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Georges-Köhler-Allee, D-79110 Freiburg
eMail: edelkamp@informatik.uni-freiburg.de

Abstract

This paper invents symbolic pattern databases (SPDB) to
combine two influencing aspects for recent progress in
domain-independent action planning, namely heuristic search
and model checking. SPDBs are off-line computed dictionar-
ies, generated in symbolic backward traversals of automati-
cally inferred planning space abstractions.
The entries of SPDBs serve as heuristic estimates to accel-
erate explicit and symbolic, approximate and optimal heuris-
tic search planners. Selected experiments highlight that the
symbolic representation yields much larger and more accu-
rate pattern databases than the ones generated with explicit
methods.

Introduction
Heuristic search is one of the most effective search tech-
niques to cope with very large problem spaces. The
guidance for search algorithms like A* (Hart, Nilsson, &
Raphael 1968) and IDA* (Korf 1985) are estimators that ap-
proximate the remaining distance to the goal.

The additional information focuses the search into the di-
rection of the goal and its quality mainly influences the num-
ber of states to be expanded; the better the estimate, the
larger the reduction in search efforts.

Planning problems implicitly generate weighted problem
graphs by applying operator sequences to their seed states.
By changing operator costs, A* can be casted as a vari-
ant of Dijkstra’s single-source shortest path algorithm: the
new costs of the operators are set to the old ones minus the
heuristic value of the expanded state, plus the estimate of
the successor state (Edelkamp & Schrödl 2000). Admissible
heuristics are lower bound problem relaxations, yield opti-
mal solutions, but may introduce negative weights calling
for re-openings of already expanded states (Pearl 1985).

Pattern databases (PDBs) are dictionaries of heuristic val-
ues that have been originally applied to the Fifteen Puz-
zle (Culberson & Schaeffer 1998). In this context, PDBs are
generalizations of the Manhattan distance heuristic, that cor-
responds to subproblem solutions of moving each tile onto
its goal position. The PDB representation is a selection of
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look-up tables memorizing the goal distances of each tile
at any board location. Since the subproblems are indepen-
dent (only one tile can move at a time), the minimum num-
bers of moves to solve the individual puzzles can be added;
still providing an admissible heuristic. Refined PDBs take
not only one but a selection of interacting tiles (the pat-
tern) into account. A large hash table stores their combined
goal distances on a simplified board with all other tiles re-
moved. PDBs are generated in complete backward explo-
rations, starting from the set of abstract goals.

The PDB approach has been extended to find first optimal
solutions to random Rubik’s Cube problems (Korf 1985),
where a pattern corresponds to a selection of side or corner
cubies. Independence of PDBs has been exploited to solve
the 24-Puzzle (Korf & Felner 2002). In all cases the abstrac-
tions for PDB construction were hand-tailored and domain
dependent. The effectiveness of PDBs in form of a space-
time trade-off reveals that PDBs size is inversely correlated
to the resulting search effort (Holte & Hernadvölgyi 1999).

Steps towards the automated creation of PDB heuristics
base on local search in the space of PDBs (Hernadvölgyi
2000) and change the abstraction level according to the pre-
dicted search efforts. However, the approach is currently
limited to moderate state-space sizes, or restricted to easier
exploration tasks like the computation of macro operators.

Explicit PDB heuristics that have been proposed for
domain-independent action planning (Edelkamp 2001b)
share similarities with PDBs in sliding-tile puzzles and
challenge even on-line computed estimates like the FF-
heuristic (Hoffmann 2002). The rough idea is to interpret
the set propositional atoms as tiles, so that a planning pat-
tern is a selection of them. The approach first infers groups
of mutually exclusive facts. In every reachable state exactly
one of the atoms in each group is true. The group informa-
tion is exploited to derive planning abstractions and to infer
perfect hash functions for pattern storage. Automated clus-
tering partitions the state space into a set of abstractions with
state spaces that fit into main memory. Planning PDBs are
not always independent, but suitable partitions into groups,
where all operators affect only atoms in the specified set,
always yield independent PDBs.

In this paper we propose symbolic pattern databases
(SPDBs) instead of explicit ones. A SPDB is Boolean func-
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tion H of tuples (v, S). For a given planning state S with
value v, formula H evaluates to true if and only if the esti-
mate of S equals v. Through an efficient representation of
Boolean functions, larger PDBs and more accurate estimates
can be inferred and utilized.

The structure of the paper is as follows. First we give a
concise introduction to PDBs together with proofs of some
important properties. Then we turn the to symbolic repre-
sentation of planning states and operators. Next we intro-
duce symbolic backward exploration to generate SPDBs and
integrate this representation of the heuristic estimate into di-
rected explicit and symbolic search search engines. This al-
gorithmic treatment is followed by a discussion the influence
of SPDBs to search tree growth and exploration efforts. We
evaluate the impact of the algorithms, taking Blocks World
as a selected case study. Finally, we discuss related work,
and finish with a few concluding remarks.

Pattern Databases in AI-Planning
For the sake for simplicity, throughout the paper we consider
grounded propositional planning problems in STRIPS nota-
tion (Fikes & Nilsson 1971) and stick to sequential plan gen-
eration. However, the framework also applies to more gen-
eral planning domain description languages (Fox & Long
2001).

Grounded Propositional Planning
Most successful planners perform grounding.

Definition 1 A grounded propositional planning problem is
a finite state space problem P =< S,O, I,G >, where S ⊆
2A is the set of states, 2A is the power set of set of proposi-
tions A, I ∈ S is the initial state, G ⊆ S is the set of goal
states, and O is the set of operators that transform states into
states. Operators o = (α, β) ∈ O have propositional pre-
conditions α, and propositional effects β = (βa, βd), where
α ⊆ A is the precondition list, βa ⊆ A is the add list and
βd ⊆ A is the delete list. Given a state S with α ⊆ S then
its successor is S′ = S ∪ βa \ βd.

Sequential plans are defined as follows.

Definition 2 A sequential plan π = (O1, . . . , Ok) is an or-
dered sequence of operators Oi ∈ O, i ∈ {1, . . . , k}, that
transforms the initial state I into one of the goal states
G ∈ G, i.e. there exists a sequence of states Si ∈ S,
i ∈ {0, . . . , k}, with S0 = I, Sk = G and Si is the out-
come of applying Oi to Si−1, i ∈ {1, . . . , k}. The length of
a plan π is k, and the minimal k is the optimal sequential
plan length δ(I).

Abstract Planning problems
Instead of the PDB definition based
on fact groups (Edelkamp 2001b), in this paper we prefer
a formal treatment that directly builds upon the above state
space characterization.

Definition 3 Let R ⊆ A be a set of propositional atoms.
A restriction φR is a mapping from 2A into 2A defined as
φR(P ) = {a ∈ P | a ∈ R}. For φR(P ) we also write P |R.

Restrictions imply planning problem abstractions.

Definition 4 An abstract planning problem P|R =
< S|R,O|R, I|R,G|R > of a grounded propositional plan-
ning problem < S,O, I,G > with respect to a set of propo-
sitional atoms R is defined by

1. S|R = {φR(S) | S ∈ S},
2. I|R = φR(I),
3. G|R = {φR(G) | G ∈ G},
4. O|R = {φR(O) | O ∈ O}, with φR(O) for

O = (α, (βa, βd)) ∈ O defined as φR(O) = (α|R,
(βa|R, βd|R)).

Sequential abstract plans for the abstract planning prob-
lem P|R are denoted by πR and optimal abstract sequential
plan length is denoted by δR.

Abstract operators are fixed by intersecting their precon-
dition, add and delete lists with the set of non-reduced facts
in the abstraction. Restriction of operators in the original
space may yield void operators φR(O) = (∅, (∅, ∅)) in the
abstract planning problem, which are discarded from the op-
erator set O|R.

The next result shows that our definition of abstraction is
sound.

Lemma 1 Let R be a set of propositional atoms. Re-
striction φR is solution preserving, i.e., for any se-
quential plan π for the grounded propositional plan-
ning problem P = < S,O, I,G > there exists a sequen-
tial plan πR for the planning state abstraction P|R =
< S|R,O|R, I|R,G|R >.

Moreover, an optimal sequential abstract plan πopt
R for

P|R is always shorter than an optimal sequential plan πopt

for P , i.e. δR(S|R) ≤ δ(S), for all S ∈ S.

Proof: Let π = (O1, . . . , Ok) be a sequential plan for
< S,O, I,G >. Then π|R = (O1|R, . . . , Ok|R) is a solu-
tion for P|R = < S|R,O|R, I|R,G|R >.

Now suppose, that δR(S|R) > δ(S) for some S ∈ S
and let πopt = (O1, . . . , Ot) be the optimal sequential plan
from S to G in the original planning space P then πopt|R =
(O1|R, . . . , Ot|R) is a valid plan in P|R with plan length
less or equal to t = δ(S). This is a contradiction to our
assumption. �

Strict inequality δR(S|R) < δ(S) is given if some oper-
ators Oi|R are void, or if there are alternative even shorter
paths in the abstract space.

Planning Pattern Databases
The above setting allows a precise characterization of plan-
ning PDBs.

Definition 5 A planning PDB PDBR with respect to a set
of propositions R and a grounded propositional planning
problem < S,O, I,G > is a collection of pairs (v, S) with
v ∈ IN and S ∈ S|R, such that v = δR(S). Therefore,

PDBR = {(δR(S), S) | S ∈ S|R}.
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In other words, a PDB is look-up table, addressed by the
abstract planning state providing its minimal abstract solu-
tion length.

Disjoint Pattern Databases
Disjoint PDBs are important to derive admissible estimates.

Definition 6 Two planning PDBs PDBR and PDBQ with
respect to R, Q ⊆ A, R ∩ Q = ∅ are disjoint, if for all
O′ ∈ O|R, O′′ ∈ O|Q we have φ−1

R (O′) ∩ φ−1
Q (O′′) = ∅,

where φ−1
R (O′) = {O ∈ O | φR(O) = O′}.

Lemma 2 Two disjoint planning PDBs PDBR and
PDBQ for a grounded propositional planning problem
< S,O, I,G > and sets of propositions P and Q are ad-
ditive: for all S ∈ S we have δP (S|R) + δQ(S|Q) ≤ δ(S).

Proof:
Let < S|R,O|R, I|R,G|R > and < S|Q,O|Q, I|Q,G|Q >
be abstractions of P =< S,O, I,G > according to P and
Q, respectively, and let π = (O1, . . . , Ok) be an optimal
sequential plan for P . Then, the abstracted plan π|R =
(O1|R, . . . , Ok|R) is a solution for the state space problem
< S|R,O|R, I|R,G|R > and π|Q = (O1|Q, . . . , Ok|Q) is a
plan for < S|Q,O|Q, I|Q,G|Q >. We assume that all void
operators in π|Q and π|R, if any, are removed. Let kQ and
kR be the resulting respective lengths of π|Q and π|R.

Since the PDBs PDBR and PDBQ are disjoint, O′ ∈
π|R and all O′′ ∈ π|Q we have φ−1

R (O′) ∩ φ−1
Q (O′′) = ∅.

Therefore, δR(S|R) + δQ(S|Q) ≤ kR + kQ ≤ δ(S). �

Figure 1: Illustration of a Planning PDB PDBR and Two
Disjoint Planning PDBs PDBR and PDBQ.

In Figure 1 we have illustrated (disjoint) planning PDBs
with respect to the given underlying set A of propositions to
encode a state.

In practice some operators remain non-void in different
abstraction. For example, in our abstractions Logistics al-
ways yields disjoint PDBs, while in Blocks World some in-
terdependent operators remain, since operators in Logistics
modify either the location of a package, a truck or an air-
plane without affecting the others, while in Blocks World a
stack operation changes both the status of the hand and the
block.

In order to retain admissible estimates for the latter case,
during construction conflicting operators can be assigned to
cost zero for all but one PDB. Nevertheless, this technique of
enforced admissibility may reduce the quality of the inferred
estimate.

Partitions and Storage
Next, we consider sets of pattern databases.

Definition 7 A partition Q = {Q1, . . . , Qk} is a collection
of propositional sets Qi, i ∈ {1, . . . , k}, with Qi ∩ Qj = ∅,
1 ≤ i < j ≤ k and

⋃k
i=1 Qi = A. A planning space

partition PQ according to a partition Q is a collection of
planning problems < S|Qi ,O|Qi , I|Qi ,G|Qi >, Qi ⊆ Q,
i ∈ {1, . . . , k}.

The following result is an immediate generalization of
Lemma 2.

Lemma 3 Pairwise disjoint planning PDBs according to
planning space partition PQ for a grounded propositional
planning problem < S,O, I,G > and a partition Q =
{Q1, . . . , Qk} are additive, i.e. for all S ∈ S we have
δQ1(S|Q1) + . . . + δQk

(S|Qk
) ≤ δ(S).

Finding a suitable partition that leads to pairwise disjoint
or to almost pairwise disjoint planning PDBs is not trivial.
For two databases the task is a variant of the graph partition-
ing problem (GPP), which divides the vertices of a given
graph into two equally sized subsets, so that the number of
edges from one subset the other one is minimized. In our
setting, vertices correspond to atoms and edges to opera-
tors. Since GPP is NP complete and the number of atoms
is considerably large, we mimic the approach of (Edelkamp
2001b), which simplifies the problem of finding a suitable
partition of the set of facts to a form of bin-packing (BPP).
For this case, interdependencies are neglected. A group can
be added to an already existing abstraction, if the combined
state space still fits into main memory. BPP is NP complete
but has several efficient approximation algorithms. Cur-
rently, we study how goal fact dependencies can improve
the established partition.

In explicit PDB construction, the PDBs themselves and
the transposition tables (Reinefeld & Marsland 1994) are
represented as hash tables. Therefore, the limit for PDB
construction is the number of (abstract) states that can be
hold in main memory. For improving memory consump-
tion, (Edelkamp 2001b) proposes perfect hash-tables, with
a hash function that assigns each state to a unique number.
In our simpler setting, each state S|R =

⋃
i∈I ai, for the in-

dex set I and atom list (ai)i∈I , is hashed to
∑

i∈I 2i, for a
maximum of 2|R| hash addresses.

Symbolic Pattern Databases
We abstract from the internal representation of sets of states
as binary decision diagram (BDDs) (Bryant 1992). It suf-
fices to know that there BDDs are unique, space-efficient
data structures for representing and manipulating Boolean
formulae.
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States and Operators
Boolean formulae may represent sets of states.

Definition 8 A symbolic representation for a state S ∈ S
with S ⊆ 2A is a set of boolean variables b1, . . . , b|A|, with
bi encoding the truth of propositional atom ai in a given
state, i ∈ N = {1, . . . , |A|}.

If S =
⋃

i∈I ai, then its encoding is (
∧

i∈I bi) ∧
(
∧

i∈N\I ¬bi). Sets of states
⋃

j∈J Sj are encoded as∨
j∈J ((

∧
i∈Ij

bij) ∧ (
∧

i∈N\Ij
¬bij)).

Transitions relations are Boolean expressions for opera-
tor application. They encode all valid (state, successor state)
pairs utilizing twice the number of Boolean state variables;
2 · |A| in our case. In practice, the transition relation is gen-
erated as the disjunct of the representations of all grounded
operators, which in turn are defined as Boolean expressions
of their precondition, add and delete lists.

Definition 9 The transition relation T (b, b′) of a set of op-
erators O ∈ O is the disjunct T (b, b′) =

∨
O∈O TO(b, b′).

For O = (α, (βa, βd)) we have TO(b, b′) = (
∧

ai∈α bi) ∧
(
∧

aj∈βa
b′j)∧(

∧
ak∈βd

¬b′k)∧frame(b, b′), where frame en-
codes that all other atoms are preserved, i.e. frame(b, b′) =∧

aj /∈α∪βa∪βb
(bj ≡ b′j).

Similarly, the relaxed transition relation T |R according
the set of proposition R is constructed with respect to the set
of operators O|R = (α|R, (βa|R, βd|R))

The image I of the state set From with respect to the tran-
sition relation T is computed as I(b′) = ∃b′ (T (b, b′) ∧
From(b′)). In this image computation, T (b, b′) is not
required to be built explicitly, since with T (b, b′) =∨

O∈O TO(b, b′) we have I(b′) =
∨

O∈O(∃b′ TO(b, b′) ∧
From(b′)).

Therefore, the monolithic construction of T (b, b′) can be
bypassed. Our current implementation organizes the image
computation in form of a balanced tree. Through the suc-
cess of conjunctive partitioning and reordering techniques
in hardware verification (Meinel & Stangier 2001), refined
disjunctive partitioning approaches are an apparent issue for
future research.

Pattern Database Construction
Complete symbolic breadth-first search (BFS) is one form
of reachability analysis of the planning space. Let Si be the
set of planning states reachable from the initial state S in i
steps, initialized by S0 = I. An encoded state S belongs to
Si if it has a predecessor S′ in the set Si−1 and there exists
an operator which transforms S′ into S. All sets of states are
identified by their respective characteristic formulae.

We apply backward symbolic exploration for SPDB con-
struction as follows. The symbolic PDB PDB|R, is ini-
tialized to G|R and, as long as there are newly encountered
states, we take the current list of horizon nodes and generate
the predecessor list with respect to T |R. Then we attach the
current BFS level to the new states, merge them with the set
of already reached state states and iterate. In the following

algorithm Construct Symbolic Pattern Database, Reached is
the set of visited states, Open is current search horizon, and
Pred is the set of predecessor states.

Algorithm Construct Symbolic Pattern Database
Input: Planning space abstraction

P|R = < S|R,O|R, I|R,G|R >
Output: Symbolic Pattern Database PDB|R

Reached(b′) ← Open(b′) ← G|R(b′)
i ← 0
while (Open �≡ ∅)

Pred(b) ← ∃b′ Open(b′) ∧ T |R(b, b′)
Pred(b′) ← Pred(b) [b ↔ b′]
Open(b′) ← Pred(b′) ∧ ¬ Reached(b′)
PDB|R ← PDB|R ∨ (v = i ∧ Open(b′))
Reached(b) ← Reached(b) ∨ Open(b)
i ← i + 1

return PDB|R
Weightening the heursitic estimate according to a factor γ

is achieved by setting (v = i) to (v = γi).
Note that beside the capability to represent large sets of

states in the exploration, symbolic PDB have one further ad-
vantage to explicit ones: fast initialization. In the definition
of most planning problems G is not given as a collection of
states, but as a smaller selection of atoms ai, i ∈ I ′ ⊂ I . In
explicit PDB construction all states G ∈ G have to be gen-
erated and to be inserted into the BFS queue, while for the
symbolic construction, initialization is immediate.

Explicit Pattern Database Search
SPDBs can easily be incorporated to any explicit heuristic
search engine, e.g. Algorithm Explicit Pattern Database
Search illustrates A* exploration with SPDBs.

Algorithm Explicit Pattern Database Search
Input: Planning space P =< S,O, I,G >,

Symbolic Pattern Database PDB|R
Output: Solution length δ(I)

Insert(Open, (I,PDB|R(I)))
while (Open �= ∅)

S ← DeleteMin(Open)
if (S ∈ G) return g(S)
for all successors S′ of S

f(S′) ← f(S) + 1 + PDB|R(S′) − PDB|R(S)
if (Search(Open, S))

if (f ′(S) < f(S))
DecreaseKey(Open, (S, f ′(S))

else Insert(Open, (S, f ′(S))

The set of horizon nodes Open is represented as a pri-
ority queue with usual access operations DeleteMin, Insert,
and DecreaseKey. For the sake of brevity, we have omitted
re-opening and concentrate on only one PDB, since gener-
alizations to planning pattern partitions PDB|Q are easy to
obtain.
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For each extracted state S we have f(S) = g(S) + h(S),
where g is the actual distance to state S. The new f -value
of a successor S′ is calculated as f(S′) = g(S′) + h(S′) =
g(S) + 1 + h(S′) = f(S) + 1 + (h(S′) − h(S)).

Apparently, the design of explicit search algorithms with
symbolic PDB heuristics is not different to the design of
algorithms for any other incorporated estimate. The only
change is the computation of the estimate h(S) for state S
with respect to PDB|R.

To query the symbolic PDB PDB|R with state S =
⋃

i ai,
denoted as PDB|R(S), we first compute the symbolic rep-
resentation

∧
i bi of S. Then we determine the conjunct of∧

i bi with PDB|R. The operation yields (
∧

j vj)∧ (
∧

i bi),
where (

∧
j vj) encodes the estimate. Last but not least,

the formula (
∧

j vj) is converted back to an ordinary nu-
merical quantity. Since

∧
i bi is already simple, computing

its conjunct with PDB|R is fast in practice. Conversion
would not be necessary at all, if instead of BDDs – as in
our implementation – arithmetic decision diagrams (ADDs)
were used. For this case, the heuristic estimate is deter-
mined in time linear to the encoding length. If several SPDs
Q1, . . . , Qk are addressed, we compute the estimate h(S) =
h1(S) + . . . + hk(S) with respect to h1(S) = PDB|Q1(S),
h2(S) = PDB|Q2(S), . . . , hk(S) = PDB|Qk

(S).

Symbolic Pattern Database Search
In the symbolic version of heuristic search the algorithm de-
termines all successor states for a set of successors in one
evaluation step. The heuristic is represented as a binary re-
lation of estimate and state variables. In the exploration al-
gorithm the open list of generated nodes is represented as an
encoded set of buckets with bucket f containing all states in
open with merit f = g + h .

Algorithm Explicit Pattern Database Search starts with
the Boolean representation of the initial state, attaches its
estimate and similarly to the explicit case, it iterates state
extraction and successor set generation until the goal has
been found. However, in contrast to the setting above, we
extract sets of states Min with minimum f -value fmin and
compute their respective successor sets Succ by applying
the transition relation. To find the f -value for the succes-
sor states we apply symbolic representation of the heuris-
tic estimator PDB|R to the pre-image and the image of
transition relation application. The correctly associated val-
ues h, h′ are then quantified to yield the successor f -value
(f = fmin + h′ − h + 1). For best-first search the formula
simplies to f = h′.

The superimposed distribution PDB|R+Q of two PDBs
PDB|R and PDB|Q approximates PDB|R∪Q. It can be
computed beforehand to be conjuncted with Min and Succ
in the algorithm. The alternative avoids the pre-computation
of PDB|R+Q and combines PDB|R and PDB|Q with Min
and Succ during the execution. Our implementation allows
both options.

Algorithm Symbolic Pattern Database Search
Input: Planning space P =< S,O, I,G >,

Symbolic Pattern Database PDB|R
Output: Solution length δ(I)

Open(f, b)← PDB|R(f, b) ∧ I(b)
do

fmin = min{f | f ∧ Open(f, b) �= ∅}
Min(f) ← ∃f (Open(f, b) ∧ f = fmin)
Rest(f, b) ← Open(f, b) ∧ ¬ Min(b)
Min(h, b) ←PDB|R(h, b) ∧ Min(b)
Succ(h, b′) ← ∃b T (b, b′) ∧ Min(h, b)
Succ(h, b) ← Succ(h, b′) [b ↔ b′]
Succ(h, h′, b) ←PDB|R(h′, b) ∧ Succ(h, b)
Succ(h, h′, f, b) ← Succ(h, h′, b) ∧ f = fmin

Succ(f ′, b) ← ∃h, h′, f
Succ(h, h′, f, b) ∧ (f ′ = f + h′ − h + 1)

Succ(f, b) ← Succ(f ′, b) [f ↔ f ′]
Succ(f, b) ← Succ(f, b) ∧ ¬ Reached(b)
Open(f, b) ← Rest(f, b) ∨ Succ(f, b)
Succ(b) ← ∃f Succ(f, b)
Reached ← Reached(b) ∨ Succ(b)

while (Open ∧ G ≡ ∅)
return fmin

Given a uniform weighted problem graph and a consistent
heuristic (h(v)−h(u)+w(u, v) ≥ 0) the worst-case number
of iterations has been shown to be O(δ2(I)) (Edelkamp &
Reffel 1998).

Search Tree Prediction
Heuristic PDBs are also an efficient mean for heuristic
search tree prediction, since they approximate the overall
distribution of heuristic estimates in the state space. Assum-
ing that patterns occur equally likely in the search space, the
overall probability of estimate h being less than or equal to
k is

P (h ≤ k) = |{P ∈ PDB | h(P ) ≤ k}|/|PDB|.

To predict the heuristic search tree expansion of the prob-
lem graph that is labeled with node costs f = g + h, the
main result in (Korf, Reid, & Edelkamp 2001) states that
the expected total number of tree nodes according to cost
threshold θ is approximately equal to

θ∑

d=0

n(d)P (h ≤ θ − d) , (1)

where n(d) is the number of states in the brute-force
search tree with depth d and P is the equilibrium distribu-
tion, defined as the probability distribution of heuristic val-
ues in the limit of large depth. In the framework of spectral
analysis, n(d) can be computed in closed form (Edelkamp
2001c).

Since Equation 1 is a very good predictor for the num-
ber of nodes in IDA* and yields at least a good trend for
A*’s exploration effort, it has been used for evaluating the
effectiveness of PDBs (Hernadvölgyi 2000). For the sake
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of simplicity we focus on the mean heuristic value h =∑
k k · |{P ∈ PDB | h(P ) = k}|/|PDB|. In the limit

of large θ, the branching factor b, i.e. the ratio of search tree
nodes with respect to two consecutive threshold values, con-
verges (Edelkamp 2001c). The effect of the heuristic is to
reduce the search tree size from O(bd) to O(bd−c) for some
constant c ≈ h (Korf 1997).

Therefore, heuristics are best thought of as offsets to the
search depth. The higher the average heuristic value, the
smaller the effective search tree depth, i.e., the shallower
the search with respect to the brute-force search tree. The
following case study displays the effect of explicit and sym-
bolic PDBs on h.

Case Study
As a case study we chose Blocks World, since finding opti-
mal plans is still a challenge for domain-independent plan-
ners. No form of knowledge was added to the planner, we
switched off all branching cuts. Cuts significantly speed up
exploration, but most proposed control knowledge in plan-
ning is domain-dependent or apply to certain sets of bench-
mark domains only.

Pattern Database Construction
In Tables 1 and 2 we present the results on constructing sym-
bolic PDBs in selected Blocks World problems of the AIPS-
2000 set. The total number of pattern s in the databases and
the respective averaged heuristic estimates h are shown. As
the problems size p gets larger, more and more PDBs were
generated (separated by /).

p s h
4 108 6.20
5 1,029 8.85
6 12,288 11.49
7 26,244/8 11.72/1.62
8 50,000/80 11.26/3.57
9 87,846/968 11.69/6.37

10 145,152/13,824 11.35/8.59
11 228,488/228,488 11.38/11.39
12 27,440/27,440/2,156 8.64/8.64/5.79
13 37,125/37,125/37,125 8.66/8.66/8.66
14 49,152/49,152/49,152/15 8.03/8.03/8.03/1.80
15 63,869/63,869/63,869/255 8.69/8.69/9.35/3.75

Table 1: Number of States s and Mean Heuristic Value h in
Blocks World PDBs according to m = 220.

The averaged heuristic estimates increase significantly
when moving from m = 220 to m = 230, while the number
of PDBs shrinks accordingly.

Table 3 compares the growth of the symbolic representa-
tion with respect to the number of states. We took the first
PDB in Blocks World Problem 15 with m = 230 as an ex-
ample. The predicted state space size is 410,338,673. Since
this corresponds to maximum perfect hash table capacity,
explicit exploration was no longer available.

p s h
4 1,08 6.20
5 1,029 8.85
6 12,288 11.49
7 1,777,147 14.14
8 3e+06 16.80
9 5.84e+07 19.47

10 1.43e+08 19.55/1.72
11 2.89e+07/1,690 17.05/6.47
12 5.27e+07/27,440 16.29/8.05
13 9.11e+07/506,250 16.89/10.93
14 1.50e+08/1.04e+07 16.56/13.77
15 2.41e+08/2.41e+08 16.59/16.56

Table 2: Number of States s and Mean Heuristic Value h in
Blocks World PDBs according to m = 230.

d t b s
0 0.00s 35 1
2 0.01s 103 39
4 0.01s 311 586
6 0.03s 858 5,792
8 0.13s 2,576 55,911

10 0.66s 6,879 538,771
12 2.56s 14,583 4.01e+06
14 7.60s 24,547 1.87e+07
16 12.60s 30,238 4.51e+07
18 10.69s 22,592 4.14e+07
20 4.48s 7,655 1.02e+07
22 0.45s 993 467,551

Table 3: Node Count b and Number of States s for Con-
structng a SPDB in Blocks-World Problem 15.

Table 3 depicts the node and state counts for each itera-
tion in the construction phase. The results indicate that by
far more states are encountered than BDD nodes were nec-
essary to represent them. In this case the effect of symbolic
representation corresponds memory gains of up to about two
orders of magnitude. With m = 240, for which exploration
was still possible, the effect increases up to about four orders
of magnitude. We also observe that the peak node count for
the is also established earlier then the peak state count.

Explicit Search
Table 4 compares the CPU times1 of explicit and sym-
bolic PDB construction with the exploration time in explicit

1Most of the experiments were run on a Sun UltraSparc Work-
station with 248 MHz. Since exact running-times reflect too many
issues of the current implementation, for the interpretation of re-
sults we are mainly interested in comparing performance growth.
Memory was restricted as follows. The pattern databases were ei-
ther limited to m = 220 states or m = 230 states; for explicit
search we chose 2,000,000 stored states as the exploration bound.
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search. We took the same heuristic estimate and m = 220.
Since the qualities of the different PDBs match, the same
set of states was considered. The search algorithm we chose
was A* with weight 2 (f = g + 2h). Besides the prob-
lem number, the depth of the solution and the number of
expanded nodes, we also displayed PDB construction time
tc and explicit search time ts with respect to explicit pattern
and symbolic PDBs, subscripted by e and s.

p d e tce tse tcs tss
4 6 7 0.01s 0.00s 0.03s 0.00s
5 12 15 0.05s 0.00s 0.04s 0.00s
6 12 13 0.49s 0.00s 0.30s 0.00s
7 24 40 1.39s 0.00s 0.52s 0.01s
8 20 1,590 2.98s 0.10s 0.67s 0.40s
9 32 34,316 6.18s 3.75s 0.81s 13.92s

10 34 47,657 12.55s 5.72s 1.23s 16.35s
11 38 7,941 0.91s 3.09s 1.80s 3.04s
12 38 34,323 4.67s 5.31s 1.73s 13.24s
13 - - 10.55s - 2.45s -
14 40 254,769 15.16s 58.23s 3.32s 150.43s
15 - - 21.88s - 5.51s -

Table 4: Time for PDB Construction and Explicit Search in
Blocks World.

In the result we obtain a trade-off between explicit and
symbolic search. While symbolic PDB construction is sig-
nificantly faster, search time is larger. As indicated above, an
ADD implementation for the heuristic lessens the per-node
retrieval overhead for SPDBs.

Symbolic Search

In this set of experiments we measured the performance of
the symbolic search algorithm. We used forward heuristic
search with respect to the provided SPDBs, accompanied by
a symbolic backward traversal. The search direction was
chosen in favor to the exploration side that used less time
in the previous iteration. The memory bound was set to
m = 230, so at most 2 PDBs were constructed. By the
choice of dependent PDBs, the results in Table 5 were not
necessarily optimal. The headings are read as follows: p is
the problem number, d is the depth of the solution, if and ib
are the number of forward and backward iterations, tcs is the
PDB construction time, tcs is the symbolic search time, and
tb is time for bidirectional symbolic BFS.

The peak PDBs size at p = 11 reflects that the maxi-
mum number of patterns in the database is roughly equal
to the state space size. As the comparison of tss with tb
shows, we can obtain better results as with bi-directional
symbolic BFS, which besides SAT enumeration (Kautz &
Selman 1996), is state-of-the-art in optimal sequential plan
generation. Another observation is that in case of failure,

For symbolic exploration we allocated at most 8,000,000 BDD
nodes.

p d if ib tcs tss tb
4 6 6 0 0.02s 0.21s 0.17s
5 12 12 0 0.04s 0.30s 0.30s
6 12 12 0 0.30s 0.43s 1.09s
7 20 20 0 3.95s 0.76s 11.34s
8 18 9 11 0.67s 0.40s 2.80s
9 30/32 25 12 0.81s 13.92s 38.16s

10 34 60 12 66.16s 58.02s 297.51s
11 32/38 52 11 1,218s 261.76s 742.14s
12 34/36 142 15 38.57s 224.13s 1,059s
13 - 147 17 48.88s time memory
14 -/38 52 11 59.05s 150.92s memory
15 - - - time - memory

Table 5: CPU Performance for PDB Construction and Sym-
bolic Search in Blocks World.

symbolic heuristic search with PDBs never runs out of mem-
ory but out of time. For symbolic engines this is a very un-
usual behavior. In Problem 13 time was exceeded in explo-
ration, while for Problem 15 the time threshold was encoun-
tered when merging the two PDBs into a combined one.

PDBs have also been successfully applied to other chal-
lenging propositional planning domains (Edelkamp 2001b).
The results do transfer to the symbolic setting. In simple
domains like Gripper, all running times (for A* and best-
first explicit and symbolic exploration with explicit and sym-
bolic PDBs) were bounded by far less than a minute. Ta-
ble 6 displays the CPU performance of explicit search with
(S)PDBs in Logistics. In symbolic best-first search (f = h)
we solved each problem in less than a minute, while sym-
bolic A* (f = g + h) and symbolic BFS (f = g) failed in
larger problem instances. The space bound is 220 and, once
more, the search algorithm is A* with weight 2. The sav-

p d e tce tse tcs tss
4 20 21 1.52s 0.00s 0.11s 0.00s
5 27 33 0.70s 0.01s 0.08s 0.02s
6 25 30 5.90s 0.00s 0.10s 0.07s
7 37 48 27.54s 0.01s 0.64s 0.06s
8 34 50 26.99s 0.02s 2.33s 0.06s
9 36 43 27.62s 0.01s 0.91s 0.08s

10 36 81 52.97s 0.04s 1.01s 0.12s
12 44 79 53.02s 0.02s 1.14s 0.11s
13 75 138 22.92s 0.08s 4.18s 0.42s
14 66 143 22.99s 0.09s 4.42s 0.36s
15 84 186 23.39s 0.15s 4.81s 0.51s

Table 6: Time for PDB Construction and Explicit Search in
Logistics.

ings in explicit database search time are counter-balanced
by acorresponding increase in construction time. One inter-
esting observation in Logistics and Gripper is that through
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the highly asynchronous problem structure even very small
databases lead to good accumulated estimates. Therefore,
very large problems can effectively be solved with PDB.

We have not considered metric planning problems, where
PDBs are to be constructed according to their shortest-path
distances to the goal. Since the awarded, 2002 competition
version of MIPS 2 schedules sequential plans, we integrated
(S)PDB for sequential plan generation with mixed results.

Related Work
In the Model-Based Planner, MBP, the paradigm of plan-
ning as symbolic model checking (Giunchiglia & Traverso
1999) has been implemented for non-deterministic planning
domains (Cimatti, Roveri, & Traverso 1998), which classi-
fies in weak, strong, and strong-cyclic planning, with plans
that are represented as complete state-action tables. For
partial observable planning, exploration faces the space of
belief states; the power set of the original planning space.
Therefore, in contrast to the successor set generation based
on action application, observations introduce “And” nodes
into the search tree (Bertoli et al. 2001). Since the approach
is a hybrid of symbolic representation of belief states and
explicit search within the “And”-“Or” search tree, simple
heuristic have been applied to guide the search. The need
for heuristics that trade information gain for exploration ef-
fort is also apparent need in conformant planning (Bertoli,
Cimatti, & Roveri 2001). The authors label the obtained
search algorithms as a new paradigm of heuristic-symbolic
search and report savings in orders of magnitudes with re-
spect to BFS. In contrast to our approach, where Boolean
function encode perfect knowledge, the symbolic represen-
tation compensates partial knowledge of the current state.
Moreover, Bertoli et al. consider heuristics for guiding the
choice of the belief states with no symbolic heuristic esti-
mates as in our case. Since the first estimate was rather triv-
ial – it preferred belief states with low cardinality – recent
work (Bertoli & Cimatti 2002) proposes improved heuris-
tic for belief space planning. Nevertheless, we view unpub-
lished work on abstraction (Cimatti, Giunchiglia, & Roveri
2000) closest to our approach of symbolic PDBs. It origins
in Abstrips abstractions, but lacks experimental results.

The awarded model checking integrated planning sys-
tem MIPS (Edelkamp & Helmert 2001) is a competitive
deterministic planning system based on model checking
methods. The planner incorporates symbolic, explicit and
metric heuristic planning strategies (Edelkamp 2002). Its
type-inference mechanism and fact enumeration algorithm
groups mutually exclusive facts to infer a concise state en-
doding (Edelkamp & Helmert 1999). Heuristic symbolic
search with the (weighted) BDDA* algorithm has shown
a significant time and space reduction for planning prob-
lems that were intractable for breadth-first symbolic explo-
ration (Edelkamp 2001a). As a symbolic heuristic, the goal
was splitted into atoms and either a relaxed plan or the
single-atom heuristic was computed and accumulated. The

2See www.informatik.uni-freiburg.de/∼mmips.

approach could not compete with state-of-the art planners,
and, different to SPDBs, the pre-compiled symbolic esti-
mates provided no information gain to accelerate explicit
heuristic search planners.

The UMOP system parses a non-deterministic agent do-
main language that explicitly defines a controllable system
in an uncontrollable environment (Jensen & Veloso 2000).
The planner also applies BDD refinement techniques such
as automated transition function partitioning. New result for
the UMOP system extends the setting of weak, strong and
strong cyclic planning to adversarial planning, in which the
environment actively influences the outcome of actions. In
fact, the proposed algorithm joins aspects of both symbolic
search and game playing. Jensen also reports some prelim-
inary and unpublished successes on planning with domain
abstractions. As one drawback, the loss of solution quality
seemed to be significant.

With SetA*, (Jensen, Bryant, & Veloso 2002) provide an
improved implementation of the symbolic heuristic search
algorithm BDDA* (Edelkamp & Reffel 1998) and Weighted
BDDA* (Edelkamp 2001a). Based on supplied source code
the consise state encoding and the max-atom heuristic func-
tion of MIPS could be reproduced3. One major surplus is
to maintain a finer granularity of the sets of states in the
search horizon kept in a matrix according to matching g-
and h- values. This contrasts the plain bucket representation
of the priority queue based on f -values. The heuristic func-
tion is implicitly encoded with value differences of grounded
actions. Since sets of states are to be evaluated and some
heuristics are state rather than operator dependent it has still
to be shown how general this approch is. As above the
considered planning benchmarks are seemingly simple for
single-state heuristic search exploration (Hoffmann 2002;
Helmert 2001). We expect better and more general results
when applying SPDBs.

Recent, yet unpublished work of Hansen, Zhou, and
Feng (Hansen, Zhou, & Feng 2002) also re-implemented
BDDA* and suggest that symbolic search heuristics and ex-
ploration schemes are probably better to be implemented
with algebraic decision diagrams (ADDs), as available in
Somenzi’s CUDD package. Although the authors achieved
no improvement to (Edelkamp & Reffel 1998) to solve
the (n2 − 1)-Puzzle, the established generalization to
guide a symbolic version of the LAO* exploration algo-
rithm (Hansen & Zilberstein 1998) for probabilistic or
Markov decision process (MDP) planning, results in a
remarkable improvement to the state-of-the-art (Feng &
Hansen 2002). Since its input – as in our case – is a symbolic
representation of the estimate, the contributed progress in
estimate quality calls for generalizations of SPDBs to prob-
abilistic planning.

In BDD-based hardware verification, guided search and
prioritized model checking are emerging technologies.

3In their paper, the authors compare SetA* with the implemen-
tation of BDDA* in MIPS of early 2001. While the results in Lo-
gistics seem plausible, unfortunately, we cannot reproduce the bad
behavior of our implementation in the Gripper domain.
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(Yang & Dill 1998) used BDD-based symbolic search based
on the Hamming distance of two states. This approach has
been improved in (Reffel & Edelkamp 1999), where the
BDD-based version of A* for the µcke model checker out-
performs symbolic BFS exploration for two scalable hard-
ware circuits. The heuristic is determined in a static anal-
ysis prior to the search taking the actual circuit layout and
the failure formula into account. The approach of sym-
bolic guided search in CTL model checking documented
in (Bloem, Ravi, & Somenzi 2000) applies ‘hints’ to avoid
sections of the search space that are difficult to represent for
BDDs. This permits splitting the fix-point iteration process
used in symbolic exploration into two parts yielding under-
and over-approximation of the transition relation. Bene-
fits of this approach are simplification of the transition re-
lation, avoidance of BDD blowup and a reduced amount
of exploration for complicated systems. However, in con-
trast to our approach providing ‘hints’ requires user inter-
vention. Also, this approach is not directly applicable to
explicit exploration, which is our main focus. Prioritized
traversals are also concerned for formal hardware verifica-
tion at IBM (Fraer et al. 2000). The approach bases on
the work of (Cabodi, Camurati, & Quer 1996) and splits
the symbolic search frontier into parts to ease approximate
reachability.

Conclusion
This paper puts forth the idea of PDB construction to im-
prove the computed average of the admissible heuristic,
which in turn corresponds to a relative decrease in search
depth. We have also seen a sound formal treatment for
PDBs in planning for both explicit and symbolic construc-
tion. The experiments highlight that with symbolic repre-
sentation and reachability analysis, very large databases can
be constructed, for which explicit methods necessarily fail.

The approach improves one of the three major classes
of heuristics in planning, namely Plan Abstraction. The
other two are: Plan relaxation, as implemented in the FF
planner (Hoffmann & Nebel 2001), which is a informative
on-line computed estimate, and Bellman approximation, as
implemented in the max-atom and max-pair heuristics for
HSP, which also consideres groups of atoms. In contrast to
this paper Bellman approximation simplifies the exploration
without simplifying the operator representation (Haslum &
Geffner 2000).

PDBs consider subproblem interactions of larger groups
and include more knowledge into the estimate than the max-
pair heuristic. On the other hand, since FF and the PDB
heuristics are very different in their characteristics, the nat-
ural question arises of how to combine the two for an even
better estimate. Even though node expansion is more time
consuming for the relaxed plan graph estimate, it yields bet-
ter information on groups that do not appear in the goal de-
scription.

Our implemented proposal is to group the number of add
atoms that match the backward plan extraction of the relaxed
plan graph in FF according to the obtained group partition-

ing. With respect to each planning space abstraction the bet-
ter FF or PDB, value can be selected. Since FF’s heuristic is
somewhat misguided in Blocks World, yielding very low es-
timates in states far away from the goal state, we can achieve
almost arbitrary large improvements for A*-like searches.

Our approach accelerates both explicit and symbolic
search. Explicit heuristic search planners can now access
better off-line estimates and by weighting the symbolic
heuristic search algorithm we can scale the solution quality.
Symbolic heuristic search planning – possibly better to be
implemented with ADDs – now appears as a real competi-
tor for blind symbolic breadth-first exploration. Moreover,
the paper provides a bridge from explicit to symbolic search.
In both planning and model checking there are two distinc-
tive research branches according to the chosen representa-
tion. We have established an effective interplay between
these methods by combining state-of-the art techniques from
both fields. Future research on checking safety property will
try to consolidate these findings in model checking domains.
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