true in the state that immediately precedes it. In contrast, when
the landmarks computation is applied to the Π2 compilation of the
problem, one of the obtained chains of orderings is the following:

(clear B ∧ holding A) ≺gn (clear B ∧ handempty) ≺gn

(holding B ∧ ontable A) ≺gn (on B C ∧ ontable A) ≺gn

(on B C ∧ holding A)

where a ∧ b is a conjunctive landmark that implies that a and b must
be true simultaneously in some state. These landmarks and orderings
are only a subset of those found by the procedure, yet provide an
almost complete roadmap for solving the problem.

The additional landmarks found in this way are not only conjunc-
tive: the consideration of delete effects may also result in the dis-
covery of fact landmarks for Π that are not landmarks in the Π+

problem. In this example, the facts holding A and ontable A are also
implied to be landmarks, as they are part of a conjunctive landmark.

6 EXPERIMENTAL RESULTS
We implemented the Πm transformation and the computation of
landmarks as discussed in Section 4. Here, we try to answer three
main questions: whether our approach finds landmarks not found by

C

A

B

B

A

C

Figure 1. A blocksworld problem.

previous approaches, whether these landmarks contain interesting in-
formation, and finally, whether current planners can exploit this in-
formation. All experiments were run on 2.3 GHz AMD Opteron ma-
chines using a 2 GB memory limit and 30-minute timeout.

Table 1. Number of causal fact landmarks found by RHW and average
ratio to this of the causal landmarks found by our approach. In the last

column, conjunctive landmarks as well as facts are counted. Top part of
table: STRIPS domains of IPC 1–5. Only solvable problems are listed for

Mystery. Bottom part of table: domains of the optimal track of IPC 6.
Numbers behind domain names show the number of tasks considered for

that domain (the tasks where LM generation finished for all configurations).

# Causal Ratio to RHW
LM Facts m = 1 m = 2 m = 2

Domain RHW (ZG) Facts Conj.
Airport (11) 1043 1.00 1.00 24.07
Blocks (35) 1444 1.00 1.05 8.36
Depot (21) 1379 1.07 1.13 13.11
Driverlog (19) 441 1.02 1.02 6.71
Freecell (54) 4110 1.26 1.27 15.33
Grid (4) 70 1.14 1.14 3.36
Gripper (20) 960 1.00 1.00 10.35
Logistics-1998 (23) 816 1.00 1.00 3.45
Logistics-2000 (28) 1319 1.00 1.00 4.02
Miconic (150) 7720 1.00 1.00 3.52
Mprime (26) 96 1.07 1.67 2.72
Mystery (16) 66 1.03 1.64 2.86
Openstacks (24) 2946 1.03 1.03 11.08
Pathways (30) 954 1.50 1.57 7.32
Pipesw. Not. (44) 754 1.22 1.29 4.25
Pipesw. Tank. (26) 524 1.15 1.24 5.42
PSR Small (50) 550 1.00 1.60 7.32
Rovers (32) 687 1.15 1.17 6.27
Satellite (23) 515 1.01 1.01 7.31
TPP (24) 751 1.13 1.32 5.94
Trucks (14) 467 1.23 1.25 8.92
Zenotravel (18) 309 1.05 1.05 5.25
Elevators (30) 629 1.12 1.12 3.66
Openstacks (30) 2925 1.03 1.03 11.37
PARC Printer (30) 2142 1.00 1.07 18.48
Peg Solitaire (30) 1457 1.00 1.02 19.33
Scanalyzer (26) 673 1.00 1.26 9.65
Sokoban (29) 605 2.73 5.25 43.02
Transport (30) 390 1.00 1.00 3.44
Woodworking (30) 1520 1.06 1.08 9.91

Number of Landmarks. Table 1 contrasts the number of causal
landmarks found with the causal fact landmarks found by the RHW
method [10] as used in the planner LAMA. With m = 1, our ap-
proach is equivalent to the procedure by Zhu & Givan [12], and in
accordance with theory generates a superset of the causal fact land-
marks that the RHW method finds, improving on the RHW method
by 10–30% in several domains. Withm = 2, we again generate a su-
perset of the causal fact landmarks that m = 1 generates, improving
on RHW by 10–60% in several domains. Particularly notable is the
large number of conjunctive landmarks found with m = 2, surpass-
ing the number of RHW facts by factors between 3 and 43. However,
using m = 2 is computationally costly. Landmark generation with
m = 2 timed out or ran out of memory in several cases in Airport
and Freecell (as well as on large tasks in other domains that are far
beyond the reach of current optimal planners).

Heuristic Accuracy of Landmark Information. In order to as-
sess how the additional landmarks may influence heuristic accuracy,
we use them in the LM-A∗ algorithm using the admissible landmark
counting heuristic of Karpas & Domshlak [6], which we extend to
handle conjunctive landmarks. Cost partitioning among landmarks is
performed optimally. Table 2 shows the number of expanded states in
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Figure 2. Expansions, compared to the RHW landmark generation (x-axes), of our approach using m = 1 (left), m = 2 when using only facts (middle), and
m = 2 when using facts and conjunctive landmarks (right). Top row: optimal cost partitioning, bottom row: uniform cost partitioning.

Table 2. Expanded states when using the landmark generation of RHW
and average improvement ratios of our approach using the optimal cost

partitioning method. Numbers behind domain names show the number of
tasks considered for that domain (the tasks solved by all configurations).

RHW Improvement over RHW
# Expansions m = 1 m = 2 m = 2

Domain (ZG) Facts Conj.
Airport (11) 384 1.00 1.00 1.12
Blocks (23) 2550007 1.00 1.00 7.84
Depot (4) 365373 1.07 1.48 3.75
Driverlog (8) 868496 1.00 1.00 1.02
Freecell (37) 189661 2.14 2.14 2.45
Grid (1) 270 1.50 1.50 1.64
Gripper (5) 458498 1.00 1.00 1.00
Logistics-1998 (3) 45663 1.00 1.00 1.48
Logistics-2000 (20) 862443 1.00 1.00 22.80
Miconic (141) 135213 1.00 1.00 1.34
Mprime (15) 313579 1.00 1.34 1.39
Mystery (12) 290133 1.00 1.00 1.00
Openstacks (7) 27392 1.00 1.00 1.00
Pathways (4) 152448 1.60 1.60 1.60
Pipesw. Not. (16) 1931233 1.05 1.05 1.46
Pipesw. Tank. (8) 29698 1.00 1.00 0.91
PSR Small (48) 697969 1.00 1.03 1.62
Rovers (5) 231520 1.06 1.06 1.06
Satellite (5) 1012920 1.01 1.01 1.08
TPP (5) 12355 1.00 1.00 1.00
Trucks (2) 108132 1.02 1.02 1.05
Zenotravel (8) 186334 1.00 1.00 1.02
Elevators (7) 483982 1.00 1.00 1.35
Openstacks (10) 649341 1.00 1.00 1.00
PARC Printer (12) 1118898 1.00 1.29 1.61
Peg Solitaire (23) 1734655 1.00 1.04 1.20
Scanalyzer (11) 23029 1.00 1.00 1.46
Sokoban (10) 1229907 1.02 1.05 0.90
Transport (9) 929285 1.00 1.00 1.00
Woodworking (10) 199666 1.41 1.41 2.35

those tasks solved by all configurations. We show results both for the
case in which m = 2 is used only to compute additional facts, and
for when the additional conjunctive landmarks are used during plan-
ning. As can be seen, the number of expansions is improved in some
domains by 30–50% even when using only the additional facts found
with m = 2. With conjunctive landmarks, improvements of factors
above 2 occur in several domains, with Logistics-2000 showing an
improvement beyond factor 22.

Figure 2 compares the expansion data from Table 2 with the num-
ber of expansions resulting from uniform cost partitioning. While our
approach expands significantly fewer nodes than RHW when used in
combination with optimal cost partitioning, with uniform partition-
ing this advantage is smaller for m = 2 when using only facts, and
all but disappears form = 2 when also using conjunctive landmarks.

Planning Performance. While optimal cost partitioning among
landmarks leads to best heuristic accuracy, this method is unfortu-
nately too costly to be competitive with the simpler uniform cost
partitioning in terms of runtime and total number of problems solved.
In Table 3, we report the total number of tasks solved with each of
our experimental configurations when using the uniform partitioning
method. Domains where landmark generation with m = 2 was com-
putationally too costly (timing out in tasks that were solved by RHW)
are shown in parentheses at the bottom of the table and not included
in the total. Our approach with m = 1 solves more tasks than RHW,
andm = 2 using only facts solves one more task thanm = 1. Using
conjunctive landmarks during planning, however, does not pay off.

The coverage results in this table are not as good as could be ex-
pected when considering the improvement in expanded states shown
in Table 2. The scatter plots in Figure 2 indicate that this may in a
large part be due to the uniform cost partitioning method.

Table 4 shows detailed results for selected domains, demonstrating
how the benefit of additional heuristic accuracy does not always pay
off compared to the extra computational effort needed for generating
and managing the conjunctive landmarks. While in Logistics-2000,



Table 3. Solved problems when using the landmark generation of RHW
and our approach using the uniform cost partitioning method. Numbers
behind domain names show the total number of solvable tasks in that

domain.

RHW m = 1 m = 2 m = 2
Domain (ZG) Facts Conj.
Blocks (35) 26 26 26 28
Depot (22) 7 7 7 7
Driverlog (20) 10 10 10 9
Grid (5) 2 2 2 2
Gripper (20) 7 7 7 7
Logistics-1998 (35) 3 3 3 3
Logistics-2000 (28) 20 20 20 22
Miconic (150) 142 142 142 142
Mystery (19) 15 15 15 15
Openstacks (30) 7 7 7 7
Pathways (30) 4 4 4 4
Pipesw. Not. (50) 19 19 19 18
Pipesw. Tank. (50) 12 13 13 11
PSR Small (50) 49 49 49 49
Rovers (40) 6 6 6 5
Satellite (36) 6 6 6 6
TPP (30) 6 6 6 6
Trucks (30) 2 2 2 2
Zenotravel (20) 8 8 8 8
Elevators (30) 13 13 13 14
Openstacks (30) 17 17 17 12
PARC Printer (30) 14 14 16 12
Peg Solitaire (30) 27 27 27 25
Scanalyzer (30) 9 9 9 6
Sokoban (30) 21 24 23 14
Transport (30) 11 11 11 11
Woodworking (30) 13 12 12 9
Total (951) 476 479 480 454
(Airport) (50) (26) (26) (11) (11)
(Freecell) (80) (55) (60) (49) (30)
(Mprime) (35) (19) (19) (19) (19)

Table 4. Detailed results for select domains, comparing m = 2 to RHW
with respect to landmarks found, expanded states and runtime. Landmarks
shown are causal facts for both approaches and conjunctive landmarks for

m = 2 (second term in the sum).

RHW m = 2 using conj. LMs
Inst. LM Exp. Time LM Exp. Time
Logistics-2000
5-0 33 936 0.06 33 + 66 28 0.01
7-0 44 7751 0.58 44 + 112 37 0.03
10-0 56 194038 21.85 56 + 192 3421 3.69
11-0 61 156585 24.00 61 + 221 6706 7.65
12-0 56 117387 16.91 56 + 236 2041 2.82
Depot
2 29 1488 0.08 34 + 193 310 0.18
4 54 2347873 220.95 60 + 111 531785 1237.57
7 42 167561 13.35 46 + 351 79755 78.00
10 47 1956533 197.43 55 + 82 375300 578.99
13 62 507369 77.64 62 + 625 336331 822.89
Driverlog
3 10 1109 0.04 10 + 29 2105 0.10
5 17 247579 9.65 17 + 73 658799 73.10
7 17 26591 1.54 17 + 94 88915 19.66
10 14 504955 24.29 14 + 55 2506690 324.94
11 14 1298547 49.62 14 + 49 6969276 690.56

our approach using m = 2 performs better than RHW both with
respect to expansions and time, in Depot, m = 2 performs better
with respect to expansions, but worse with respect to time. Driverlog
is an example where the conjunctive landmarks are not helpful at
all and RHW performs better both with respect to expansions and
time. We also found that while having more causal fact landmarks
usually translates to better heuristic accuracy, this is not always the
case when using the uniform cost partitioning scheme.

7 CONCLUSIONS AND FUTURE WORK
We have shown how to declaratively define the complete set of causal
landmarks for AND/OR graphs. Combined with the Πm compila-
tion, this results in a parameterised method that permits the compu-
tation of conjunctive and fact landmarks that take into account delete
information in planning problems. Our experimental results indicate
that the use of these landmarks can significantly increase the accu-
racy of landmark-based admissible heuristics.

Future work includes the investigation of complete and approxi-
mate methods for decreasing the size of the Πm problem by eliminat-
ing m-fluents that are irrelevant in the context of landmark genera-
tion. Another line of research is to develop cost-partitioning schemes
that offer favourable tradeoffs between the speed of the uniform
scheme and the heuristic quality of the optimal scheme.
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