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Abstract

Merge-and-shrink is a general method for deriving ac-
curate abstraction heuristics. We present two novel non-
linear merging strategies, UMC and MIASM, based on
variable interaction. The principle underlying our meth-
ods is to merge strongly interacting variables early on.
UMC measures variable interaction by weighted causal
graph edges, and MIASM measures variable interaction
in terms of the number of necessary states in the ab-
stract space defined by the variables. The methods par-
tition variables into clusters in which the variable in-
teractions are strong, and merge variables within each
cluster before merging the clusters. Our experimental
results show that our new merging strategies often pro-
duce better heuristics in terms of the number of nodes
expanded by A∗. On certain IPC benchmark domains,
tasks that cannot be solved by existing methods can be
solved with minimum search effort using the heuristics
created by our methods.

Introduction
Merge-and-shrink (M&S) (Helmert, Haslum, and Hoffmann
2007; Helmert et al. 2014) is a general method for de-
riving accurate abstraction heuristics. The generic merge-
and-shrink algorithm consists of two interleaved operations:
merge operations that combine two abstractions into one,
and shrink operations that reduce the size of intermediate ab-
stractions. In particular, a merge-and-shrink algorithm starts
with the set of atomic abstractions, and repeatedly chooses
two abstractions to merge until only one abstraction is left.
Before each merge step if the size of the merged product
would be greater than a given bound, then the merging ab-
stractions will be shrunk first. The abstraction strategies for
merge operations (which abstractions are to be merged?) and
shrink operations (which abstractions are to be shrunk and
how?) are called merging strategies and shrinking strategies.

Previous studies of M&S have focused more on shrink-
ing strategies (Nissim, Hoffmann, and Helmert 2011; Katz,
Hoffmann, and Helmert 2012) than on merging strategies.
The existing merging strategies used in planning include:
(1) the CG/Goal-Level linear merging strategy in the orig-
inal M&S paper (Helmert, Haslum, and Hoffmann 2007)
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(2) the Reverse-Level linear merging strategy used with
bisimulation (Nissim, Hoffmann, and Helmert 2011) and
(3) a non-linear merging strategy from the model-checking
community (Dräger, Finkbeiner, and Podelski 2009). More
details of the strategies will be given in the Related Work
section. We call strategy (1) CGL, strategy (2) RL, and strat-
egy (3) DFP.

We present two non-linear merging strategies in this pa-
per. The general principle of our strategies is to give vari-
ables that have strong interactions higher priorities in merg-
ing orders. In particular, our strategies merge the most
strongly interacting variables first. We define the “strength”
of variable interactions in two different ways, namely, by the
number of reachable and relevant states in the abstract space
defined by the variable set, and by the weight of the cheap-
est undirected cut in the causal graph. These two notions of
strength give us two merging strategies — the maximum in-
termediate abstraction size minimizing (MIASM) merging
strategy and the undirected min-cut (UMC) merging strat-
egy. Our experimental results show that our methods often
produce better heuristics in terms of the number of nodes
expanded by A∗. On certain IPC benchmark domains, tasks
that cannot be solved by existing methods can be solved with
minimum search effort using the heuristics created by our
methods.

Background
We give background knowledge in this section. The SAS+

formalism (Bäckström and Nebel 1995) with action costs
is used for merge-and-shrink. A SAS+ planning task
(Helmert, Haslum, and Hoffmann 2007) is a 4-tuple Π =
〈V,O, si, s∗〉. V is a set of state variables. Each variable
v ∈ V is associated with a finite domain Dv . A function s
is a partial variable assignment over V if s is defined on
V ⊆ V s.t. s(v) ∈ Dv for v ∈ V . If V = V , s is called
a state. O is a set of operators in which each operator is a
pair of partial variable assignments 〈pre, eff〉, the precondi-
tion and the effect. Every operator has a cost c(o) ∈ R+

0 . si
is a state called the initial state, and s∗ is a partial variable
assignment called the goal.

The state space of a SAS+ planning task is defined as a
transition graph (Helmert, Haslum, and Hoffmann 2007).
A transition graph is a 5-tuple Θ = 〈S,L, T, s0, S∗〉. S is
a finite set of states and L is a finite set of transition labels.
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T ⊆ S×L×S is a set of labelled transitions and each e ∈ T
has a cost c(e) ∈ R+

0 . s0 ∈ S is the initial state and S∗ ⊆ S
is the set of goal states. A path from s0 to any s ∈ S∗ using
transitions from T is called a plan for Θ. A plan is optimal
if the total cost of the transitions in the path is minimal. The
transition graph of a SAS+ planning task Π = 〈V,O, si, s∗〉
is denoted by Θ(Π) = 〈S,L, T, s0, S∗〉, in which (i) S is
the set of states in Π; (ii) L := O, i.e., the labels are the
operators; (iii) e = (s, o, s′) ∈ T iff o is applicable to s and
applying o to s results in s′, and c(e) = c(o); (iv) s0 := si;
(v) s ∈ S∗ iff s agrees with s∗.

The solutions for a SAS+ planning task are the plans for
the transition graph of the task. Searching for a solution for
a SAS+ planning task can be hard because there can be ex-
ponentially many states in the transition graph of the task. A
heuristic is a function h mapping S to R+

0 ∪{∞}. A heuris-
tic is admissible if for every s ∈ S, h(s) is less than or equal
to the cost of an optimal plan from s to any goal state. Ad-
missible heuristics are powerful tools for guiding the search
in the graph, and can improve the search efficiency signifi-
cantly. We say a heuristic provides perfect guidance for solv-
ing a task if A∗ informed by the heuristic only expands the
states on one optimal plan. Abstraction is one of the most
important general methods to obtain admissible heuristics.

An abstraction A of a transition graph Θ = 〈S,L, T, s0,
S∗〉 is a pair 〈Θα, α〉, where Θα = 〈Sα, L, Tα, sα0 , Sα∗ 〉 is
an abstract transition graph and α is an abstraction map-
ping, i.e., a function mapping S to Sα such that Tα :=
{(α(s), l, α(s′)) | (s, l, s′) ∈ T}, sα0 = α(s0) and Sα∗ :=
{α(s) | s ∈ S∗} (Katz, Hoffmann, and Helmert 2012). Let
s ∈ Sα be an abstract state in A. The minimal cost of the
abstract path from s to any sg ∈ Sα∗ is the abstract goal-
distance of s, denoted by hA(s). The abstract goal-distance
can be used as a heuristic for searching the original transi-
tion graph. We say abstract state s is reachable if there is
an abstract path from sα0 to s, and s is relevant if there is
an abstract path from s to an abstract goal state sg ∈ Sα∗ .
An abstract state is necessary if it is reachable and relevant,
and is unnecessary otherwise. The size of an abstraction A
is the number of states in A, denoted by |A|. We use An to
denote the abstraction in which the unnecessary states in A
are removed.

Projections are a special type of abstraction that produce
abstract transition graphs from abstract SAS+ tasks by ig-
noring some variables in the original SAS+ task (Helmert,
Haslum, and Hoffmann 2007). Let Π = 〈V,O, si, s∗〉 be
a SAS+ planning task with state set S and V ⊆ V . An
abstraction of Θ(Π) with abstraction mapping α such that
α(s) = α(s′) if and only if s(v) = s′(v) for all v ∈ V is
called a projection onto V or an abstraction on V , denoted
by πV . If V = {v}, the projection onto V is called an atomic
projection or atomic abstraction, denoted by πv .

Each atomic abstraction πv contains the complete in-
formation on the corresponding variable v. Merge-and-
shrink collects the information over all variables by syn-
chronizing the atomic projections (Helmert, Haslum, and
Hoffmann 2007). Let Aα = 〈〈Sα, L, Tα, sα0 , Sα∗ 〉, α〉
and Aβ = 〈〈Sβ , L, T β , sβ0 , S

β
∗ 〉, β〉 be two abstractions

of a transition graph Θ with state set S. The synchro-

nized product of Aα and Aβ , denoted by Aα ⊗ Aβ =

〈〈Sα⊗β , L, Tα⊗β , sα⊗β0 , Sα⊗β∗ 〉, α⊗ β〉 where α⊗ β is a
function mapping S to Sα⊗β , and (i) Sα⊗β = Sα ×
Sβ ; (ii) Tα⊗β := {((sα, sβ), l, (tα, tβ)) | (sα, l, tα) ∈
Tα and (sβ , l, tβ) ∈ T β}; (iii) sα⊗β0 := (sα0 , s

β
0 );

(iv) Sα⊗β∗ := Sα∗ × S
β
∗ .

Note that synchronization is associative and commuta-
tive (Helmert, Haslum, and Hoffmann 2007). Synchroniz-
ing a set of atomic projections in any order yields the same
synchronized product. It has been proven that Θ(Π) =⊗

v∈V πv , i.e., the synchronized product of all atomic pro-
jections is equal to the original transition graph of the
task (Helmert, Haslum, and Hoffmann 2007). Synchroniz-
ing atomic projections can recover the complete information
of all variables, but it is often not feasible to do so because
the size of the synchronized product may exceed available
memory as the synchronized graph gets closer to the original
graph. The merge-and-shrink algorithm uses shrinking oper-
ations to control the size of the intermediate abstractions but
shrinking can result in information loss. Note that a special
type of shrinking operation, which we call “free shrinking”,
is to remove the unnecessary states in an abstraction. Free
shrinking does not result in any information loss for solving
the task since the states removed will never be reached by
search in the original space. Maximizing the amount of free
shrinking is the aim of both our new merging strategies.

The generic merge-and-shrink algorithm starts with the
set F of all atomic abstractions. The following three-step
merge-and-shrink process is repeated until F contains only
one abstraction: (1) two abstractionsA1 andA2 from F are
chosen to be merged;A1 andA2 are removed from F ; (2) if
|A1| · |A2| is greater than a given bound N , shrinking oper-
ations are performed; either A1 or A2, or both are shrunk
until |A1| · |A2| ≤ N ; (3) the synchronized product of the
two possibly shrunk abstractions is then added to F .

A merge-and-shrink process corresponds to a merge-and-
shrink tree in which leaves are atomic abstractions and in-
termediate nodes are intermediate abstractions. The parent-
child relationship between intermediate nodes represents the
merging and shrinking operation between the corresponding
abstractions. The maximum intermediate abstraction size of
a merge-and-shrink tree is the maximum size of any abstrac-
tion produced in the merge-and-shrink tree.

The merging strategy determines which two abstractions
are to be merged (step (1) above). The shrinking strategy
determines which abstractions are to be shrunk and how.
The goal of shrinking is to reduce the number of abstract
states of the two abstractions so that the size of their syn-
chronized product is less than the size bound N . Several
shrinking strategies have been studied (Helmert, Haslum,
and Hoffmann 2007; Nissim, Hoffmann, and Helmert 2011;
Katz, Hoffmann, and Helmert 2012).

Related Work
We review related work on merging strategies in this sec-
tion. Two of the three existing merging strategies rely heav-
ily on weighted causal graphs (Helmert 2006). The weighted
causal graph of a SAS+ planning task Π is a directed graph
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〈V,E〉 where vertices in V are variables in Π, and there is a
directed edge from u to v if there exists an operator 〈pre, eff〉
in Π such that pre(u) and eff(v) are defined or both eff(u)
and eff(v) are defined. Let (u, v) be an edge in the weighted
causal graph of a SAS+ planning task Π. The weight of
(u, v) is simply the number of operators in which pre(u)
or eff(u), and eff(v) are defined.

Variable level is a total order of variables determined by
weighted causal graphs (Helmert 2006). If one variable v
is an ancestor of another variable v′ but not vice versa in
the weighted causal graph then v has a higher level than v′.
If there are cycles, they are broken using certain heuristics
based on edge weights. Intuitively, variables that have higher
levels are more influential, they are ancestors of more vari-
ables in the weighted causal graph and they are defined in
preconditions of many operators.

If there is always at most one non-atomic abstraction in
the merge-and-shrink process, the merging strategy is called
linear, otherwise the merging strategy is called non-linear.
Both the CG/Goal-Level merging strategy (CGL), and the
Reverse-Level merging strategy (RL) are linear, and vari-
able levels are essential to both of them. For RL, the variable
level is used directly: the atomic abstraction on the remain-
ing variable with the highest level gets merged with the non-
atomic abstraction first. CGL chooses variables in favour of
predecessors of merged variables and goal variables, i.e.,
if there is a remaining variable that is a predecessor of a
merged variable in the weighted causal graph then the vari-
able is chosen to be merged next, otherwise a goal variable is
selected. The variable level is used for tie-breaking if there
are multiple candidates and the candidate with the lowest
level is chosen.

The DFP merging strategy is the only existing non-
linear merging strategy. DFP first computes the rank
of abstractions and operators: for an abstraction A
with transition set T and operator o, rank(A, o) =
min(s,o,s′)∈T hA(s). For two abstractions A1 and A2 with
operator sets L1 and L2, the weight of them is computed
as mino∈L1∩L2

{max{rank(A1, o),rank(A2, o)}}. The DFP
merging strategy always selects a pair of abstractions with
minimum weight to be merged first.

Unlike the shrinking strategies (Helmert, Haslum, and
Hoffmann 2007; Nissim, Hoffmann, and Helmert 2011;
Katz, Hoffmann, and Helmert 2012), all the existing merg-
ing strategies make decisions independent of the initial state,
i.e., given planning tasks that differ only in their initial states
those methods produce the same merging order. CGL and
RL depend only on causal graphs and variable level, which
do not take initial states into consideration. DFP uses infor-
mation in abstractions in its decision making but it uses only
the abstract goal-distance hA(s). Our first merging strategy,
UMC, follows this trend: it only uses the weighted causal
graph for making merging decisions. Our second method,
MIASM, however, does use information of initial states and
such information is essential to its success.

The UMC Merging Strategy
In this section, we introduce the undirected min-cut merg-
ing strategy (UMC), our first non-linear merging strategy

v1 v2

v3 v4

v5

4

11 11

1 1 1

1

cut1

cut2

cut3
cut4

(a) (b)

πv2 πv5

πv1 πv3 πv4

cut1

cut2cut3

cut4

Figure 1: (a) Min-cuts (dashed lines) found by UMC and (b) the
corresponding merge tree. (a) shows the weighted causal graph of
5 variables. v5 is the goal variable (in the square) and wG is 10.
Gray nodes are intermediate (non-atomic) abstractions.

based on variable interaction. Because a causal graph’s edge
weights indicate how much the two variables connected by
an edge relate to one another, we use these edge weights to
measure the strength of variable interaction in UMC. Since
a causal graph edge connects two variables, the basic vari-
able interaction is only between two variables. To measure
the interaction between more variables, weighted graph cuts
are used. A cut 〈S1, S2〉 of a graph is a partition of the ver-
tices of the graph into two disjoint non-empty subsets S1

and S2. The weight of an undirected cut of a graph is the
sum of weights of edges (u, v) in which u and v are in dif-
ferent subsets of the cut. An undirected minimum cut, or a
min-cut for short, of a graph is a cut with minimum weight
among all cuts of the graph (Cormen et al. 2009). A min-
cut of the weighted causal graph of a set of variables splits
the set into two subsets so that variable interaction between
the two subsets is the weakest. Given a min-cut 〈S1, S2〉, a
reasonable merging decision is to construct the abstractions
AS1 and AS2 on variables in S1 and S2 separately first, and
then mergeAS1 andAS2 , since the interaction between vari-
ables in S1 and variables in S2 is weak. Once the set is sep-
arated by the min-cut 〈S1, S2〉, we do further splitting using
min-cuts in the weighted causal graph restricted to Si, i.e.,
the subgraph 〈V,E〉 of the original causal graph in which
V = Si and (u, v) ∈ E iff u, v ∈ Si for i ∈ {1, 2}. The
importance of goal variables is not reflected in the original
weighted causal graph. We developed a variant of weighted
causal graph particularly for UMC by adding an additional
weight wG on (u, v) if u or v is defined in the goal. We
set wG as the total weight of edges in the original weighted
causal graph.

For example, Figure 1(a) shows a causal graph of 5 vari-
ables {v1, v2, v3, v4, v5}. v5 is the goal variable so the edges
connected to it have an additional weight wG = 10 in
this example. We drop the edge directions in the weighted
causal graph since UMC uses undirected cuts. UMC devel-
ops a merge tree from the (modified) weighted causal graph.
The min-cut of the whole graph is the cut that separates the
set into {v1, v2, v5} and {v3, v4} (cut1) since its weight is
w((v1, v3)) + w((v1, v4)) + w((v2, v4)) = 3 while other
cuts have weight greater than 3. cut1 makes sure the final
abstraction is the product of merging the abstractions on
{v1, v2, v5} and {v3, v4}. Once cut1 is found, UMC con-
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tinues to split the subsets {v1, v2, v5} and {v3, v4}. The
min-cut for {v3, v4} is cut2 = 〈{v3}, {v4}〉 which is the
only cut in the weighted causal graph restricted to {v3, v4}.
In the weighted causal graph restricted to {v1, v2, v5}
there are three cuts 〈{v1}, {v2, v5}〉, 〈{v1, v5}, {v2}〉 and
〈{v1, v2}, {v5}〉. Both 〈{v1}, {v2, v5}〉, 〈{v1, v5}, {v2}〉 are
min-cuts. Assume cut3 = 〈{v1}, {v2, v5}〉 is used. In the
merge tree, the abstraction on {v1, v2, v5} will be con-
structed by merging the abstraction on {v1, v5} and πv2 .

CGL and DFP use a “bottom-up” approach to construct-
ing merge trees: they determine which two abstractions
should be merged based on additional information collected
from the set F of current intermediate abstractions. In a
“bottom-up” approach, it is feasible to collect more local
information for making the merging decisions but there is
no global view. UMC constructs its merge tree in a “top-
down” fashion, i.e., starting with the complete set of all
variables, and recursively splitting sets of two or more vari-
ables into two subsets. The “top-down” approach has a
good global view but there are exponentially many splitting
choices rather than polynomially many merging choices in
the “bottom-up” approach. However, since there exists low-
order polynomial algorithms for finding a minimum cut in a
graph (Stoer and Wagner 1997), it is practical for UMC to
use a “top-down” approach to construct its merge tree.

A natural way to implement the top-down merging strat-
egy of UMC is to use a recursive function. The algorithm
for UMC is shown in Algorithm 1. In Algorithm 1, min-
cut(G) computes an undirected minimum cut of the graph G.
A simple undirected min-cut algorithm developed by Stoer
and Wagner (1997) is used for min-cut(G). The complex-
ity of min-cut(G) is O(|V ||E| + |V |2 log |V |) for the graph
G = 〈V,E〉 (Stoer and Wagner 1997). If there are multiple
min-cuts, the first one found is kept.

Algorithm 1 UMC(V,N,G)
1: if |V | > 1 then
2: 〈V1, V2〉 ← min-cut(G|V )
3: A1 ← UMC(V1, N,G)
4: A2 ← UMC(V2, N,G)
5: while |A1| · |A2| > N do
6: Shrink A1 and/or A2

7: end while
8: A ← A1 ⊗A2

9: else
10: A ← πv for the v ∈ V
11: end if
12: return A

Algorithm 1: The recursive UMC algorithm. G|V is the
weighted causal graph restricted to the variable set V .

The MIASM merging strategy
In this section, we introduce our maximum intermediate ab-
straction size minimizing merging strategy (MIASM). In
MIASM, we measure the variable interaction of a set of
variables by the ratio of the number of necessary states to
the total number of states in the abstraction defined on the
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Figure 2: The atomic abstractions of variables S, L, R and O.
Inital states are marked as double rectangles and goal states are
marked with asterisks

variable set. This non-linear merging strategy aims to mini-
mize the maximum intermediate abstraction size of a merge-
and-shrink tree by discovering and removing unnecessary
abstract states before the abstractions get too large. By mak-
ing the maximum intermediate abstraction size as small as
possible, abstractions are subject to less shrinking and better
heuristics can be generated.

Motivating Example
To demonstrate the idea, we use a simplified task in the
Travelling Purchase Problem (TPP) domain from the 5th In-
ternational Planning Competition (IPC 2006). This domain
models problems of getting a certain amount of different
types of goods from markets and transporting the goods to
depots using trucks. Each type of good has four variables
S,L,R and O indicating the amount of the good STORED in
the depot, LOADED in a truck, READY-TO-LOAD at a market
and ON-SALE at a market. There are three operations: BUY,
LOAD and UNLOAD. BUY changes one unit of one type of
good from ON-SALE to READY-TO-LOAD, LOAD changes
one unit of one type of good from READY-TO-LOAD into
LOADED, and UNLOAD changes one unit of one type of good
from LOADED into STORED.

Consider one type of good and its variables S,L,R and
O. Initially, there is 1 unit of this good at the market on
sale. The goal is to store 1 unit of this good in the depot.
Thus, S,L,R and O have two values 0 and 1. For a sim-
ple illustration, we represent an abstract state in the space
defined by variables S,L,R and O as uSuLuRuO where
uV ∈ {0, 1} for V ∈ {S,L,R,O}. For example, 0100
means S = R = O = 0 and L = 1 (i.e., there are zero
units of the good ON-SALE, READY-TO-LOAD and STORED
but one unit of the good are LOADED). We also represent ab-
stract states on any subset of {S,L,R,O} in this format but
with ‘ · ’ replacing the variables that are projected out. Thus,
01 ·0 is a state in the abstract space on {S,L,O} in which
S = O = 0 and L = 1. The atomic abstractions on S,L,R
and O are shown in Figure 2.

Let A be the abstraction on one good’s variables
{S,L,R,O}. The transition graph for this abstract space
is shown in Figure 3. There are 16 abstract states in A
but only 4 are necessary (reachable from the abstract initial
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Figure 3: The abstractionA on variables S,L,R andO. The dou-
ble rectangle indicates the initial state. Asterisks indicate abstract
goal states. Unnecessary states are shown in dashed rectangles.

state 0001 and relevant to the abstract goal). An is the ab-
straction after the 12 unnecessary states are removed. Let
A0 be the abstraction on variables of another good that
has |A0| = 8 and contains no unnecessary states. Since
A0 and A are abstractions on variables of different goods,
there are no unnecessary states in A0 ⊗ An. We show that
merging A0 with atomic abstractions on S,L,R and O lin-
early or non-linearly could differ greatly in terms of the
maximum intermediate abstraction size of the merge-and-
shrink trees. Assume that we use the order πS , πL, πR, πO
in both the linear and non-linear merging. If we use the lin-
ear merging order (((A0 ⊗ πS) ⊗ πL) ⊗ πR) ⊗ πO, the
maximum intermediate abstraction size would be 128 (see
Figure 4(a)). However, if we use a non-linear merge order
A0 ⊗ (((πS ⊗ πL) ⊗ πR) ⊗ πO), the maximum interme-
diate abstraction size is only 32 (see Figure 4(b)). The dif-
ference factor is 4 which is equal to the ratio of the total
number of states to the number of necessary states in A.
Even a small difference factor could result in a huge differ-
ence in the maximum intermediate abstraction size sinceA0

can be as large as the merge-and-shrink size limit N , i.e.,
|A0| = N . This means an additional multiple of N states
has to be shrunk in the linear merging strategy. This addi-
tional shrinking can significantly reduce the quality of the
final heuristic.

Subsets Searching
To minimize the maximum intermediate abstraction size we
need to identify variable subsets on which the abstractions
contain unnecessary states like the set {S,L,R,O} in the
example. Then we can design non-linear merging strategies
that first construct non-atomic abstractions on those variable
subsets separately and then merge the non-atomic abstrac-
tions. Variable sets that produce unnecessary states are de-
fined as follows.

Definition 1. Let V be the set of domain variables and V ⊆
V . Let R(V ) be the ratio of the number of necessary states
to the total number of states in the abstraction on V , and

Rd(V ) = min
V ′⊆V

R(V ′) ∗R(V \ V ′)−R(V ).

We say V produces unnecessary states iff Rd(V ) > 0.
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8 2
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Figure 4: The merge-and-shrink trees of merging A0 with
πS , πL, πR, πO linearly (a) and non-linearly (b). The sizes of the
abstractions are marked beside the nodes. The dotted line indicates
the operation that removes unnecessary states. Gray nodes are in-
termediate (non-atomic) abstractions.

Note that if Rd(V ) = 0, i.e., R(V ) = R(V ′) ∗R(V \V ′)
for some V ′ ⊆ V , then all the unnecessary states can be
detected without constructing the abstraction on V but only
the smaller abstractions on V ′ and V \ V ′. We are only in-
terested in finding variable subsets that produce unnecessary
states because we want to identify and remove unnecessary
states in the smallest possible abstractions.

There are exponentially many variable subsets in the num-
ber of variables and abstractions on subsets can be very
large. Searching and evaluating (i.e., computing Rd(V ))
variable subsets blindly can be fruitless when time and space
are limited. Therefore, we find subsets that produce unnec-
essary states by best-first search in the lattice of subsets of
V . We use an assumption that if a variable set produces un-
necessary states then its supersets probably also produce un-
necessary states. When a subset V is expanded, its supersets
V ∪{v} for v ∈ V\V are added to the priority queue. Subsets
in the priority queue are sorted according to Rd(V ) and the
subset size. Subsets with greaterRd(V ), or equalRd(V ) but
smaller size have higher priority. Note that we use Rd(V ) to
guide the search instead of R(V ) (i.e., smaller R(V ) means
higher priority) because R(V ) can mislead the search to
some subsets that do not produce unnecessary states. For ex-
ample, let R({v1}) = R({v2}) = 2/3, R({v3}) = 5/9 and
R({v1, v2}) = 4/9. When both {v1, v2} and {v3} are in the
priority queue, {v1, v2} will be expanded before {v3} since
R({v1, v2}) < R({v3}). However {v1, v2} is not a set that
produces unnecessary states while {v3} is.

In order to compute R(V ) and Rd(V ), we need to con-
struct the actual abstractions on V and its subsets. We use a
special M&S with only free shrinking and a simple merging
strategy to construct the abstractions on subsets encountered
during subset searching. The simple merging strategy here
is called the WC-strategy (WC = within a cluster) and it will
also be used in the final M&S computation. If the abstrac-
tion on V is larger than N , the size bound for M&S, we
simply ignore V . This is not a compromise because large
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abstractions imply high maximum intermediate abstraction
sizes and separately constructing these abstractions will not
ensure us a lower maximum intermediate abstraction size.
Only a small set of the abstractions (at most |V| − 1) con-
structed in this step can be used in the later M&S. To save
memory, we only store the variable subsets and their R and
Rd values, we do not save the abstractions built in this step.
It is guaranteed that we can re-construct the abstraction on a
selected subset V in the later M&S with only free shrinking
and the WC-strategy.

Since we expand subsets by adding only one variable, it
may take a long time to reach some subsets that produce un-
necessary states. We initialize the priority queue with some
“promising” subsets: (1) the sets of variables that form a
strongly connected component in the causal graph; (2) the
sets of variables whose atoms form mutex groups detected
in the translation process from PDDL to SAS+.

We stop adding subsets to the queue if the total number of
states counted in the subset searching has exceeded a certain
bound parameter T . The search terminates when the priority
queue is empty, and outputs a family S of variable subsets
that produce unnecessary states, i.e., Rd(V ) > 0 for all V ∈
S. We also include singleton sets of each variable v ∈ V in
S regardless of whether Rd({v}) = 0 or not.

Maximum Set Packing
Once we have a family S of subsets that produce unnec-
essary states, we can design a non-linear merging based on
that. Since merge-and-shrink does not deal with non-disjoint
merging, we need to find a sub-family S ′ ⊆ S of disjoint
subsets. The goal of our non-linear merging is to remove as
many unnecessary states as possible, so we want to minimize
ΠV ∈S′R(V ) among all possible S ′ ⊆ S of disjoint sub-
sets. Note that R(V ) ≤ 1 for any V ⊆ V , so − log(R(V ))
is a non-negative real number. We can convert our prob-
lem of finding S ′ ⊆ S of disjoint subsets that minimize
ΠV ∈S′R(V ) into the problem of finding S ′ ⊆ S of dis-
joint subsets that maximize ΣV ∈S′(− log(R(V ))). This is
exactly the maximum weighted set packing problem1 if we
use − log(R(V )) as the weight of V . The problem is NP-
hard (Garey and Johnson 1979), the standard approach is a
simple greedy algorithm:
1. choose V ∈ S with the maximum weight and add it to
S ′;

2. remove all subsets that intersect with V from S;
3. repeat 1 and 2 until S is empty.
The greedy algorithm approximates the optimal solution
within a factor of k where k is the maximum size of sub-
sets in the family (Chandra and Halldórsson 2001). Other
approximate algorithms for this problem can be found in
(Arkin and Hassin 1997; Chandra and Halldórsson 2001).

Merging Clusters
The sub-family S ′ gives us a set of disjoint variable sub-
sets (whose union is V since we include variable singleton

1Given a family of sets, each of which is a subset of a universe
and has an associated real weight, find a subfamily of disjoint sets
of maximum total weight (Garey and Johnson 1979).

Algorithm 2 MIASM(S ′, N )
1: F ← ∅
2: for each V ∈ S ′ do
3: A ←WC-merge(V,N )
4: F ← F ∪ {A}
5: end for
6: while |F | > 1 do
7: Choose 〈A1,A2〉 from F using the BC-strategy
8: while |A1| · |A2| > N do
9: Shrink A1 and/or A2

10: end while
11: F ← (F \ {A1,A2}) ∪ {A1 ⊗A2}
12: end while
13: return A ∈ F

Algorithm 2: The MIASM algorithm. S ′ is a partition of the vari-
able set V and N is the size limit.

sets in S). Our MIASM merging strategy first merges vari-
ables in each of these subsets, then merges the abstractions
on subsets. The strategy for merging variables within subsets
is the WC-strategy used in subset search, and the strategy for
merging abstractions on clusters is called the BC-strategy
(BC = between clusters). The MIASM algorithm is shown
in Algorithm 2. WC(V,N ) computes an abstraction on vari-
ables in V with the size bound N , and the BC-strategy
chooses two abstractions from set F to be merged where
F is the set of abstractions of subsets in S ′ before merging
any clusters.

In this paper, we use RL as the WC-strategy, and we use
a modified CGL as the BC-strategy. When there are several
non-singleton subsets containing predecessor or goal vari-
ables, the smaller subsets have higher priority than the larger
ones. This modification is used to avoid significant shrink-
ing at the early stage of the non-linear merging. Note that if
all sets in S are singletons, the MIASM-merging strategy is
simply equal to the BC-strategy. This could happen when an
original space contains no unnecessary states or unnecessary
states are only visible in large abstractions. If MIASM does
not find non-singleton variable subsets that produce unnec-
essary states, we can either continue to use the BC-strategy
specified for MIASM, or turn to other merging strategies.

Experiments
We ran experiments on a set of 1051 tasks from 33 IPC
benchmark domains. The experiments were performed on an
octa-core AMD Opteron 6134 machine with a clock speed
of 2.3 Hz and 96GB RAM. The memory and the total CPU
time for a planner to solve a task are limited 2.0 GB and
15 minutes. The total time includes the time for preprocess-
ing in which UMC finds min-cuts and MIASM does subset
searching and set packing, constructing the M&S abstraction
and searching. Our implementation is based on Fast Down-
ward (Helmert 2006).

Since there are non-linear merging strategies we used
generalized label-reduction (Sievers, Wehrle, and Helmert.
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DFP-B RL-B CGL-B MIASM-B UMC-B
airport 16 (6) 16 (5) 11 (11) 14 (9) 16 (6)
blocks 20 (3) 25 (3) 23 (4) 23 (4) 21 (3)
depot 6 (0) 6 (0) 7 (2) 7 (1) 7 (1)
driverlog 12 (2) 12 (3) 12 (3) 13 (4) 13 (4)
grid 2 (0) 2 (0) 2 (0) 2 (0) 2 (0)
gripper 20 (20) 20 (20) 7 (2) 20 (20) 20 (20)
log00 20 (8) 20 (9) 20 (8) 20 (8) 20 (9)
log99 5 (0) 5 (0) 5 (0) 5 (0) 5 (2)
miconic 70 (54) 70 (54) 72 (58) 72 (58) 73 (64)
mystery 15 (6) 15 (5) 13 (3) 16 (5) 15 (6)
rovers 7 (4) 8 (4) 7 (4) 7 (5) 6 (4)
tpp 6 (5) 6 (5) 6 (5) 8 (8) 6 (4)
pathways 4 (3) 4 (3) 4 (2) 4 (2) 4 (3)
freecell 19 (0) 17 (0) 16 (0) 19 (5) 16 (0)
satellite 6 (4) 6 (5) 7 (5) 7 (5) 6 (4)
pipes-tank 12 (0) 14 (2) 9 (2) 9 (2) 9 (3)
pipes-notank 14 (0) 13 (0) 10 (1) 9 (2) 10 (0)
psr-small 49 (38) 49 (32) 50 (42) 49 (44) 50 (43)
zenotravel 12 (4) 12 (4) 11 (5) 11 (5) 12 (6)

DFP-B RL-B CGL-B MIASM-B UMC-B
barman-opt11 4 (0) 4 (0) 4 (0) 4 (0) 4 (0)
floortile-opt11 5 (0) 5 (2) 2 (0) 6 (2) 5 (2)
elevators-opt11 13 (0) 9 (0) 10 (0) 10 (0) 11 (0)
nomystery-opt11 18 (9) 18 (9) 18 (9) 17 (10) 18 (5)
openstacks-opt11 14 (0) 14 (0) 14 (0) 14 (0) 14 (0)
parcprinter-opt11 9 (4) 12 (9) 12 (4) 13 (7) 9 (4)
parking-opt11 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
woodworking-opt11 7 (3) 5 (0) 6 (1) 7 (2) 8 (5)
pegsol-opt11 19 (0) 19 (0) 17 (0) 17 (0) 17 (0)
transport-opt11 6 (0) 6 (0) 6 (1) 6 (1) 6 (0)
tidybot-opt11 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
sokoban-opt11 20 (0) 19 (0) 20 (0) 19 (0) 17 (0)
scanalyzer-opt11 10 (3) 9 (3) 9 (1) 9 (3) 9 (3)
visitall-opt11 9 (6) 9 (6) 9 (6) 9 (5) 9 (5)
Σ 449 (182) 449 (183) 419 (179) 446 (217) 438 (206)
# DHC 20 18 15 20 19

DFP-F RL-F CGL-F MIASM-F UMC-F
Σ 346 (167) 318 (166) 330 (195) 357 (225) 336 (196)
# DHC 16 13 16 23 15

Table 1: Coverage data for each domain. “# DHC” indicates the number of of domains (out of 33) for which a method had the highest
coverage (including ties). For M&S with f -preserving shrinking, we only show the total coverage and # DHC to save space. Numbers in
parentheses indicate in how many tasks the heuristic created gave perfect guidance.
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Figure 5: (a)-(h) compare the new and old methods in terms of the number of node expansions. (i)-(k) compare MIASM to
the previous methods in terms of total time. (l) compares UMC-B to CGL-B in terms of total time. -B indicates bisimulation
shrinking and -F indicates f -preserving shrinking.
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2014) for shrinking. We evaluate the merging methods in
combination with both exact bisimulation shrinking (Nis-
sim, Hoffmann, and Helmert 2011) (indicated by adding
-B to the merging strategy’s name, e.g., MIASM-B) and
with f -preserving shrinking (Helmert, Haslum, and Hoff-
mann 2007) (indicated by adding -F to the merging strat-
egy’s name). The M&S size limit N is 50K. When merg-
ing two abstractions A1 and A2, the size bound for A1 is
max{

√
N,N/|A2|} and forA2 is max{

√
N,N/|A1|}. For

MIASM, the bound T for the total number of states in the
constructed abstractions in the subset searching is 1,000,000
and the size bound for the abstractions that can be con-
structed in the subset searching is equal to N . If no non-
singleton subsets are found in the subset search, MIASM is
equal to CGL since we use a modified CGL merging strat-
egy as the BC-strategy for MIASM, and the modification
only affects non-singleton subsets.

We compare our two new merging strategies with the pre-
vious merging strategies in terms of coverage, number of
node expansions, and time. Table 1 gives the coverage data
for each domain, as well as the total coverage (row Σ), and
the number of domains in which each method had the high-
est coverage (row # DHC). MIASM-F has the highest cov-
erage of any method using f -preserving shrinking. In 184
tasks MIASM did not find non-singleton subsets in its sub-
set search. We call these tasks “singleton tasks”.2 If we keep
MIASM-B running for singleton tasks, its total coverage is
446 whereas both DFP-B and RL-B have a coverage of 449.
Alternatively, we can switch from MIASM to another merg-
ing strategy for these tasks. If we switch from MIASM-B to
DFP-B or RL-B for singleton tasks, the coverage increases
to 451, which is the best coverage over all the configurations
investigated (the coverage is 447 if we switch to UMC-B).

UMC-B outperforms CGL-B and UMC-F outperforms
RL-F and CGL-F in coverage, but UMC does not outper-
form DFP with either bisimulation shrinking or f -preserving
shrinking.

“# DHC” indicates the number of of domains (out of 33)
for which a method had the highest coverage. If there was a
tie among two or more methods for the highest coverage we
count the domain for all the tied methods. MIASM has the
largest #DHC for both shrinking methods.

Each plot in Figure 5 has a data point for each task in
our experiment. Plots (a)-(c) compare the number of node
expansions by MIASM to previous merging methods when
bisimulation shrinking is used. Plots (e)-(g) do the same for
UMC. We see that no system dominates, although MIASM-
B nearly dominates CGL-B. In general, there are more
points below the diagonal (y=x) in these plots than above
it, indicating that, overall, MIASM and UMC expand fewer
nodes than previous systems. The only exception is that for
UMC-B and RL-B there is almost a perfect symmetry about
the diagonal. We also see that MIASM-B is complementary
to DFP-B and RL-B in terms of which tasks each solves,
as there are a great number of tasks one method solves that
the other does not (the points on the right and upper bor-

2The tasks for which MIASM could not finish its preprocessing
in the time and memory limits are not considered singleton tasks.

ders of the plots). The horizontal bands running almost the
full width of these plots with y values between 101 and 102

represent tasks that are solved by MIASM-B and UMC-B
expanding fewer than 100 nodes but which require orders of
magnitude more node expansions by the previous methods.
This is at least partly due to the fact that the new methods
more frequently produce heuristics that guide search directly
to the goal, expanding only the nodes that are on the solution
path (these number of such tasks is shown in parentheses be-
side the coverage number in Table 1).

For all the merging methods, the number of nodes ex-
panded is reduced when bisimulation is used instead of f -
preserving shrinking, but some methods benefit more than
others, with RL benefiting most. Plots (d) and (h) compare
RL-F to MIASM-F and UMC-F respectively, and should be
compared with corresponding plots for bisimulation shrink-
ing (plots (b) and (f)) to see the advantage gained by RL by
the change to bisimulation shrinking.

Plots (i)-(k) compare MIASM-B’s total CPU time to solve
each task with the time required by the previous methods.
Although MIASM-B results in substantially fewer nodes be-
ing expanded, it is almost always slower (not counting the
tasks it solves that the other systems do not). We believe this
is due to MIASM’s subset searching. Our current implemen-
tation of subset searching is quite simple and not especially
efficient. Plot (l) shows that UMC-B requires approximately
the same total time as CGL-B on the tasks solved by both.

Conclusion
We have presented two novel, top-down non-linear merging
strategies, MIASM and UMC, based on different ways of
measuring the strength of variable interactions. Our experi-
mental results show that both new methods are superior to
existing methods in terms of the number of nodes expanded
and the number of tasks that are solved expanding only the
nodes on the solution path. MIASM has the highest cover-
age when f -preserving shrinking is used, and also has the
highest coverage with bisimulation shrinking if it reverts to
DFP or RL for singleton tasks.
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