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1 Pr�ecisIf the relationship between intelligence and computation is taken seriously, then intelligencecannot be explained by intractable theories because no intelligent creature has the timeto perform intractable computations. Nor can intractable theories provide any guaranteesabout the performance of engineered systems. Presumably, robots don't have the time toperform intractable computations either.Of course, when partial or approximate solutions are acceptable, heuristic theories area valid approach, i.e., theories for e�ciently solving most, but not all, instances. However,my purpose is not to consider the relative merits of heuristic theories and tractable theories.Instead, I shall focus on formulating tractable planning problems, both optimal and non-optimal, in which all instances can be e�ciently solved.Planning is the reasoning task of �nding a sequence of operators that achieve a goal froma given initial state. It is well-known that planning is intractable in general, and that severalobstacles stand in the way [9]. However, there are few results that provide clear dividinglines between tractable and intractable planning. Below, I clarify several of these dividinglines by analyzing the computational complexity of a planning problem and a variety ofrestricted and augmented versions. From the perspective of the expressiveness-tractabilitytradeo� [27], I primarily consider the expressiveness of operators and formulas.1.1 Previous ResearchThe literature on planning is voluminous, and no attempt to properly survey the planningliterature is attempted here. Instead, the reader is referred to Allen et al. [1] and Hendler etal. [23]. Despite the sizable literature, results on computational complexity are sparse.Dean and Boddy [12] analyze the complexity of temporal projection|given a partialordering of events and causal rules triggered by events, determine what conditions must betrue after each event. Their formalization of temporal projection shares many features withplanning, e.g., their causal rules contain antecedent conditions (preconditions) and addedand deleted conditions (postconditions). However, they only consider problems of predictionin which a partial ordering of events is given, whereas the equivalent planning problem wouldbe to �nd some ordering of any set of events that achieves some set of conditions.Korf [25] considers how various global properties of planning problems (e.g., serializablesubgoals, operator decomposability, abstraction) a�ect the complexity of using problem spacesearch to �nd plans. In contrast, I focus exclusively on local properties of operators. However,except for Korf's own analysis of operator decomposability [24], neither he nor I describethe relationship from these properties of planning problems to the properties of operators.Clearly, this is an issue that future work should address.Perhaps the most important complexity results for planning are due to Chapman's anal-ysis of tweak [9]. Because virtually all other planners are as expressive as tweak, Chap-man's results have wide applicability. tweak's representation includes the following fea-tures. The preconditions and postconditions of an operator schema are �nite sets of \propo-sitions." A proposition is represented by a tuple of elements, which may be constants orvariables, and can be negated. A postcondition of an operator can contain variables not1



speci�ed by any precondition of the operator, which in e�ect allows creation of new con-stants.Chapman proved that planning is undecidable and so clearly demonstrated the di�cultyof planning in general, but did not show what features of tweak's representation are toblame for the complexity. Erol et al. [16] analyze tweak-like planning further, showing thatplanning is undecidable only if the number of constants is in�nite. They also demonstratethat if the set of constants are �nite, the operators are �xed, no functions are allowed, andno negative pre- or postconditions are permitted, then tweak-like planning is polynomial.However, this is a very specialized kind of planning problem, and it is not clear how someof these conditions can be relaxed.There are also some results concerning the tractability of very specialized kinds of plan-ning. In the case where states are value assignments to �nite-valued state variables, B�ackstr�omand Klein [3] show that planning is tractable if each operator has one postcondition, i.e.,changes the value of one variable, if the preconditions of any two operators do not require dif-ferent values for non-changing variables, and if no two operators have the same postcondition.Ratner and Warmuth [34] show that �nding optimal solutions to the n � n generalizationof the 8-puzzle is NP-hard. Gupta and Nau [21] and Chenoweth [11] show that optimalblocks-world planning is NP-hard. Bacchus and Yang [2] present tractable tests for deter-mining when an hierarchical planning problem has a property called downward re�nement,i.e., every abstract solution can be re�ned into a concrete solution. While these resultsprovide valuable insight into specialized problems, they provide little information about thecomplexity of planning as a whole.1.2 Models of PlanningI analyze two closely related models of planning. Both models are impoverished comparedto working planners. They are intended to be tools for theoretical analysis rather thanprogramming convenience. The results for these models apply to �rst-order STRIPS planning[28] when there is a limited number of relevant ground formulas.The �rst model of planning, called \propositional STRIPS planning," is STRIPS planning[17] in which an initial state is a �nite set of ground atomic formulas, indicating that thecorresponding conditions are initially true, and that all other relevant conditions are initiallyfalse; the preconditions and postconditions of an operator are ground literals; and the goalsare ground literals. Operators in this model do not have any variables or indirect side e�ects.First-order STRIPS planning can be reduced to propositional STRIPS planning if the initialstate and goal conditions are ground literals, all pre- and postconditions of operators areliterals, and the number of relevant ground atomic formulas is limited. See Section 2 for amore complete description.The second model of planning, called \extended propositional STRIPS planning," aug-ments propositional STRIPS planning with a \domain theory" for inferring additional e�ects,where a domain theory is a set of ground formulas. The rami�cation problem1 is �nessed byrequiring a preference ordering of all the literals so that, roughly, if two literals are true of1The rami�cation problem is that the e�ects of an operator in the context of a formula can be ambiguous[19, 20]. For example, if A _ B _ C is a formula in the domain theory, and if an operator deletes A, it isambiguous whether B or C should result. 2



the previous state, and if it is inconsistent to assert both in the next state, then the orderingspeci�es which literal remains true. The preference ordering ensures that the result of apply-ing an operator is unambiguous. First-order STRIPS planning can be reduced to extendedpropositional STRIPS planning if the number of relevant ground formulas is limited.2 SeeSection 5 for a more complete description.Propositional STRIPS planning is equivalent to Nilsson's [33] simpli�ed description ofSTRIPS except that propositional STRIPS planning requires that each planning instanceexplicitly speci�es all relevant ground atomic formulas. Extended propositional STRIPSplanning is most closely related to Ginsberg and Smith's [20] possible world approach toreasoning about actions. Each state in extended propositional STRIPS planning correspondsto a \partial world" with the domain theory as \protected" formulas, and the state resultingfrom operator application corresponds to a \possible world." Besides the fact that theyuse �rst-order formulas, the other major di�erence is that the resulting partial world forGinsberg and Smith is taken to be the agreement among \all possible worlds," which leadsto ambiguity where the possible worlds con
ict, rather than preferring a particular possibleworld.1.3 Summary of ResultsDi�erent planning problems can be de�ned by placing limits on the number of pre- andpostconditions, by restricting negation in pre- and postconditions, by requiring optimal plans,and by restricting the domain theory. Figures 1, 2, and 3 summarize the results. A few ofthe results are due to Erol et al. [16], and are footnoted accordingly.1.3.1 PLANSATLet PLANSAT be the problem of determining the existence of a solution for propositionalSTRIPS planning. Figure 1 illustrates the complexity of PLANSAT under various re-strictions, showing which PLANSAT problems are PSPACE-complete, NP-complete, andpolynomial.3 Section 3 contains the proofs for these results.Each box in the �gure denotes limitations on the number of pre- and postconditions|a* indicates no limits. Also, some boxes denote restrictions on negation using the + symbol.For example, the following box: 2 + preconds2 postconds.2This assertion requires at least two quali�cations. One is that I assume that all non-literal formulasin the initial state and in the postconditions of operators are true in all states, as is done in Lifschitz'sformalization of the semantics of STRIPS planning [28]. The other is that I assume (speculatively) that anysolution to the rami�cation problem can be implemented in any given domain as a preference ordering ofliterals plus appropriate formulas in the domain theory.3A problem is in PSPACE if it can be solved using an amount of space that is a polynomial of the sizeof the input. PSPACE-complete problems are the hardest problems in PSPACE. As is customary, I assumethat PSPACE-complete problems are harder than NP-complete problems, which in turn are harder thanpolynomial problems. However, even P 6= PSPACE is not yet proven.3
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Figure 1: Complexity Results for PLANSATsays that operators are limited to two positive preconditions and two postconditions. Onebox in Figure 1 indicates that the number of goals is bounded by a constant g. The arrowsindicate subproblem relationships.4PLANSAT is in PSPACE because the size of a state is bounded by the number ofconditions. Although the length N of a solution plan might be exponential, an algorithmonly needs memory for O(lgN) states to determine if a solution exists [35]. Namely, analgorithm Plan-Exists(S1; S2; N) that determines the existence of a plan from state S1 tostate S2 of length N or less can be implemented as follows: for N = 1, check if S1 = S2or if applying any operator to S1 results in S2; for N > 1 iterate over all states S3, andrecursively call Plan-Exists(S1; S3; dN=2e) and Plan-Exists(S3; S2; bN=2c)). Note thatthe depth of the recursion is logarithmic in N .4The following are other results that were left out the �gure because they were judged to be less interesting,but are listed here for completeness. Their proofs are omitted from the paper. For any constant k � 1,PLANSAT is NP-hard if each operator is limited to k preconditions and one postcondition. For any constantk � 1, PLANSAT is NP-hard if each operator is limited to one precondition and k postconditions. PLANSATis NP-complete if each operator is limited to positive preconditions and negative postconditions (likewisenegative preconditions and positive postconditions), even if limited to one positive precondition and twonegative postconditions. PLANSAT is polynomial in the previous case if the number of goals is boundedby a constant. PLANSAT is polynomial if each operator is limited to positive preconditions and positivepostconditions. Erol et al. [16] show that PLANSAT is NLOGSPACE-complete if each operator is limitedto one positive precondition and positive postconditions.4



PLANSAT is PSPACE-hard because any Turing machine transition from one state toanother can be mapped into an operator. The number of such operators is proportional tothe number of transitions times the number of tape squares, so a PSPACE Turing machinecorresponds to a polynomial number of operators.PLANSAT remains PSPACE-complete even if operators are limited to one postcondition,or if operators are limited to one precondition,5 or if operators are limited to 2 positivepreconditions and 2 postconditions. Section 3 provides a Turing machine reduction for eachrestriction.A necessary condition to make PLANSAT PSPACE-complete is allowing negative post-conditions. If operators are limited to positive postconditions, then applying an operator toa state must result in a superset of that state. This means that the length of the shortest so-lution plan (if one exists) is bounded by the number of conditions (ground atomic formulas).Thus, PLANSAT limited to positive postconditions is in NP . Note that if no two operatorsof a planning instance have con
icting postconditions (a postcondition \con
ict" is when apostcondition of one operator is the negation of a postcondition of another operator), thenit is easy to transform the instance so that all postconditions are positive.However, this restriction is still NP-complete because a positive postcondition can con-
ict with negative preconditions of other operators, and it can be di�cult to choose whichconditions should be made true in order to achieve the goals.Thus, further restrictions are required to guarantee polynomial planning. The �rst poly-nomial problem (bottom left of Figure 1) is if each operator only has positive preconditionsand a single postcondition. For this problem, an algorithm can search for an intermediatestate that can be reached from the initial state via operators with positive postconditionsand that can reach a goal state via operators with negative postconditions. The blocks-world problem, slightly modi�ed, is a subproblem of this problem. Note that one can alwaysunstack all the blocks followed by making the goal stacks from the table on up. The inter-mediate state in this case is when all the blocks are unstacked. B�ackstr�om and Nebel [4] givea generalization of this restriction and the corresponding algorithm in which state variablesare used instead of propositions.The second polynomial problem is if there are a limited number of goals and each operatoris limited to one precondition. Surprisingly, limiting the number of goals is an importantfactor only if operators are limited to one precondition. Otherwise, any single goal canexpand into many subgoals. This problem is polynomial because a polynomial-sized searchspace can be constructed, i.e., g goals depend on at most g conditions for any state, so analgorithm need only consider all combinations of g conditions.The �nal polynomial problem is if operators have no preconditions at all, i.e., planning istractable if preconditions can be ignored. Interestingly, this is the only polynomial problemthat appears to be easily solvable by means-end analysis. The �rst polynomial problemappears to require signi�cant forward search. The second appears to require an exhaustivesearch through a reduced search space.Not illustrated in Figure 1 is that all of these results are independent of whether theplanner is linear, non-linear, deliberative, reactive, anytime, hierarchical, opportunistic, case-based, etc. It does not even matter whether the operators are explicitly represented or5In previous papers, I incorrectly asserted that the complexity of this restriction was NP-complete.5
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� + preconds1 postcond. 0 precond.� postconds.1 + precond.1 + postcond 0 precond.2 postconds. 0 precond.3 +postconds1 precond.� postconds.g goals 0 precond.1 postcond. 0 precond.2 +postconds6 SSSSSSSSSo ���� @@@I6 6Figure 2: Complexity Results for PLANMINimplicitly available via some result function. Thus, even in the simplest case, i.e., a restrictionto ground literals, full knowledge of initial state and operators, deterministic operators, andonly asking whether any solution exists, planning is a very hard problem.1.3.2 PLANMINTo describe the computational complexity of an optimization problem, it is converted intothe decision problem of determining whether a given bound can be achieved [18]. So todescribe the complexity of optimal planning, let PLANMIN be the problem of determiningthe existence of a solution of k operators or less for propositional STRIPS planning, wherek is given as part of the input. The proofs for these results are in Section 4.For each PLANSAT problem that was PSPACE (NP)-complete, it is also PSPACE (NP)-complete for PLANMIN.6 This is because one can easily can set k high enough so that aPLANMIN instance is equivalent to the corresponding PLANSAT instance. Also, the NP-complete problems have polynomial bounds on the length of the shortest solution plan, ifsuch a plan exists. Figure 2 illustrates the complexity results for the restrictions that werepolynomial for PLANSAT.When operators are restricted to one positive precondition and one positive postcondition,PLANMIN remains intractable. The di�culty is �nding a minimum set of subgoals to achievea set of goals. That is, the postcondition of one operator might be useful to achieve severalgoals via other operators, and it is di�cult to choose a minimum set of such conditions. Thisimproves on the result in Erol et al. [16], who show that PLANMIN is NP-complete if eachoperator is limited to one positive precondition and positive postconditions.6Erol et al. [16] also analyze the complexity of PLANMIN (which they call PLAN LENGTH), but, withone exception described in the next paragraph, they only consider restrictions on negation in preconditionsand postconditions. Based on my results for PLANSAT [5], they show that PLANMIN is PSPACE-complete,that it is PSPACE-complete if each operator is limited to positive preconditions, and that it is NP-completeif each operator is limited to positive postconditions. Erol et al. also show that PLANMIN is NP-completeif each operator is limited to positive preconditions and positive postconditions.6
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regardless of the current state and other postconditions. Thus, any EPLANSAT problemrestricted to Krom theories is equivalent to the corresponding PLANSAT problem withoutany limitations on the number or type of postconditions. All the Krom theory results are theneasily derived from PLANSAT results (see Figure 1): having one precondition is PSPACE-complete, one precondition with a bounded number of goals is polynomial, and having nopreconditions is polynomial.1.3.4 EPLANMINLet EPLANMIN be the problem of determining the existence of a solution of k opera-tors or less for extended propositional STRIPS planning. For each PSPACE (NP)-completeEPLANSAT problem, it is also PSPACE (NP)-complete for EPLANMIN. The two problemsthat are polynomial for EPLANSAT have di�erent results for EPLANMIN:With Krom theories, EPLANMIN is NP-complete if operators are limited to no pre-conditions, even if further limited to one positive postcondition.With Krom theories, EPLANMIN is polynomial if operators are limited to 1 precon-dition and the number of goals is bounded by a constant g.Section 7 demonstrates these results.1.4 RemarksI have shown that propositional STRIPS planning is PSPACE-complete in general and formany restrictive problems. Extremely severe restrictions on both the operators and thedomain theory are required to guarantee polynomial time or even NP-completeness. Tosay the least, these results in combination with previous analyses are not encouraging fordomain-independent planning.However, operators must have multiple preconditions, simultaneous positive and negativepostconditions, and apparently many more \features" to implement any interesting domain[9, 23]. While additional features might be good for making a planner more useful as a pro-gramming tool, generality has its downside|tractability of planning cannot be guaranteedeven with moderately expressive operators.All of this again calls into question the \restricted language thesis" proposed by Levesqueand Brachman [27], i.e., that the expressiveness of representations needs to be restricted sothat inference is tractable. Doyle and Patil [14] persuasively argue that restricting theexpressiveness of a general-purpose representation system to ensure polynomial reasoning\destroys the generality of the language and the system" and \fails to permit expression ofconcepts necessary to some applications." The above complexity results for planning provideadditional evidence against the restricted language thesis. Restricting the expressiveness of ageneral-purpose planner to ensure polynomial planning no doubt would destroy the generalityof the planner and would fail to permit expression of crucial domain knowledge.However, simply throwing out the restricted language thesis is no solution. Understandinghow humans and robots can reason e�ciently will continue to remain a central problem ofAI. If restricting the expressiveness of planners won't work, what will?8



One possible solution is to consider average running time rather than worst-case runningtime, so that more expressive languages would be labeled e�cient. However, while it appearsthat NP-complete problems are hard only for narrow ranges of the problems [10, 30, 31],there is little research on problems that are PSPACE-complete. Promising directions includeMusick and Russell [32], who develop a Markov model approximation for analyzing hill-climbing algorithms on single postcondition problems, and Bylander [8], who shows thatmost PLANSAT instances under certain distributional assumptions can be e�ciently solved.An alternative approach is to restrict global properties of planning instances rather thanlocal properties of operators and formulas. As mentioned above, Korf [25] discusses howglobal properties such as serializable subgoals, operator decomposability, and abstractioncan lead to e�cient search for plans. Understanding how these properties are realized asrestrictions on the set of operators as a whole is a promising research approach. Korf's [24]analysis of serial decomposability and Bacchus and Yang's [2] analysis of abstraction aresigni�cant steps in this direction, though see [7] for negative results on the complexity ofserial decomposability.More generally, I speculate that the analysis of general-purpose planning will evolve intothe analysis of many di�erent special-purpose planning problems and techniques for encodingthese special-purpose problems in a general-purpose planner. That is, the situation will belike that of analysis of algorithms, in which a general-purpose programming language is usedto encode the algorithms and data structures for di�erent types of problems. For example,the three polynomial PLANSAT problems appear to require quite di�erent algorithms anddata structures, and many other tractable planning problems are yet to be discovered.This paper provides a complexity \map" of the \territory" of planning problems, identi-fying many of the conditions that di�erentiate tractable planning from intractable planning.Any map, of course, is an incomplete description; in this case, I have focused on restrictingthe local properties of planning operators and of the formulas in domain theories. Never-theless, travelers into the planning \wilderness" would be well-advised to be aware of theknown computational cli�s.1.5 A Guide to the Rest of the PaperAll of the above is intended to be an adequate description of the complexity results for readerswho do not wish to delve into the formal details. What follows provides the mathematicalde�nitions and the proofs demonstrating the results. Two of the sections below are devotedto de�ning propositional STRIPS planning and extended propositional STRIPS planning.Each of these two sections also has a blocks-world example and describes the scope of theplanning model. All other sections provide proofs for the variety of PLANSAT, PLANMIN,EPLANSAT, and EPLANMIN problems described above. The proofs for the polynomialplanning problems include descriptions of algorithms that are su�cient for the proofs, butnot necessary the most e�cient in terms of running time or plan length.9



2 Propositional STRIPS PlanningIn this section, I de�ne propositional STRIPS planning, give an example, and describe thekinds of �rst-order STRIPS planning that can be reduced to propositional planning.2.1 De�nitionsAn instance of propositional STRIPS planning is speci�ed by a tuple hP;O;I;Gi, where:P is a �nite set of ground atomic formulas, called the conditions;O is a �nite set of operators, where each operator o has the form Pre) Post:8Pre is a satis�able conjunction of positive and negative conditions, respectivelycalled the positive preconditions (o+) and the negative preconditions (o�) of theoperator;Post is a satis�able conjunction of positive and negative conditions, respectivelycalled the positive postconditions (o+) and the negative postconditions (o�) of theoperator, i.e., the add list and delete list, respectively;I � P is the initial state; andG, called the goals, is a satis�able conjunction of positive and negative conditions,respectively called the positive goals (G+) and the negative goals (G�).That is, P is the set of conditions that are relevant. Any state can be speci�ed by asubset S � P, indicating that p 2 P is true in that state if p 2 S, and false otherwise. Ois the set of the operators that can change one state to another. I speci�es what conditionsare true and false in the initial state, i.e., p 2 P is initially true if p 2 I and initially falseotherwise. G speci�es the goals, i.e., S � P is a goal state if S satis�es G, i.e., if G+ � S andG� \ S = ;.As indicated above, let o+, o�, o+, and o� respectively denote the sets of positive pre-conditions, negative preconditions, positive postconditions, and negative postconditions ofan operator o. Then the e�ect of a �nite sequence of operators (o1; o2; : : : ; on) on a state Scan be formalized as follows.9Result(S; ( )) = SResult(S; (o)) = ((S [ o+) n o� if o+ � S and o� \ S = ;S otherwiseResult(S; (o1; o2; : : : ; on))= Result(Result(S; (o1)); (o2; : : : ; on))For convenience, any operator can be applied to a state, but only has an e�ect if itspreconditions are satis�ed. If its preconditions are satis�ed, its positive postconditions are8The symbol ) is used for operators. The symbol ! is used for implication.9The symbol n is used for set di�erence. 10



added and its negative postconditions are deleted. An operator can appear multiple timesin a sequence of operators.A �nite sequence of operators (o1; o2; : : : ; on) is a solution to an instance of propositionalplanning if Result(I; (o1; o2; : : : ; on)) is a goal state.An instance of a propositional STRIPS planning problem is satis�able if it has a solution.PLANSAT is de�ned as the decision problem of determining whether an instance of propo-sitional STRIPS planning is satis�able. PLANMIN is de�ned as the decision problem ofdetermining whether an instance of propositional STRIPS planning has a solution of lengthk or less, where k is given as part of the input. Below, the computational complexity ofPLANSAT, PLANMIN, and restricted versions are demonstrated.2.2 Blocks-World ExampleTo show how a planning instance can be modeled by propositional STRIPS planning, considerthe Sussman anomaly. In this blocks-world instance, there are three blocks A, B, and C.Initially C is on A, A is on the table, and B is on the table. The goal is to have A on B andB on C. Only one block at a time can be moved. The conditions, initial state, and goalscan be represented as follows:P = fon(A;B); on(A;C); on(B;A); on(B;C); on(C;A); on(C;B);clear(A); clear(B); clear(C); on(A;Table); on(B;Table); on(C;Table)gI = fclear(C); on(C;A); on(A;Table); clear(B); on(B;Table)gG = on(A;B) ^ on(B;C)The operator to move C from A to the table can be represented as:clear(C) ^ on(C;A)) on(C;Table)^ clear(A) ^ on(C;A)That is, C can be moved from A to the table if C is clear and C is on A. As a result, C willbe on the table, A will be clear, and C will not be on A.The operator to move A from the table to B can be represented as:clear(A) ^ on(A;Table)^ clear(B)) on(A;B) ^ on(A;Table)^ clear(B)That is, A can be moved from the table to B if nothing is on A or B, and A is on the table.The result is that A will be on B, A will not be on the table, and B will not be clear.2.3 ReducibilityAny blocks-world instance can be reduced in polynomial time to an instance of propositionalSTRIPS planning. For b blocks, the above style of encoding will lead to b2+b conditions andb3� b2 operators. Speci�cally, there are b clear conditions and b2 on conditions (choose anyblock for the �rst argument; choose any other block or the table for the second argument).There are b(b � 1) operators for moving a block from another block to the table, b(b � 1)operators for moving a block from the table to another block, and b(b� 1)(b� 2) operatorsfor moving a block from one block to another block.11



More generally, �rst-order STRIPS planning can be polynomially reduced to propositionalSTRIPS planning under the following restrictions: the initial state and goal conditions areground literals, pre- and postconditions in operators are limited to literals; each variable inan operator is limited to a polynomial number of values; and each operator is limited to aconstant number of variables [16]. An exponential number of values for a variable would leadto an exponential number of ground atomic formulas. A polynomial number of variables in anoperator would lead to an exponential number of propositional STRIPS planning operators.Thus, results for propositional STRIPS planning apply to a large range of �rst-orderSTRIPS planning, though it should be noted that no formulas are permitted. Extendedpropositional STRIPS planning shall partially alleviate this restriction.3 Complexity Results for PLANSATThis section describes and demonstrates complexity results for PLANSAT, the decision prob-lem of determining whether an instance of propositional STRIPS planning is satis�able.First, unrestricted PLANSAT is considered, followed by increasingly restrictive versions. Thenotation PLANSAT�� is used to denote PLANSAT with restrictions � on the preconditionsand restrictions � on the postconditions. For example, PLANSAT2+2 denotes PLANSATwith operators limited to two positive preconditions and two postconditions.3.1 PSPACE-complete PLANSATTheorem 3.1 PLANSAT is PSPACE-complete.Proof: PLANSAT is in NPSPACE because a sequence of operators can be nondeterminis-tically chosen, and the size of a state is bounded by the number of conditions. That is, ifthere are n conditions and there is a solution, then the length of the smallest solution pathmust be less than 2n. Any solution of length 2n or larger must have \loops," i.e., there mustbe some state that it visits twice. Such loops can be removed, resulting in a solution oflength less than 2n. Hence, no more than 2n nondeterministic choices are required. BecauseNPSPACE = PSPACE [35], PLANSAT is also in PSPACE.Turing machines whose space is polynomially bounded can be polynomially reduced toPLANSAT. The PLANSAT conditions can be encoded (and roughly translated) as follows:in(i; x) Symbol x is in tape position i.at(i; q) The Turing machine is ready to perform the transition for the current po-sition i and state q.do(i; q; x) Perform the transition at the ith position for state q on character x.accept The Turing machine accepts the input.If q0 is the initial state of the Turing machine, its input is x1x2: : :xn, and the space usedby the Turing machine is bounded by m, then the the initial state and goals for propositionalplanning can be encoded as:I = fat(1; q0); in(0;#); in(1; x1); in(2; x2); : : : ; in(n; xn);in(n+ 1;#); in(n+ 2;#); : : : ; in(m� 1;#)gG = accept 12



I is encoded so that positions 1 to n contain the input and the remaining positions (position0 and positions n+ 1 to m� 1) contain a special symbol #.Suppose that the Turing machine is in state q, the tape head is at the ith position, xis the character at the ith position, and the transition is to replace x with y, move to theright, and be in state q0. This can be encoded using three operators (in order to facilitatecorollaries and theorems to follow):at(i; q)^ in(i; x)) do(i; q; x) ^ at(i; q)do(i; q; x) ^ in(i; x)) in(i; y) ^ in(i; x)do(i; q; x) ^ in(i; y)) at(i+ 1; q0) ^ do(i; q; x)The �rst operator \packs" all the information about the current position (at(i; q) and in(i; x))into a single condition do(i; q; x) and deletes at(i; q). The second operator changes the symbolfrom x to y. The third operator moves to the next position and the new state. To handleboundary conditions, encode no operators for at(�1; q) and at(m; q).A Turing machine accepts an input if it is in an accepting state and no transition canbe made from the current symbol. For each such case, an operator to add accept can beencoded.Because operators can precisely encode the transitions and the detection of acceptingstates, a satis�able plan can be found if and only if the Turing machine halts in an accept-ing state. Because there are a polynomial number of (i; q; x) combinations, there will be apolynomial number of conditions and operators. Thus, any PSPACE Turing machine withits input can be polynomially reduced to an instance of PLANSAT. 2Note that none of the above operators requires more than two positive preconditions andtwo postconditions. This leads to the following corollary.Corollary 3.2 PLANSAT 2+2 is PSPACE-complete.Using the same conditions as encoded above, the following theorem can be demonstrated:Theorem 3.3 PLANSAT1 (operators limited to one postcondition allowing any number ofpreconditions) is PSPACE-complete.Proof: Let Doi = fdo(u; v; w) j u = ig. That is, Doi is the set of all do conditions whose �rstargument is i. Then the Turing machine transition described above can be encoded usingthe following six operators:at(i; q)^ in(i; x) ^ ^p2Doi�1p ^ ^p2Doi+1p) do(i; q; x)at(i; q)^ in(i; x) ^ do(i; q; x)) at(i; q)do(i; q; x) ^ in(i; x) ^ at(i; q)) in(i; y)13



do(i; q; x) ^ in(i; x) ^ in(i; y)) in(i; x)do(i; q; x) ^ in(i; y) ^ in(i; x)) at(i+ 1; q0)do(i; q; x) ^ in(i; y) ^ at(i+ 1; q0)) do(i; q; x)In essence, two operators replace each operator in the previous reduction. The structure ofthe operators ensures that they must be performed in sequence. The key part is the �rstoperator, whose negative preconditions include all do conditions whose �rst subscript is i�1or i+1. This ensures that the do condition associated with the previous transition has beenremoved (see the sixth operator) before the next Turing machine transition begins. This iswhy any number of preconditions is necessary (for this reduction). 2Again using the same encoding as in the proof of Theorem 3.1, the following can bedemonstrated.Theorem 3.4 PLANSAT 1 is PSPACE-complete.Proof: For this reduction, each Turing machine must be modi�ed so that if it accepts theinput, then the tape is left blank (e.g., �lled in with the special symbol #), the Turingmachine is in a special state qf , and the tape head is at position 1. This type of modi�cationdoes not require signi�cantly more space. If the space used by the Turing machine is boundedby m, then the corresponding goal state for the planning instance is:G = at(1; qf) ^ in(0;#) ^ in(1;#) ^ : : : ^ in(m� 1;#)Let Doi;q;x = fdo(u; v; w) j u 6= i^v 6= q^w 6= xg (all do conditions except for do(i; q; x)).Let At = fat(u; v)g (all at conditions). Let Ini;x = fin(u; v) j u = i^v 6= xg (all in conditionswhose �rst argument is i and second argument is not x).Now the Turing machine transition described above can be encoded using the followingthree operators:at(i; q)) do(i; q; x) ^ at(i; q)^ ^p2Ini;xpin(i; x)) in(i; y) ^ in(i; x) ^ ^p2Atp ^ ^p2Doi;q;xpdo(i; q; x)) at(i+ 1; q0) ^ do(i; q; x) ^ ^p2Ini;ypThese three operators correspond to the three operators in the reduction for Theorem 3.1.Note that each operator adds at most one condition and deletes at least one condition. Be-cause the goal state requires as many positive conditions as in the initial state, each operatormust add one condition and delete only one condition. In e�ect, in(i; x) must be true to applythe �rst operator (otherwise, no in condition would be true for the ith position). do(i; q; x)must be true to apply the second operator (otherwise, no at or do condition would be true).Finally, in(i; y) must be true to apply the third operator (otherwise, no in condition would14



be true for the ith position). Consequently, these three operators must be used as if theywere the three operators from the proof for Theorem 3.1. 2Note that the second operator includes all but one of the at and do conditions. This iswhy any number of postconditions is necessary (for this reduction). Also, note that thereare multiple goals. As shown below, if there is a limit on the number of goals, the problembecomes polynomial.I have not determined the precise complexity of PLANSATk1 and PLANSAT1k for when kis a constant, k � 1. I speculate that these problems fall into the polynomial hierarchy in aregular way, but the results in this paper only show that they are NP-hard and in PSPACE.3.2 NP-Complete PLANSATTheorem 3.5 PLANSAT+ is NP-complete.Proof: Operators without negative postconditions can never negate a condition, so a previousstate is always a subset of succeeding states. Also, operators within an operator sequencethat have no e�ect can always be removed. Hence, if a solution exists, the length of thesmallest solution can be no longer than the number of conditions. Thus, PLANSAT+ is inNP because only a linear number of nondeterministic choices is required.3SAT can be polynomially reduced to PLANSAT+. 3SAT is the problem of satisfyinga formula in propositional calculus in conjunctive normal form, in which each clause has atmost three literals.Let F be a formula in propositional calculus in 3SAT form. Let U = fu1; u2; : : : ; umg bethe variables used in F . Let n be the number of clauses in F . An equivalent PLANSAT+instance can be constructed using the following types of conditions.T (i) ui = true is selected.F (i) ui = false is selected.C(j) The jth clause is satis�ed.The initial state and goals can be speci�ed as:I = ;G = C(1) ^ C(2) ^ : : : ^ C(n)That is, the goals are to satisfy all of the clauses.For each variable ui, two operators are needed:F (i)) T (i)T (i)) F (i)That is, ui = true can be selected only if ui = false is not, and vice versa. In this fashion,only one of ui = true and ui = false can be selected.15



For each case where a clause C(j) contains a variable ui, the �rst operator below isneeded; for a negated variable ui, the second operator below is needed:T (i)) C(j)F (i)) C(j)Clearly, every C(j) can be made true if and only if a satisfying assignment can be found.Thus PLANSAT+ is NP-hard. Since PLANSAT+ is also in NP, it follows that it is NP-complete. 2Note that each operator above only requires one precondition and one positive postcon-dition. This leads to the following corollary.Corollary 3.6 PLANSAT 11+ is NP-complete.It is worth noting again at this point that a PLANSAT instance can be transformed toone with just positive postconditions if the postconditions between any two operators do notcon
ict. Recall that a postcondition \con
ict" is when a postcondition of one operator isthe negation of a postcondition of another operator.3.3 Polynomial Propositional PlanningTheorem 3.7 PLANSAT+1 is polynomial.Proof: The apparent di�culty is that some negative goals might need to be temporarilytrue to make some positive goals true or some negative goals false. However, because of therestrictions on the operators, it is su�cient to only consider plans that �rst make conditionstrue and then make conditions false.Consider a sequence of operators in which the preconditions of each operator becometrue. Suppose that there are adjacent operators oi and oi+1 such that oi's postcondition isnegative and oi+1's postcondition is positive. Let pi be oi's negative postcondition and pi+1be oi+1's positive postcondition. If pi = pi+1, then oi can be deleted because oi+1 reversesoi's e�ect. If pi 6= pi+1, then oi can be switched with oi+1 because their postconditions areindependent of each other's preconditions. All of oi+1's preconditions are true after oi, soleaving pi positive cannot cause oi+1's preconditions to become false. Similarly, making pi+1positive cannot cause oi's preconditions to become false. Repeating these changes until thereare no such adjacent operators will result in an equivalent sequence of operators that �rstmakes conditions true and then makes conditions false.Thus, if there is a solution, there is an intermediate state S that has the followingproperties:S can be reached from the initial state I via operators with positive postconditions;the positive goals G+ are a subset of S; and16



SnG�, i.e., a state that satis�es the negative goals, can be reached from S via operatorswith negative postconditions. Because each operator has only positive preconditionsand a�ects only one condition, and because the positive goals are true of S, the onlything remaining is to make all the negative goals false, i.e., to achieve S n G�.The algorithm for this problem depends on �nding an intermediate state S that satis�esthese properties.Let Turnon be a subroutine that inputs a set of conditions X, and returns the maximalstate S � (P nX) that can be reached from the initial state I. It is assumed that X \I = ;.Turnon can be implemented by the following algorithm.Turnon(X)S  Irepeattemp Sfor o 2 O doif (S � Result(S; o)) ^ (X \ Result(S; o) = ;)then S  Result(S; o)until S = tempreturn STurnon simply keeps applying all operators until no more conditions can be added, makingsure that no conditions in X are added. Adding a condition does not prevent the applicationof any other operator, so the maximal state S is unique. For n conditions and m operators,Turnon is O(mn2) (Result is O(n) because an operator can have up to n preconditions).Let Turnoff be another subroutine that inputs a set of conditions S and returns themaximal state S 0 � S such that S n G� can be reached from S 0.Turnoff(S)S0  S n G�repeattemp S 0for o 2 O doif (o� � S) ^ (Result(S 0 [ o�; o) = S 0)then S 0  S 0 [ o�until S 0 = tempreturn S 0Turnoff searches backward from S n G� to determine what operators can be used reachthat state, as long as each operator only requires conditions in S. There is a unique maximalstate S 0 because the backward search always adds conditions to S 0, which can only makemore operators applicable, never fewer. For n conditions and m operators, Turnoff isO(mn2). 17



Satisfy determines if a solution exists by iterating between Turnon and Turnoff:SatisfyX  ;loopS  Turnon(X)if G+ 6� S then return rejectS0  Turnoff(S)if S = S 0 then return acceptX  X [ (S n S 0)if X \ I 6= ; then return rejectIn the �rst iteration S is set to Turnon(;), i.e., S contains all the conditions that canbe made true. If the positive goals are not true of S, then there is no way to achieve them,and the �rst if statement rejects the instance. Otherwise, S 0 is set to Turnoff(S), i.e., S 0is the maximum subset of S that can reach the negative goals. Because no other conditionscan be made positive, S 0 is also the maximum subset of P that can reach the negative goals.If S = S 0, then a solution exists, and the second if statement accepts the instance. If S 6= S 0,then there must be some negative goals true of S that prevent the goal state from beingreached. To achieve a goal state, these negative goals must never become true, and so areadded to X. If some of these conditions are true of the initial state, the third if statementrejects the instance.The next iteration is just like the �rst except that nothing in X is made true. Thisiteration might uncover additional conditions that, if made true, prevent the goal state frombeing reached. These conditions are added to X. In following iterations, either additionalconditions are inserted in X, or one of the if statements classi�es the instance. Because Xgrows monotonically and its size has an upper bound of n (n =j P j), Satisfy performsat most n iterations. Both Turnon and Turnoff are O(mn2) (m =j O j), so Satisfy isO(mn3). 2I show in a following section how Theorem 3.7 applies to the blocks-world.Theorem 3.8 For a constant g, PLANSAT 1 limited to g goals is polynomial.Proof: The following algorithm solves this problem by exhaustively searching backward fromthe goals.Create a directed graph such that each vertex corresponds to a satis�able set of g positiveand negative conditions, and each edge (u; v) corresponds to u resulting from applying someoperator o to v, i.e., u would be true of the next state if v were true of the previous state.Perform breadth-�rst search on the graph starting from the vertex corresponding to the goal.If a vertex true of the initial state is reached, then accept, otherwise reject.This algorithm takes advantage of the following property of PLANSAT1|a single goalcannot expand into multiple subgoals. Thus, if the g goals are reachable from the initialstate, they can be traced to g or fewer (positive and negative) conditions true of the initialstate. The graph constructed by the algorithm contains all possible links of any trace based18



on the operators. It is just a matter of graph search to �nd a path from the goals to a setof conditions true of the initial state.Although the algorithm is polynomial, it is not a very good one. For n conditions, thereare 2g �ng� sets of g conditions, which is O(ng). One operator can lead to O(n2g) edges, e.g.,an operator with no preconditions and n postconditions applies to all sets of g conditionsand can lead to �ng � sets of g conditions. Breadth-�rst search is linear in the number ofvertices and edges, so the above algorithm is O(mn2g). 2Limiting operators to one precondition is crucial for this theorem. Otherwise, if operatorscan have more than one precondition, then a conjunctive goal problem can be converted intoa single goal problem by adding operators that transform the original set of goals onto asingle \supergoal."Theorem 3.9 PLANSAT 0 is polynomial.Proof: The following algorithm solves PLANSAT0 by working backwards from the goals.Find an operator o that does not clobber any of the goals (for m operators and n condi-tions, this is O(mn)). Remove goals achieved by o from consideration. Also remove o fromfurther consideration. Repeat the above until the remaining goals are true of the initial state(accept) or until no more appropriate operators can be found (reject). There are at most ngoals, so this algorithm is O(mn2).If a goal state can be reached, some operator must be the last operator, and it cannotreach the goal state if its postconditions are inconsistent with the goals. Whatever goals areachieved by this operator can be safely removed from consideration because the operator hasno preconditions to worry about. Then the problem is simpli�ed to a search for operatorsto achieve the remaining goals. 23.4 Polynomial Planning without Explicit Operator Representa-tionsThe polynomial PLANSAT problems in this section have an interesting property. Supposethat the pre- and postconditions of the operators are not explicitly represented, but, instead,the Result function is supplied. In other words, a planning instance would have a set ofoperators and a function to simulate them, but no explicit representation of the structure ofthe operators.It turns out that each problem is still polynomial. (Also, each PSPACE- and NP-completePLANSAT problem remains PSPACE- and NP-complete.) For PLANSAT1 restricted to ggoals and PLANSAT0, it is su�cient to note that the preconditions and postconditions of theoperators can be recovered in polynomial time with appropriate use of the Result function.For PLANSAT+1 , note that Turnon only requires the Result function and Turnoffonly needs to know the negative postconditions of operators. For this problem, the negativepostcondition of an operator o, if any, can be easily determined by looking at the result ofResult(P; o). 19



Thus, there is a very striking di�erence between intractable and tractable PLANSATproblems. The tractable problems are easy even if the operators are implicitly represented.The intractable problems are hard even if the operators are explicitly represented.3.5 The Blocks WorldTheorem 3.7 can be used to show why �nding non-optimal solutions to blocks-world instancesis tractable.Theorem 3.10 The blocks-world problem can be reduced to PLANSAT+1 .Proof: Note that stacking one block on another can be accomplished by �rst moving theformer block on the table and then moving it on top of the latter block. Thus, solving anyblocks-world instance only requires operators to move a block to the table and to move ablock from the table.Let fB1; B2; : : : ; Bng be the blocks in an instance of the blocks-world problem. Theconditions can be encoded as follows:o� (i; j) Bi is not on top of Bj.If Bi is on the table, then all o� (i; k) will be true. If Bi has a clear top, then all o� (k; i)will be true. If Bi is on top of Bj, then all o� (i; k) except for o� (i; j) will be true. o� isused instead of the usual on in order to make the preconditions positive.For each Bi and Bj , i 6= j, the operator to move Bi from on top of Bj to the table canbe encoded as:n̂k=1 o� (k; i) ^ i�1̂k=1 o� (k; j) ^ n̂k=i+1 o� (k; j)) o� (i; j)That is, if nothing is on Bi and nothing is on Bj except possibly Bi, then when this operatoris applied, the result is that Bi will not be on top of Bj .For each Bi and Bj , i 6= j, the operator to move Bi from on the table to on top of Bjcan be encoded as:n̂k=1 o� (k; i) ^ n̂k=1 o� (i; k) ^ n̂k=1 o� (k; j)) o� (i; j)That is, if nothing is on Bi, Bi is not on top of any other block, and nothing is on Bj, thenwhen this operator is applied, the result is that Bi will be on top of Bj.Since there are only O(n2) (i; j) combinations, only O(n2) conditions and operators areneeded to encode a blocks-world instance.As required, all preconditions are positive and each operator has only one postcondition.Thus, Theorem 3.7, in a sense, explains why the blocks world is tractable.10 210The Satisfy algorithm for Theorem 3.7 corresponds to the unimaginative, but robust, strategy ofmoving all the blocks to the table, which makes all the conditions positive, and then forming the stacks fromthe table on up. 20



An operator to move a block from one stack to another requires two postconditions.However, as noted above, moving a block from one stack to another has the same e�ect astwo existing operators, each with one postcondition. Erol et al. [16] show that such \macro"operators can lead to shorter plans, and the problem remains tractable.4 Complexity Results for PLANMINThis section describes and demonstrates complexity results for PLANMIN, the decision prob-lem of determining whether an instance of propositional STRIPS planning has a solution ofk or fewer operators, where k is given as part of the input. First, I show that all the in-tractability results for PLANSAT transfer over to PLANMIN, then I consider the complexityof PLANMIN for restrictions that are tractable for PLANSAT.4.1 Intractability Results for PLANMINTheorem 4.1PLANMIN is PSPACE-complete.11PLANMIN 2+2 is PSPACE-complete.PLANMIN1 is PSPACE-complete.PLANMIN 1 is PSPACE-complete.PLANMIN+ is NP-complete.11PLANMIN 11+ is NP-complete.Proof: Let n =j P j. The �rst four problems are in PSPACE because the size of a state islimited by n, and a sequence of operators can be nondeterministicly chosen. The last twoproblems are in NP because the length of the shortest solution is bounded by n.The PSPACE-hardness for the �rst four PLANMIN problems follows from the PSPACE-hardness of the corresponding PLANSAT problems. The PLANSAT problems can be re-duced to the PLANMIN problems by setting k = 2n.The NP-hardness of the last two PLANMIN problems follows from the NP-hardness ofthe corresponding PLANSAT problems. The PLANSAT problems can be reduced to thePLANMIN problems by setting k to n. 2Theorem 4.2 PLANMIN+1 is NP-complete.Proof: Because PLANSAT+1 is in NP, it follows that PLANMIN+1 is in NP. 3SAT can bereduced to PLANMIN+1 .Let U = fu1; u2; : : : ; umg be the variables used in a instance of 3SAT. Let n be the numberof clauses. An equivalent PLANMIN+1 instance can be constructed using the following types11Also shown in Erol et al. [16]. 21



of conditions.T (i) ui = true is selected.F (i) ui = false is selected.V (i) some value for ui has been selected.C(j) The jth clause is satis�ed.The initial state and goals can be speci�ed as:I = ;G = V (1) ^ V (2) ^ : : : ^ V (m) ^ C(1) ^ C(2) ^ : : : ^ C(n)That is, the goals are to select a value for each variable and satisfy each of the clauses.For each variable ui, four operators are needed:) T (i)) F (i)T (i)) V (i)F (i)) V (i)That is, there are operators to select values for ui, and to ensure that a value has beenselected for ui. Although nothing prevents the selection of both true and false for a variable,it requires two operator applications to do so.For each case where a clause C(j) contains a variable ui, the �rst operator below isneeded; for a negated variable ui, the second operator below is needed:T (i)) C(j)F (i)) C(j)If the 3SAT formula is satis�able, then only one value needs to be selected for each vari-able (m operators), m operators are needed to set the V (i)'s, and n operators are needed toset the C(i)'s, for a total of 2m + n operators. If the 3SAT formula is not satis�able, thenboth values must be selected for some variable to achieve the goals, which means more than2m+ n operators are needed. Thus, the 3SAT formula is satis�able if and only if there is aplan of size k = 2m+ n. 2All of the operators in the previous proof at most require one positive precondition andone positive postcondition, which leads to the following corollary.Corollary 4.3 PLANMIN 1+1+ is NP-complete.This improves on the result in Erol et al. [16], who show that PLANMIN1++ is NP-complete, but do not derive the minimum number of postconditions to obtain this result.Theorem 4.4 (Erol et al.) PLANMIN 03+ is NP-complete.22



Proof: Erol et al.'s reduction from minimum set covering to PLANMIN1++ can be triviallymodi�ed to show that PLANMIN03+ is NP-complete. In their reduction, the number of post-conditions in an operator corresponds to the size of the cover. Minimum set covering isNP-complete for covers of size 3. 2Recall that PLANSAT0 is polynomial. However, the above theorem leads to the followingcorollary.Corollary 4.5 PLANMIN 0 is NP-complete.There is one last intractable PLANMIN problem to demonstrate.Theorem 4.6 PLANMIN 02 is NP-complete.Proof: Because PLANSAT0 is in NP, so is PLANMIN02. 3SAT can be reduced to PLANMIN02.Using the same conditions as in the proof for PLANMIN+1 , a PLANMIN02 instance equiv-alent to a 3SAT instance can be constructed as follows. Use the following initial state andgoals:I = ;G = T (1) ^ : : : ^ T (m) ^ F (1) ^ : : : ^ F (m) ^ V (1) ^ : : : ^ V (m) ^ C(1) ^ : : : ^ C(n)That is, the goals are to deselect the values for each variable and satisfy each of the clauses.For each case where a clause Cj contains a variable ui, the �rst operator below is needed;for a negated variable ui, the second operator below is needed:) T (i) ^ C(j)) F (i) ^ C(j)That is, to make C(j) true, some value for some variable must be selected.For each variable ui, four operators are needed:) T (i)) F (i)) T (i) ^ V (i)) F (i) ^ V (i)A value can be deselected at any time. To make Vi true, some value must be selected for ui.To make each V (i) true, at least one value for each ui must be selected (m operators).n operators are needed to make the C(j)'s true. At least m values will have been selected,so another m operators are needed to deselect the values. If the 3SAT formula is satis�able,only m values need to be selected, and 2m + n operators need to be applied. If it is not,then both values must be selected for some variable to make all the C(j)'s true, which meansmore than 2m + n operators are needed. Thus, the 3SAT formula is satis�able if and onlyif there is a plan of size k = 2m+ n. 2 23



4.2 Polynomial PLANMIN ProblemsThe above results do not leave much room for polynomial problems. Nevertheless, there area few.Theorem 4.7 For a constant g, PLANMIN 1 limited to g goals is polynomial.Proof: The polynomial algorithm presented in the proof for Theorem 3.8 �nds the shortestpath from the initial state to a goal state. This is because each edge in the trace graphcorresponds to achieving one set of g conditions from another set of g conditions via oneoperator, because the trace graph contains all such edges, and because breadth-�rst search�nds the shortest path. 2Theorem 4.8 PLANMIN 02+ is polynomial.Proof: This can be reduced to maximum matching of a graph, which has a polynomialalgorithm [29]. A matching of a graph is a set of edges such that no two edges are incidentto the same vertex.Assuming that the goal is reachable, the reduction from a given PLANMIN02+ instanceis as follows. Each operator that makes a negative goal true is removed. Each conditionthat is initially true is removed. Also, each condition that is not a positive goal is removed.Each remaining condition of the instance is mapped to a vertex. Each remaining operatorwith two postconditions is mapped to an edge (operators with one postcondition are ignoredhere). Now the maximum matching of this graph corresponds to applying the correspondingoperators, where each operator achieves a disjoint pair of goals. Any remaining goals areachieved one at a time. If there are n positive goals to be achieved, and there arem operatorsin the maximum matching, then a goal state can be achieved using n�m operators.If there were a shorter plan, that would imply that more than m operators can achievedisjoint pairs of goals, which would imply that the maximum matching of the graph is largerthan m, which is a contradiction. Therefore, the shortest plan must be of size n�m.Determining reachability can be done in time linear in the number of conditions plus thenumber of operators. Micali and Vazivani's maximum matching algorithm [29] is O(epv),where e is the number of edges, and v is the number of vertices. So for m operators and nconditions, checking for reachability is O(m+n) and maximum matching is O(mpn), whichimplies that the total time is O(n +mpn). 2Theorem 4.9 PLANMIN 01 is polynomial.Proof: Trivial. 25 Extended Propositional STRIPS PlanningIn this section, I de�ne a augmented version of propositional STRIPS planning. After thede�nition, related work and a blocks-world example are discussed.24



5.1 De�nitionsAn instance of extended propositional STRIPS planning is speci�ed by a tuple hP;�;O;D;I;Gi,where:P is a �nite set of ground atomic formulas, called the conditions;� is a set of ground formulas, called the domain theory, that only uses ground atomicformulas from P.O is a �nite set of operators, where each operator has the form Pre) Post:Pre is a satis�able conjunction of positive and negative conditions, respectivelycalled the positive preconditions (o+) and the negative preconditions (o�) of theoperator;Post is a satis�able conjunction of positive and negative conditions, respectivelycalled the positive postconditions (o+) and the negative postconditions (o�) of theoperator;� [ fPreg and � [ fPostg are consistent.D, called the default preference ordering, is a total ordering of all positive and negativeconditions, i.e., of all literals;I � P is the initial state, where � [ I [ fp j p 2 P n Ig is consistent; andG, called the goals, is a satis�able conjunction of positive and negative conditions,respectively called the positive goals (G+) and the negative goals (G�), where � [ fGgis consistent.Again, a state is speci�ed by a subset S � P, indicating that p 2 P is true in that stateif and only if p 2 S. A state S is possible if it is consistent with the domain theory �, i.e., if� [ S [ fp j p 2 P n Sg is consistent. The de�nition of an operator must be consistent with�; otherwise, impossible states can occur. Also, the initial state must be possible, and somepossible state must satisfy the goals.The default preference ordering D speci�es which literals that are true before applyingan operator are preferred to be true after applying an operator. The idea is that by defaultliterals true of the previous state are true of the next state. However, if con
icts occur,i.e., inconsistency with the domain theory �, then D indicates which default is preferred. Aprecise de�nition is given below.The consistency requirements simplify further de�nitions. Of course, determining whethera set of formulas is consistent can also be a hard problem. However, I shall only be consid-ering tractable types of domain theories (de�nite Horn and Krom).A �nite sequence of operators (o1; o2; : : : ; on) is a solution if Result(I; (o1; o2; : : : ; on)) isa goal state, where Result is de�ned as follows:Result(S; ( )) = SResult(S; (o)) = (Extend (S;�; o+; o�;D) if o+ � S and S \ o� = ;S otherwiseResult(S; (o1; o2; : : : ; on))= Result(Result(S; (o1)); (o2; : : : ; on))25



As before, o+, o�, o+, and o� respectively denote the sets of positive preconditions,negative preconditions, positive postconditions, and negative postconditions of operator o.Also, any operator can be applied to a state, but only has an e�ect if its preconditionsare satis�ed. An operator can appear multiple times in a sequence of operators. If itspreconditions are satis�ed, the next state is determined by the Extend function, which isde�ned as follows:Extend (S;�; S1; S2; ( )) = S1Extend (S;�; S1; S2; (p; l1; : : : ; ln)) =8>>>>>>>>>>>>><>>>>>>>>>>>>>:Extend (S;�; S1 [ fpg; S2; (l1; : : : ; ln))if p 2 S and� [ S1 [ fpg [ fq j q 2 S2g is consistentExtend (S;�; S1; S2 [ fpg; (l1; : : : ; ln))if p 2 S and� [ S1 [ fq j q 2 S2g j= pExtend (S;�; S1; S2; (l1; : : : ; ln))if p 62 SExtend (S;�; S1; S2; (p; l1; : : : ; ln)) =8>>>>>>>>>>>>><>>>>>>>>>>>>>:Extend (S;�; S1; S2 [ fpg; (l1; : : : ; ln))if p 62 S and� [ S1 [ fpg [ fq j q 2 S2g is consistentExtend (S;�; S1 [ fpg; S2; (l1; : : : ; ln))if p 62 S and� [ S1 [ fq j q 2 S2g j= pExtend (S;�; S1; S2; (l1; : : : ; ln))if p 2 SIf an operator is applied to a state S, and its preconditions are true, thenExtend (S;�; o+; o�;D) uses the postconditions and the default preference ordering D todecide whether literals true of the previous state S are true in the next state. Initially,literals appearing in the postconditions are assigned truth values, then the literals in D areconsidered in order. If a literal l is true in the previous state S and is consistent with thedomain theory, the e�ects of the operator, and previously assigned literals, then l is assignedtrue in the next state; else if l is true in the previous state S, and the domain theory, thee�ects of the operator, and previously assigned literals imply the negation of l, then l isassigned false in the next state; else the decision is postponed.The Extend function has the following properties. Given a possible state, Extend resultsin a possible state. Also, Extend makes a minimal number of changes from the previousstate, i.e., the explicit e�ects of the operator plus su�cient changes to make the next statepossible.Propositional STRIPS planning is equivalent to extended propositional STRIPS planningwith the domain theory � = ;. Thus, extended propositional STRIPS planning is a strictgeneralization of propositional STRIPS planning.Assuming that the default preference ordering is su�ciently expressive to resolve ambigu-ous results, �rst-order STRIPS planning can be polynomially reduced to extended proposi-tional STRIPS planning under the same conditions as for propositional STRIPS planning26



with the following generalizations: the initial state, operators, and goals can contain non-literal formulas; all non-literal formulas in the initial state and in the postconditions ofoperators are true in all states, as is done in [28]; each quanti�ed variable in a formula islimited to a polynomial number of values; and each formula is limited to a constant numberof quanti�ed variables.5.2 Related WorkExtended propositional STRIPS planning is closely related to Ginsberg and Smith's [20]possible worlds approach to reasoning about actions. A possible state S in my frameworkcorresponds to a \partial world" W (a set of �rst-order formulas) in theirs. Each partialworld would also include the domain theory � as \protected" formulas. The postconditionsof an operator o in my framework correspond to the consequences C of an action in theirs.They de�ne a \possible world" as a maximal subset of W [C that includes C, the protectedformulas, and is consistent. The possible state resulting from the default preference orderingcorresponds to a single possible world,12 ignoring all other possible worlds. Ginsberg andSmith brie
y discuss \prioritizing facts" in a manner similar to the default preference or-dering so that a single possible world is preferred, but in their formalization, the resultingpartial world is taken to be the intersection of all possible worlds.Other approaches have dealt with the problem of determining the resulting state in avariety of ways. In TMM [13], when a set of time tokens con
ict with a new time token, allthe time tokens in the set are constrained to end before or begin after the new one. Thisconservative approach would possibly create more constraints than necessary to eliminatethe contradiction. The plan net approach of Drummond [15] requires a \reconciliation setselection function" to choose among alternative ways to resolve inconsistency, but does notspecify any constraints on its de�nition. Of course, in the situation calculus, this is wherethe infamous frame problem appears [22].This problem can be recast as preferring one model over another, as in Shoham's prefer-ence logics [36]. Note that it is easy to map a possible state to its model. The result of theExtend function can then be formalized as follows:Let S be a possible state, and M , its corresponding model. Let o be an operator whosepreconditions are satis�ed by S. Let S1 and S2 (with respective models M1 and M2) betwo possible states consistent with o's postconditions. Let D = fl1; l2; : : : ; lng be a defaultpreference ordering. Then M1 <M2 (M2 is preferred over M1) if there exists an li such that:for all lj, j < i, M1 j= lj if and only if M2 j= ljM j= li, M1 6j= li, and M2 j= li; or M 6j= li, M1 j= li, and M2 6j= li.Of course, the fact that Extend can be formalized in terms of model preference orderingdoes not make it reasonable. Doyle and Wellman [14] point out that any model preferenceordering that is based on local ordering criteria (e.g., the default preference ordering) and thatprefers one model over all others (e.g., the Extend function) generally violates some principle12A minor(?) di�erence is that the formulas left out of a possible world are not negated in that possibleworld, while in a possible state, every condition is either true or false. To me, it looks like Ginsberg andSmith's de�nitions could be easily modi�ed to take this into account.27



of rational reasoning. In this case, extended propositional STRIPS planning violates thenondictatorship principle that no local criterion dominates all other criteria. For example,if l1 is true of the previous state, is consistent with the postconditions and domain theory,and is �rst in the default preference ordering, then any possible state with l1 true will bepreferred as the next state over any possible state with l1 false. Thus, Doyle and Wellman'sresult suggests that the default preference ordering is unreasonable for many domains, but italso suggests that either ambiguity must be tolerated (as in Ginsberg and Smith's possibleworld approach) or some other principle must be violated. Whatever alternative is chosen,it would be folly to expect much improvement in computational complexity.5.3 Blocks-World ExampleIn the Sussman anomaly, there are three blocks A, B, and C. Initially C is on A, A is onthe table, and B is on the table. The goal is to have A on B and B on C. Only one block ata time can be moved. The conditions, initial state, and goals can be represented as follows:P = fon(A;B); on(A;C); on(B;A); on(B;C); on(C;A); on(C;B);on(A; table); on(B; table); on(C; table); clear(A); clear(B); clear(C)gI = fclear(C); on(C;A); on(A; table); clear(B); on(B; table)gM = fon(A;B); on(B;C)gN = fgThe operators to stack and unstack blocks can be represented as:clear(A) ^ clear(B)) on(A;B)clear(A) ^ clear(C)) on(A;C)clear(B) ^ clear(A)) on(B;A)clear(B) ^ clear(C)) on(B;C)clear(C) ^ clear(A)) on(C;A)clear(C) ^ clear(B)) on(C;B)clear(A)) on(A; table)clear(B)) on(B; table)clear(C)) on(C; table)That is, if two blocks are clear, then stacking the �rst block on the second has the \direct"e�ect of the �rst block being on top of the second. If a block is clear, then unstacking theblock has the \direct" e�ect of the block being on the table.The other e�ects of these operators can be inferred from domain knowledge. Some e�ectscan be inferred from the direct e�ects, e.g., if A is on B, then A cannot be on C or on thetable. These are encoded in the domain theory �, which includes the following:on(A;B) _ on(A;C)on(A;B) _ on(A; table)on(A;C) _ on(A; table)on(B;A) _ on(C;A)on(B;A) _ clear(A)on(C;A) _ clear(A): : : 28



on(A;B) _ on(A;C) _ on(A; table)on(B;A) _ on(B;C) _ on(B; table)on(C;A) _ on(C;B) _ on(C; table)on(B;A) _ on(C;A) _ clear(A)on(A;B) _ on(C;B) _ clear(B)on(A;C) _ on(B;C) _ clear(C)Other e�ects depend on what was true in the previous state, e.g., if A was on C and ismoved to B, then C is now clear. However, from the e�ect on(A;B) of the operator andthe domain theory formulas on(A;B)_ on(A;C) and on(A;C)_ on(B;C)_ clear(C), it canonly be inferred that either B is now on C or that C is now clear. Note though that inthis encoding of the blocks-world, no on condition can indirectly become true after applyingan operator, i.e., by default, false on conditions stay false. This domain knowledge can beencoded in the default preference ordering D by ordering negative on conditions before allothers, as follows:D = (on(A;B); on(A;C); on(A; table); : : : ;on(A;B); on(A;C); on(A; table); : : : ;clear(A); clear(B); clear(C);clear(A); clear(B); clear(C))As it happens, the ordering for the other conditions does not matter. Once negative onconditions are propagated from the previous state to the next state, all other changes areunambiguously implied by the domain theory.Given the initial state of the Sussman anomaly, suppose that the operator to stack B onC is chosen:clear(B) ^ clear(C)) on(B;C)Given the direct e�ect on(B;C), the Extend function would be used to determine ad-ditional e�ects. Because negative on conditions are �rst in the default preference orderingD, any negative on conditions true in the initial state and consistent with the operator'se�ect are determined to be true in the new state. Of course, on(B;C) is not consistent withon(B;C), but the following literals are:on(A;B); on(A;C); on(B;A); on(C;B); on(C; table)Positive on conditions are next in D. on(B; table) is not consistent with on(B;C) andon(B;C) _ on(B; table) and so on(B; table) is inferred. The other positive on conditions|on(C;A) and on(A; table)|remain true.Negative clear conditions are next in D. Only clear(A) is true of the initial state. It isalso consistent with the e�ect of the operator, the indirect e�ects inferred so far, and thedomain theory, so it is true of the new state.Positive clear conditions are the last literals in D. clear(B) is consistent with the e�ectsand the domain theory. clear(C) is inconsistent with on(B;C) and on(B;C) _ clear(C), soclear(C) is inferred. 29



6 Complexity Results for EPLANSATThis section considers the computational complexity of extended propositional STRIPS plan-ning assuming various restrictions on the domain theory and on operators. Let EPLANSATbe the decision problem of whether an instance of extended propositional STRIPS planninghas a solution. As before, the notation EPLANSAT�� is used to denote EPLANSAT withrestrictions � on the preconditions and restrictions � on the postconditions. For example,EPLANSAT01+ denotes EPLANSAT with operators limited to zero preconditions and onepositive postcondition.6.1 No RestrictionsTheorem 6.1 EPLANSAT is PSPACE-complete.Proof: The results in Figure 1 from correspond to the case where the domain theory � isthe empty set. Hence, EPLANSAT under the restriction that � = ; is PSPACE-complete,which implies that EPLANSAT is PSPACE-hard.EPLANSAT is in PSPACE because the size of a state is bounded by the number ofconditions. That is, if there are n conditions and there is a solution, then the length of thesmallest solution path must be less than 2n. Any solution of length 2n or larger must have\loops," i.e., there must be some state that it visits twice. Such loops can be removed, re-sulting in a solution of length less than 2n. Hence, no more than 2n nondeterministic choicesare required. Because NPSPACE = PSPACE, EPLANSAT is also in PSPACE. Because itis also PSPACE-hard, EPLANSAT is PSPACE-complete. 26.2 De�nite Horn Domain TheoriesA domain theory � is de�nite Horn if each formula in � is a de�nite Horn clause, i.e., adisjunction of literals containing exactly one positive literal.Theorem 6.2 EPLANSAT 01+ restricted to de�nite Horn domain theories is PSPACE-complete.Proof: PLANSAT with operators limited to two positive preconditions and two postcon-ditions is PSPACE-complete (Corollary 3.2). Each such operator can be converted into twooperators, each with zero preconditions and one positive postcondition in combination withadding conditions to P, adding de�nite Horn clauses to �, and imposing an appropriatepreference ordering on literals.Suppose there are m operators to convert. Suppose pi1 ^ pi2 ) pi3 ^ pi1 is operator oi tobe converted (converting other kinds of operators will be similar).Let ) pre(i) be the �rst operator, let pre(i), in(i), post(i), and nil be new conditions,add the following de�nite Horn clauses to �:pre(i) _ pi1 _ pi2 _ in(i)pre(i) _ pre(j) _ nil i 6= jpre(i) _ in(j) _ nil i 6= jpre(i) _ post(j) _ nil 1 � j � m 30



and impose the following orderings in the default preference ordering D:nil � l for any other literal lpi1 � in(i)pi2 � in(i)If pi1 and pi2 are true and nil false, then the result of applying ) pre(i) will be thatpre(i) and in(i) are true, all other pre(j) and in(j) are false, and all post(j) are false. Theorderings ensure that nil remains false, and pi1 and pi2 remain true.Let ) post(i) be the second operator, add the following de�nite Horn clauses to �:post(i) _ in(i) _ pi3post(i) _ in(i) _ pi1 _ nilpost(i) _ post(j) _ nil i 6= jpost(i) _ pre(j) _ nil 1 � j � mand impose the following orderings in the default preference ordering D:nil � l for any other literal lin(i) � pi3in(i) � pi1If in(i) is true and nil false, then the result of applying ) post(i) will be that post(i)and pi3 are true, pi1 is false, all other post(j) are false, and all pre(j) are false. The orderingsensure that nil remains false, and in(i) remains true.To have the e�ect of operator oi, operator ) pre(i) can be followed by ) post(i). Also,any sequence of the converted operators will only have the e�ect of some sequence of originaloperators. Only a) post(i) operator can a�ect the original conditions, and then only if in(i)is true, which is possible only if ) pre(i) has been previously applied, if the preconditionsof oi are true, and if no intervening ) pre(j) has deleted in(i).Thus, starting with any initial state (new conditions initially false) and goals (new con-ditions not included), some sequence of the converted operators is a solution if and onlyif some sequence of the original operators is a solution. Thus, EPLANSAT01+ restricted tode�nite Horn domain theories is PSPACE-hard. Because EPLANSAT is PSPACE-complete,this problem is also PSPACE-complete. 26.3 Krom Domain TheoriesA domain theory � is Krom if each formula in � is a Krom clause, i.e., a disjunction of twoliterals. Note that the default preference ordering does not matter because no \ambiguities"about indirect e�ects can occur for Krom domain theories, i.e., if one literal in a clausebecomes false, the other literal must become true.Theorem 6.3 For any k � 0 and g � 1, the following problems can be polynomially reducedto each other: 31



1. EPLANSAT k restricted to Krom domain theories g goals.2. PLANSAT k restricted to g goals; and3. EPLANSAT k+1+ restricted to Krom domain theories and g goals;Proof: The �rst problem is clearly the most general of the three. Let oi be an operatorfrom some instance of the �rst problem, and let � be the instance's Krom domain theory.Because � is Krom, the \indirect" e�ects of oi will be exactly the same for any statesatisfying oi's preconditions. A new operator o0i can be constructed that explicitly includesthese e�ects in its postconditions. This can be done for every original operator, thus making� super
uous. Therefore, any instance of the �rst problem can be converted to an instancefor the second problem.For the third problem, a new operator o0i can be constructed as follows. Suppose oi hask preconditions. Let o0i be the operator pre(i; 1) ^ : : : ^ pre(i; k)) post(i), where pre(i; 1),: : : , pre(i; k), and post(i) are new literals. Note that there are k positive preconditions, andthat there is exactly one positive postcondition. If lj is the jth precondition of oi, thenadd lj _ pre(i; j) and lj _ pre(i; j) to �. Thus, for any possible state, o0i's preconditionsare satis�ed exactly when oi's preconditions are satis�ed. If l is a postcondition of oi, thenadd post(i) _ l to �. This ensures that the e�ects of o0i include the e�ects of oi. Also, addpost(i)_ post(j) for i 6= j to �. This ensures that o0i does not have any more e�ects than oi,except for any changes to new literals.Now if pre(i; j) conditions are added as needed to the initial state of the instance of the�rst problem so that the initial state is possible, then a sequence of converted operators is asolution if and only if the corresponding sequence of original operators is a solution. 2This theorem leads to the following corollaries derived from the complexity results forPLANSAT.Corollary 6.4 EPLANSAT 1+1+ restricted to Krom domain theories is PSPACE-complete.Corollary 6.5 EPLANSAT 1 restricted to Krom domain theories and g goals is polynomial.Corollary 6.6 EPLANSAT 0 restricted to Krom domain theories is polynomial.7 Complexity Results for EPLANMINLet EPLANMIN be the problem of determining the existence of a solution of k operatorsor less for extended propositional STRIPS planning, where k is given as part of the input.For each PSPACE (NP)-complete EPLANSAT problem, it is also PSPACE (NP)-completefor EPLANMIN.Theorem 7.1 EPLANMIN is PSPACE-complete.EPLANMIN 01+ restricted to de�nite Horn domain theories is PSPACE-complete.EPLANMIN 1+1+ restricted to Krom domain theories is PSPACE-complete.32



Proof: It is easy to set k so that the EPLANMIN problem is equivalent to the corre-sponding EPLANSAT problem. 2What remains are to consider the restrictions that are polynomial for EPLANSAT. Theproof of Theorem 6.3 shows how to translate instances of extended propositional STRIPSplanning with Krom domain theories to and from instances of propositional STRIPS plan-ning. In each case, one operator in one instance is translated to an operator in the otherinstance with essentially identical e�ects. Thus, the proof of Theorem 6.3 also supports thetranslation of complexity results for PLANMIN to complexity results for EPLANMIN withKrom domain theories.Theorem 7.2 EPLANMIN 0 restricted to Krom domain theories is NP-complete, even ifoperators are limited to one positive postcondition.Proof: Follows from NP-completeness of PLANMIN0. 2Theorem 7.3 EPLANMIN 1 restricted to Krom domain theories and g goals is polynomial.Proof: Follows from polynomial result for PLANMIN1 restricted to g goals. 28 ConclusionThis analysis shows that extremely severe restrictions on both the operators and the domaintheory are required to guarantee tractability or even NP-completeness for planning problems.One must be careful, however, concerning the implications of these results.Work on reactive and anytime planning systems is partly motivated by the complexityof planning. However, this motivation is somewhat misguided because the complexity arisesfrom the properties of the problem, not from the properties of any particular algorithm thatsolves the problem. In other words, the complexity results specify how hard it is to �nd asequence of actions that accomplish a set of goals, but are completely neutral to how thesequence of actions is generated. Whether or not a system is reactive, anytime, or soundand complete, it is equally hard to achieve goals by performing actions. This in no wayinvalidates work on di�erent types of planning algorithms, just that they must be put intothe proper context.Nevertheless, many successful planning systems attest to the fact that planning is indeedpossible and practical for many domains. What then accounts for the large gap between thetheoretical hardness of planning and its practical application? Perhaps a large part of theanswer is that the complexity analysis only considers properties of planning problems that aredomain-independent, and so have some chance of being generally applicable. However, theanalysis strongly suggests that there is no such thing as a set of generally-applicable domain-independent properties that lead to e�cient planning. A pessimistic view is that practicalplanning domains are e�cient for domain-dependent reasons, which in turn demand domain-dependent analyses and planning algorithms. More optimistically, it is possible that speci�cclasses of planning domains might be e�ciently solvable for similar reasons. In any case, thekey question is how much can domain-independent planning live up to its name.33
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