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Abstract

I present several computational complexity results for propositional STRIPS planning, i.e.,
STRIPS planning restricted to ground formulas. Different planning problems can be defined
by restricting the type of formulas, placing limits on the number of pre- and postconditions,
by restricting negation in pre- and postconditions, and by requiring optimal plans. For these
types of restrictions, I show when planning is tractable (polynomial) and intractable (NP-
hard). In general, it is PSPACE-complete to determine if a given planning instance has any
solutions. Extremely severe restrictions on both the operators and the formulas are required
to guarantee polynomial time or even NP-completeness. For example, when only ground
literals are permitted, determining plan existence is PSPACE-complete even if operators are
limited to two preconditions and two postconditions. When definite Horn ground formulas
are permitted, determining plan existence is PSPACE-complete even if operators are limited
to zero preconditions and one postcondition. One of the interesting tractable problems is
if each operator is restricted to positive preconditions and one postcondition (only ground
literals). The blocks-world problem, slightly modified, is a subproblem of this restricted
planning problem. These results in combination with previous analyses are not encouraging
for domain-independent planning.

*This research has been supported in part by DARPA/AFOSR contract F49620-89-C-0110.
tThis paper is a revised, integrated, and extended version of [5] and [6].



1 Précis

If the relationship between intelligence and computation is taken seriously, then intelligence
cannot be explained by intractable theories because no intelligent creature has the time
to perform intractable computations. Nor can intractable theories provide any guarantees
about the performance of engineered systems. Presumably, robots don’t have the time to
perform intractable computations either.

Of course, when partial or approximate solutions are acceptable, heuristic theories are
a valid approach, i.e., theories for efficiently solving most, but not all, instances. However,
my purpose is not to consider the relative merits of heuristic theories and tractable theories.
Instead, I shall focus on formulating tractable planning problems, both optimal and non-
optimal, in which all instances can be efficiently solved.

Planning is the reasoning task of finding a sequence of operators that achieve a goal from
a given initial state. It is well-known that planning is intractable in general, and that several
obstacles stand in the way [9]. However, there are few results that provide clear dividing
lines between tractable and intractable planning. Below, I clarify several of these dividing
lines by analyzing the computational complexity of a planning problem and a variety of
restricted and augmented versions. From the perspective of the expressiveness-tractability
tradeoff [27], I primarily consider the expressiveness of operators and formulas.

1.1 Previous Research

The literature on planning is voluminous, and no attempt to properly survey the planning
literature is attempted here. Instead, the reader is referred to Allen et al. [1] and Hendler et
al. [23]. Despite the sizable literature, results on computational complexity are sparse.

Dean and Boddy [12] analyze the complexity of temporal projection—given a partial
ordering of events and causal rules triggered by events, determine what conditions must be
true after each event. Their formalization of temporal projection shares many features with
planning, e.g., their causal rules contain antecedent conditions (preconditions) and added
and deleted conditions (postconditions). However, they only consider problems of prediction
in which a partial ordering of events is given, whereas the equivalent planning problem would
be to find some ordering of any set of events that achieves some set of conditions.

Korf [25] considers how various global properties of planning problems (e.g., serializable
subgoals, operator decomposability, abstraction) affect the complexity of using problem space
search to find plans. In contrast, I focus exclusively on local properties of operators. However,
except for Korf’s own analysis of operator decomposability [24], neither he nor I describe
the relationship from these properties of planning problems to the properties of operators.
Clearly, this is an issue that future work should address.

Perhaps the most important complexity results for planning are due to Chapman’s anal-
ysis of TWEAK [9]. Because virtually all other planners are as expressive as TWEAK, Chap-
man’s results have wide applicability. TWEAK’s representation includes the following fea-
tures. The preconditions and postconditions of an operator schema are finite sets of “propo-
sitions.” A proposition is represented by a tuple of elements, which may be constants or
variables, and can be negated. A postcondition of an operator can contain variables not



specified by any precondition of the operator, which in effect allows creation of new con-
stants.

Chapman proved that planning is undecidable and so clearly demonstrated the difficulty
of planning in general, but did not show what features of TWEAK’s representation are to
blame for the complexity. Erol et al. [16] analyze TWEAK-like planning further, showing that
planning is undecidable only if the number of constants is infinite. They also demonstrate
that if the set of constants are finite, the operators are fixed, no functions are allowed, and
no negative pre- or postconditions are permitted, then TWEAK-like planning is polynomial.
However, this is a very specialized kind of planning problem, and it is not clear how some
of these conditions can be relaxed.

There are also some results concerning the tractability of very specialized kinds of plan-
ning. In the case where states are value assignments to finite-valued state variables, Backstrom
and Klein [3] show that planning is tractable if each operator has one postcondition, i.e.,
changes the value of one variable, if the preconditions of any two operators do not require dif-
ferent values for non-changing variables, and if no two operators have the same postcondition.
Ratner and Warmuth [34] show that finding optimal solutions to the n x n generalization
of the 8-puzzle is NP-hard. Gupta and Nau [21] and Chenoweth [11] show that optimal
blocks-world planning is NP-hard. Bacchus and Yang [2] present tractable tests for deter-
mining when an hierarchical planning problem has a property called downward refinement,
i.e., every abstract solution can be refined into a concrete solution. While these results
provide valuable insight into specialized problems, they provide little information about the
complexity of planning as a whole.

1.2 Models of Planning

I analyze two closely related models of planning. Both models are impoverished compared
to working planners. They are intended to be tools for theoretical analysis rather than
programming convenience. The results for these models apply to first-order STRIPS planning
[28] when there is a limited number of relevant ground formulas.

The first model of planning, called “propositional STRIPS planning,” is STRIPS planning
[17] in which an initial state is a finite set of ground atomic formulas, indicating that the
corresponding conditions are initially true, and that all other relevant conditions are initially
false; the preconditions and postconditions of an operator are ground literals; and the goals
are ground literals. Operators in this model do not have any variables or indirect side effects.
First-order STRIPS planning can be reduced to propositional STRIPS planning if the initial
state and goal conditions are ground literals, all pre- and postconditions of operators are
literals, and the number of relevant ground atomic formulas is limited. See Section 2 for a
more complete description.

The second model of planning, called “extended propositional STRIPS planning,” aug-
ments propositional STRIPS planning with a “domain theory” for inferring additional effects,
where a domain theory is a set of ground formulas. The ramification problem® is finessed by
requiring a preference ordering of all the literals so that, roughly, if two literals are true of

! The ramification problem is that the effects of an operator in the context of a formula can be ambiguous
[19, 20]. For example, if AV BV C is a formula in the domain theory, and if an operator deletes A, it is
ambiguous whether B or C should result.



the previous state, and if it is inconsistent to assert both in the next state, then the ordering
specifies which literal remains true. The preference ordering ensures that the result of apply-
ing an operator is unambiguous. First-order STRIPS planning can be reduced to extended
propositional STRIPS planning if the number of relevant ground formulas is limited.? See
Section 5 for a more complete description.

Propositional STRIPS planning is equivalent to Nilsson’s [33] simplified description of
STRIPS except that propositional STRIPS planning requires that each planning instance
explicitly specifies all relevant ground atomic formulas. Extended propositional STRIPS
planning is most closely related to Ginsberg and Smith’s [20] possible world approach to
reasoning about actions. Each state in extended propositional STRIPS planning corresponds
to a “partial world” with the domain theory as “protected” formulas, and the state resulting
from operator application corresponds to a “possible world.” Besides the fact that they
use first-order formulas, the other major difference is that the resulting partial world for
Ginsberg and Smith is taken to be the agreement among “all possible worlds,” which leads
to ambiguity where the possible worlds conflict, rather than preferring a particular possible
world.

1.3 Summary of Results

Different planning problems can be defined by placing limits on the number of pre- and
postconditions, by restricting negation in pre- and postconditions, by requiring optimal plans,
and by restricting the domain theory. Figures 1, 2, and 3 summarize the results. A few of
the results are due to Erol et al. [16], and are footnoted accordingly.

1.3.1 PLANSAT

Let PLANSAT be the problem of determining the existence of a solution for propositional
STRIPS planning. Figure 1 illustrates the complexity of PLANSAT under various re-
strictions, showing which PLANSAT problems are PSPACE-complete, NP-complete, and
polynomial.® Section 3 contains the proofs for these results.

Each box in the figure denotes limitations on the number of pre- and postconditions—a
* indicates no limits. Also, some boxes denote restrictions on negation using the + symbol.
For example, the following box:

2 + preconds
2 postconds.

2This assertion requires at least two qualifications. One is that I assume that all non-literal formulas
in the initial state and in the postconditions of operators are true in all states, as is done in Lifschitz’s
formalization of the semantics of STRIPS planning [28]. The other is that I assume (speculatively) that any
solution to the ramification problem can be implemented in any given domain as a preference ordering of
literals plus appropriate formulas in the domain theory.

3A problem is in PSPACE if it can be solved using an amount of space that is a polynomial of the size
of the input. PSPACE-complete problems are the hardest problems in PSPACE. As is customary, I assume
that PSPACE-complete problems are harder than NP-complete problems, which in turn are harder than
polynomial problems. However, even P # PSPACE is not yet proven.



PSPACE-complete

* preconds.
* postconds.

D —

* preconds. 1 precond. 2 + preconds
1 postcond. * postconds. 2 postconds.

R i

* preconds.
* +postconds

A

NP-complete

1 precond.
1 + postcond

* + preconds 1 precond. 0 precond.
1 postcond. * postconds. * postconds.
g goals
polynomial

Figure 1: Complexity Results for PLANSAT

says that operators are limited to two positive preconditions and two postconditions. One
box in Figure 1 indicates that the number of goals is bounded by a constant g. The arrows
indicate subproblem relationships.*

PLANSAT is in PSPACE because the size of a state is bounded by the number of
conditions. Although the length N of a solution plan might be exponential, an algorithm
only needs memory for O(lg N) states to determine if a solution exists [35]. Namely, an
algorithm PLAN-EXISTS(Si, Sy, N) that determines the existence of a plan from state S; to
state Sy of length N or less can be implemented as follows: for N = 1, check if 5; = 5
or if applying any operator to S; results in Sy; for N > 1 iterate over all states S3, and
recursively call PLAN-EXISTS(S1, S3, [N/2]) and PLAN-EXISTS(S3, Sa, | N/2])). Note that
the depth of the recursion is logarithmic in N.

4The following are other results that were left out the figure because they were judged to be less interesting,
but are listed here for completeness. Their proofs are omitted from the paper. For any constant & > 1,
PLANSAT is NP-hard if each operator is limited to k preconditions and one postcondition. For any constant
k> 1, PLANSAT is NP-hard if each operator is limited to one precondition and k postconditions. PLANSAT
is NP-complete if each operator is limited to positive preconditions and negative postconditions (likewise
negative preconditions and positive postconditions), even if limited to one positive precondition and two
negative postconditions. PLANSAT is polynomial in the previous case if the number of goals is bounded
by a constant. PLANSAT is polynomial if each operator is limited to positive preconditions and positive
postconditions. Erol et al. [16] show that PLANSAT is NLOGSPACE-complete if each operator is limited
to one positive precondition and positive postconditions.



PLANSAT is PSPACE-hard because any Turing machine transition from one state to
another can be mapped into an operator. The number of such operators is proportional to
the number of transitions times the number of tape squares, so a PSPACE Turing machine
corresponds to a polynomial number of operators.

PLANSAT remains PSPACE-complete even if operators are limited to one postcondition,
or if operators are limited to one precondition,’ or if operators are limited to 2 positive
preconditions and 2 postconditions. Section 3 provides a Turing machine reduction for each
restriction.

A necessary condition to make PLANSAT PSPACE-complete is allowing negative post-
conditions. If operators are limited to positive postconditions, then applying an operator to
a state must result in a superset of that state. This means that the length of the shortest so-
lution plan (if one exists) is bounded by the number of conditions (ground atomic formulas).
Thus, PLANSAT limited to positive postconditions is in NP. Note that if no two operators
of a planning instance have conflicting postconditions (a postcondition “conflict” is when a
postcondition of one operator is the negation of a postcondition of another operator), then
it is easy to transform the instance so that all postconditions are positive.

However, this restriction is still NP-complete because a positive postcondition can con-
flict with negative preconditions of other operators, and it can be difficult to choose which
conditions should be made true in order to achieve the goals.

Thus, further restrictions are required to guarantee polynomial planning. The first poly-
nomial problem (bottom left of Figure 1) is if each operator only has positive preconditions
and a single postcondition. For this problem, an algorithm can search for an intermediate
state that can be reached from the initial state via operators with positive postconditions
and that can reach a goal state via operators with negative postconditions. The blocks-
world problem, slightly modified, is a subproblem of this problem. Note that one can always
unstack all the blocks followed by making the goal stacks from the table on up. The inter-
mediate state in this case is when all the blocks are unstacked. Backstrom and Nebel [4] give
a generalization of this restriction and the corresponding algorithm in which state variables
are used instead of propositions.

The second polynomial problem is if there are a limited number of goals and each operator
is limited to one precondition. Surprisingly, limiting the number of goals is an important
factor only if operators are limited to one precondition. Otherwise, any single goal can
expand into many subgoals. This problem is polynomial because a polynomial-sized search
space can be constructed, i.e., g goals depend on at most g conditions for any state, so an
algorithm need only consider all combinations of g conditions.

The final polynomial problem is if operators have no preconditions at all, i.e., planning is
tractable if preconditions can be ignored. Interestingly, this is the only polynomial problem
that appears to be easily solvable by means-end analysis. The first polynomial problem
appears to require significant forward search. The second appears to require an exhaustive
search through a reduced search space.

Not illustrated in Figure 1 is that all of these results are independent of whether the
planner is linear, non-linear, deliberative, reactive, anytime, hierarchical, opportunistic, case-
based, etc. It does not even matter whether the operators are explicitly represented or

5In previous papers, I incorrectly asserted that the complexity of this restriction was NP-complete.



NP-complete

* + preconds 0 precond.
1 postcond. * postconds.
A / \
1 + precond. 0 precond. 0 precond.
1 + postcond 2 postconds. 3 +postconds
A A
1 precond. 0 precond. 0 precond.
* postconds. 1 postcond. 2 +postconds
g goals
polynomial

Figure 2: Complexity Results for PLANMIN

implicitly available via some result function. Thus, even in the simplest case, i.e., a restriction
to ground literals, full knowledge of initial state and operators, deterministic operators, and
only asking whether any solution exists, planning is a very hard problem.

1.3.2 PLANMIN

To describe the computational complexity of an optimization problem, it is converted into
the decision problem of determining whether a given bound can be achieved [18]. So to
describe the complexity of optimal planning, let PLANMIN be the problem of determining
the existence of a solution of k operators or less for propositional STRIPS planning, where
k is given as part of the input. The proofs for these results are in Section 4.

For each PLANSAT problem that was PSPACE(NP)-complete, it is also PSPACE(NP)-
complete for PLANMIN.® This is because one can easily can set k high enough so that a
PLANMIN instance is equivalent to the corresponding PLANSAT instance. Also, the NP-
complete problems have polynomial bounds on the length of the shortest solution plan, if
such a plan exists. Figure 2 illustrates the complexity results for the restrictions that were
polynomial for PLANSAT.

When operators are restricted to one positive precondition and one positive postcondition,
PLANMIN remains intractable. The difficulty is finding a minimum set of subgoals to achieve
a set of goals. That is, the postcondition of one operator might be useful to achieve several
goals via other operators, and it is difficult to choose a minimum set of such conditions. This
improves on the result in Erol et al. [16], who show that PLANMIN is NP-complete if each
operator is limited to one positive precondition and positive postconditions.

8Erol et al. [16] also analyze the complexity of PLANMIN (which they call PLAN LENGTH), but, with
one exception described in the next paragraph, they only consider restrictions on negation in preconditions
and postconditions. Based on my results for PLANSAT [5], they show that PLANMIN is PSPACE-complete,
that it is PSPACE-complete if each operator is limited to positive preconditions, and that it is NP-complete
if each operator is limited to positive postconditions. Erol et al. also show that PLANMIN is NP-complete
if each operator is limited to positive preconditions and positive postconditions.



PSPACE-complete
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0 preconds.
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1 precond. 0 precond.
* postconds. * postconds.
g goals Krom
Krom
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Figure 3: Complexity Results for EPLANSAT

Even when operators are restricted to no preconditions, restrictions on postconditions
are required for polynomial optimal planning. If two postconditions or three positive post-
conditions are allowed, then PLANMIN is NP-complete.

The only interesting polynomial PLANMIN problem is limiting the number of goals
and limiting operators to one precondition. This is because the relevant search space has
polynomial size and breadth-first search can be used to find the shortest path.

1.3.3 EPLANSAT

Both PLANSAT and PLANMIN are restricted to ground literals. If ground formulas are al-
lowed, then extended propositional STRIPS planning must be considered. Let EPLANSAT
be the problem of determining the existence of a solution for extended propositional STRIPS
planning. Figure 3 illustrates the results. “definite Horn” denotes a restriction to proposi-
tional definite-Horn domain-theories (every formula is a disjunction of ground literals with
exactly one positive literal); “Krom” denotes a restriction to propositional Krom domain
theories (every formula is a disjunction of at most two ground literals).” These results are
proven in Section 6.

As shown by the figure, the range of PSPACE-complete problems is large, from EPLANSAT
without restrictions to EPLANSAT limited to definite Horn theories and operators with zero
preconditions and one positive postcondition. Essentially, definite Horn theories combined
with one condition changing at a time is sufficient to permit the same effects as PLANSAT
operators. Applying an operator limited to one positive postcondition does not necessarily
result in a state that is superset of the previous state. This is because conditions can be
made false by an interaction of the domain theory with the preference ordering of literals.

For a Krom domain theory, a postcondition always implies the same set of conditions

"The use of “Krom” to refer to this type of formula can be traced to a paper by Krom [26].



regardless of the current state and other postconditions. Thus, any EPLANSAT problem
restricted to Krom theories is equivalent to the corresponding PLANSAT problem without
any limitations on the number or type of postconditions. All the Krom theory results are then
easily derived from PLANSAT results (see Figure 1): having one precondition is PSPACE-
complete, one precondition with a bounded number of goals is polynomial, and having no
preconditions is polynomial.

1.3.4 EPLANMIN

Let EPLANMIN be the problem of determining the existence of a solution of k opera-
tors or less for extended propositional STRIPS planning. For each PSPACE(NP)-complete
EPLANSAT problem, it is also PSPACE(NP)-complete for EPLANMIN. The two problems
that are polynomial for EPLANSAT have different results for EPLANMIN:

With Krom theories, EPLANMIN is NP-complete if operators are limited to no pre-
conditions, even if further limited to one positive postcondition.

With Krom theories, EPLANMIN is polynomial if operators are limited to 1 precon-
dition and the number of goals is bounded by a constant g.

Section 7 demonstrates these results.

1.4 Remarks

I have shown that propositional STRIPS planning is PSPACE-complete in general and for
many restrictive problems. Extremely severe restrictions on both the operators and the
domain theory are required to guarantee polynomial time or even NP-completeness. To
say the least, these results in combination with previous analyses are not encouraging for
domain-independent planning.

However, operators must have multiple preconditions, simultaneous positive and negative
postconditions, and apparently many more “features” to implement any interesting domain
[9, 23]. While additional features might be good for making a planner more useful as a pro-
gramming tool, generality has its downside—tractability of planning cannot be guaranteed
even with moderately expressive operators.

All of this again calls into question the “restricted language thesis” proposed by Levesque
and Brachman [27], i.e., that the expressiveness of representations needs to be restricted so
that inference is tractable. Doyle and Patil [14] persuasively argue that restricting the
expressiveness of a general-purpose representation system to ensure polynomial reasoning
“destroys the generality of the language and the system” and “fails to permit expression of
concepts necessary to some applications.” The above complexity results for planning provide
additional evidence against the restricted language thesis. Restricting the expressiveness of a
general-purpose planner to ensure polynomial planning no doubt would destroy the generality
of the planner and would fail to permit expression of crucial domain knowledge.

However, simply throwing out the restricted language thesis is no solution. Understanding
how humans and robots can reason efficiently will continue to remain a central problem of
Al If restricting the expressiveness of planners won’t work, what will?



One possible solution is to consider average running time rather than worst-case running
time, so that more expressive languages would be labeled efficient. However, while it appears
that NP-complete problems are hard only for narrow ranges of the problems [10, 30, 31],
there is little research on problems that are PSPACE-complete. Promising directions include
Musick and Russell [32], who develop a Markov model approximation for analyzing hill-
climbing algorithms on single postcondition problems, and Bylander [8], who shows that
most PLANSAT instances under certain distributional assumptions can be efficiently solved.

An alternative approach is to restrict global properties of planning instances rather than
local properties of operators and formulas. As mentioned above, Korf [25] discusses how
global properties such as serializable subgoals, operator decomposability, and abstraction
can lead to efficient search for plans. Understanding how these properties are realized as
restrictions on the set of operators as a whole is a promising research approach. Korf’s [24]
analysis of serial decomposability and Bacchus and Yang’s [2] analysis of abstraction are
significant steps in this direction, though see [7] for negative results on the complexity of
serial decomposability.

More generally, I speculate that the analysis of general-purpose planning will evolve into
the analysis of many different special-purpose planning problems and techniques for encoding
these special-purpose problems in a general-purpose planner. That is, the situation will be
like that of analysis of algorithms, in which a general-purpose programming language is used
to encode the algorithms and data structures for different types of problems. For example,
the three polynomial PLANSAT problems appear to require quite different algorithms and
data structures, and many other tractable planning problems are yet to be discovered.

This paper provides a complexity “map” of the “territory” of planning problems, identi-
fying many of the conditions that differentiate tractable planning from intractable planning.
Any map, of course, is an incomplete description; in this case, I have focused on restricting
the local properties of planning operators and of the formulas in domain theories. Never-
theless, travelers into the planning “wilderness” would be well-advised to be aware of the
known computational cliffs.

1.5 A Guide to the Rest of the Paper

All of the above is intended to be an adequate description of the complexity results for readers
who do not wish to delve into the formal details. What follows provides the mathematical
definitions and the proofs demonstrating the results. Two of the sections below are devoted
to defining propositional STRIPS planning and extended propositional STRIPS planning.
Each of these two sections also has a blocks-world example and describes the scope of the
planning model. All other sections provide proofs for the variety of PLANSAT, PLANMIN,
EPLANSAT, and EPLANMIN problems described above. The proofs for the polynomial
planning problems include descriptions of algorithms that are sufficient for the proofs, but
not necessary the most efficient in terms of running time or plan length.



2 Propositional STRIPS Planning

In this section, I define propositional STRIPS planning, give an example, and describe the
kinds of first-order STRIPS planning that can be reduced to propositional planning.

2.1 Definitions
An instance of propositional STRIPS planning is specified by a tuple (P,0,Z,G), where:

P is a finite set of ground atomic formulas, called the conditions;
O is a finite set of operators, where each operator o has the form Pre = Post:8

Pre is a satisfiable conjunction of positive and negative conditions, respectively
called the positive preconditions (o) and the negative preconditions (o™) of the
operator;

Post is a satisfiable conjunction of positive and negative conditions, respectively
called the positive postconditions (o) and the negative postconditions (o_) of the
operator, i.e., the add list and delete list, respectively;

Z C P is the inateal state; and

G, called the goals, is a satisfiable conjunction of positive and negative conditions,
respectively called the positive goals (G+) and the negative goals (G_).

That is, P is the set of conditions that are relevant. Any state can be specified by a
subset S C P, indicating that p € P is true in that state if p € 5, and false otherwise. O
is the set of the operators that can change one state to another. Z specifies what conditions
are true and false in the initial state, i.e., p € P is initially true if p € 7 and initially false
otherwise. G specifies the goals, i.e., § C P is a goal state if S satisfies G,1i.e.,if G, C S and
G-NS=0.

As indicated above, let o™, 07, o,, and o_ respectively denote the sets of positive pre-
conditions, negative preconditions, positive postconditions, and negative postconditions of
an operator o. Then the effect of a finite sequence of operators (01,02,...,0,) on a state S

can be formalized as follows.?

Result(S,()) = S
SUo o ifotCSando NS =10
Result(5,(0)) = {(S o otherwise
Result(S, (01,02,...,0n))
= Result(Result(S,(01)),(02,.-.,0n))

For convenience, any operator can be applied to a state, but only has an effect if its
preconditions are satisfied. If its preconditions are satisfied, its positive postconditions are

8The symbol = is used for operators. The symbol — is used for implication.
®The symbol \ is used for set difference.
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added and its negative postconditions are deleted. An operator can appear multiple times
in a sequence of operators.

A finite sequence of operators (01,02, ...,0,) is a solution to an instance of propositional
planning if Result(Z,(01,0s,...,0,)) is a goal state.

An instance of a propositional STRIPS planning problem is satisfiable if it has a solution.
PLANSAT is defined as the decision problem of determining whether an instance of propo-
sitional STRIPS planning is satisfiable. PLANMIN is defined as the decision problem of
determining whether an instance of propositional STRIPS planning has a solution of length
k or less, where k is given as part of the input. Below, the computational complexity of

PLANSAT, PLANMIN, and restricted versions are demonstrated.

2.2 Blocks-World Example

To show how a planning instance can be modeled by propositional STRIPS planning, consider
the Sussman anomaly. In this blocks-world instance, there are three blocks A4, B, and C.
Initially C'is on A, A is on the table, and B is on the table. The goal is to have A on B and
B on C. Only one block at a time can be moved. The conditions, initial state, and goals
can be represented as follows:

P = {on(A, B), on(A,C

clear(A), clear(B
T = {clear(C), on(C, A
G = on(A,B)ANon(B,C

N—

, on(B,A), on(B,C), on(C,A), on(C, B),
, clear(C), on(A,Table), on(B,Table), on(C,Table)}
, on(A,Table),clear(B), on(B,Table)}

N’ N’ N

The operator to move C from A to the table can be represented as:

clear(C) A on(C, A) = on(C, Table) A clear(A) A on(C, A)
That is, C can be moved from A to the table if C' is clear and C is on A. As a result, C will

be on the table, A will be clear, and C will not be on A.
The operator to move A from the table to B can be represented as:

clear(A) A on(A,Table) A clear(B) = on(A, B) A on(A,Table) A clear(B)

That is, A can be moved from the table to B if nothing is on 4 or B, and A is on the table.
The result is that A will be on B, A will not be on the table, and B will not be clear.

2.3 Reducibility

Any blocks-world instance can be reduced in polynomial time to an instance of propositional
STRIPS planning. For b blocks, the above style of encoding will lead to b2+ b conditions and
b® — b? operators. Specifically, there are b clear conditions and b% on conditions (choose any
block for the first argument; choose any other block or the table for the second argument).
There are b(b — 1) operators for moving a block from another block to the table, b(b — 1)
operators for moving a block from the table to another block, and b(b — 1)(b — 2) operators
for moving a block from one block to another block.

11



More generally, first-order STRIPS planning can be polynomially reduced to propositional
STRIPS planning under the following restrictions: the initial state and goal conditions are
ground literals, pre- and postconditions in operators are limited to literals; each variable in
an operator is limited to a polynomial number of values; and each operator is limited to a
constant number of variables [16]. An exponential number of values for a variable would lead
to an exponential number of ground atomic formulas. A polynomial number of variables in an
operator would lead to an exponential number of propositional STRIPS planning operators.

Thus, results for propositional STRIPS planning apply to a large range of first-order
STRIPS planning, though it should be noted that no formulas are permitted. Extended
propositional STRIPS planning shall partially alleviate this restriction.

3 Complexity Results for PLANSAT

This section describes and demonstrates complexity results for PLANSAT, the decision prob-
lem of determining whether an instance of propositional STRIPS planning is satisfiable.
First, unrestricted PLANSAT is considered, followed by increasingly restrictive versions. The
notation PLANSATZ is used to denote PLANSAT with restrictions a on the preconditions
and restrictions 8 on the postconditions. For example, PLANSAT>" denotes PLANSAT
with operators limited to two positive preconditions and two postconditions.

3.1 PSPACE-complete PLANSAT
Theorem 3.1 PLANSAT s PSPACE-complete.

Proof: PLANSAT is in NPSPACE because a sequence of operators can be nondeterminis-
tically chosen, and the size of a state is bounded by the number of conditions. That is, if
there are n conditions and there is a solution, then the length of the smallest solution path
must be less than 2”. Any solution of length 2™ or larger must have “loops,” i.e., there must
be some state that it visits twice. Such loops can be removed, resulting in a solution of
length less than 2™. Hence, no more than 2" nondeterministic choices are required. Because
NPSPACE = PSPACE [35], PLANSAT is also in PSPACE.

Turing machines whose space is polynomially bounded can be polynomially reduced to

PLANSAT. The PLANSAT conditions can be encoded (and roughly translated) as follows:

n(i,z) Symbol z is in tape position z.

at(z,q) The Turing machine is ready to perform the transition for the current po-
sition 7 and state q.

do(i,q,z) Perform the transition at the ¢th position for state ¢ on character z.

accept The Turing machine accepts the input.

If go is the initial state of the Turing machine, its input is z;2s...z,, and the space used
by the Turing machine is bounded by m, then the the initial state and goals for propositional
planning can be encoded as:

T = {at(1, ), in(0,#), in(1,21), in(2,23), ..., in(n,zn),
'Ln(n—l_ 1)#)a 'LTL(TL—I— 2, )a T 'Ln(m o 1)#)}
G = accept

12



T is encoded so that positions 1 to n contain the input and the remaining positions (position
0 and positions n + 1 to m — 1) contain a special symbol #.

Suppose that the Turing machine is in state g, the tape head is at the ith position, =
is the character at the ith position, and the transition is to replace x with y, move to the
right, and be in state ¢’. This can be encoded using three operators (in order to facilitate
corollaries and theorems to follow):

at(i,q) Nin(t,z) = do(i,q,z) A at(z,q)

do(i,q,z) AN in(i,z) = n(i,y) Ain(i,z)
do(z,q,z) ANin(z,y) = at(i + 1,q') A do(z, ¢, )

The first operator “packs” all the information about the current position (at(7,q) and in(z,z))
into a single condition do(z, ¢, z) and deletes at(%,q). The second operator changes the symbol
from z to y. The third operator moves to the next position and the new state. To handle
boundary conditions, encode no operators for at(—1, q) and at(m,q).

A Turing machine accepts an input if it is in an accepting state and no transition can
be made from the current symbol. For each such case, an operator to add accept can be
encoded.

Because operators can precisely encode the transitions and the detection of accepting
states, a satisfiable plan can be found if and only if the Turing machine halts in an accept-
ing state. Because there are a polynomial number of (7,q,z) combinations, there will be a
polynomial number of conditions and operators. Thus, any PSPACE Turing machine with
its input can be polynomially reduced to an instance of PLANSAT. O

Note that none of the above operators requires more than two positive preconditions and
two postconditions. This leads to the following corollary.

Corollary 3.2 PLANSATZ%" is PSPACE-complete.
Using the same conditions as encoded above, the following theorem can be demonstrated:

Theorem 3.3 PLANSAT, (operators limited to one postcondition allowing any number of
preconditions) is PSPACE-complete.

Proof: Let Do; = {do(u,v,w) | u =1}. That is, Do; is the set of all do conditions whose first
argument is 2. Then the Turing machine transition described above can be encoded using
the following six operators:

at(i,q) ANin(z,2) A A\ P A N\ P= do(i,q,z)

p€Do;—1  p€Doiy

at(i,q) Nin(z,z) A do(, g, ) = at(z,q)

do(i,q,z) ANin(i,z) A at(s,q) = in(z,y)
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do(i,q,z) A in(z,z) Ain(t,y) = in(i, )

do(z,q,z) ANin(z,y) Nin(i,z) = at(i + 1,4¢)
do(z,q,z) Nin(z,y) Nat(i + 1,q") = do(i, ¢, )

In essence, two operators replace each operator in the previous reduction. The structure of
the operators ensures that they must be performed in sequence. The key part is the first
operator, whose negative preconditions include all do conditions whose first subscript is 2 — 1
or 1+ 1. This ensures that the do condition associated with the previous transition has been
removed (see the sixth operator) before the next Turing machine transition begins. This is
why any number of preconditions is necessary (for this reduction). O

Again using the same encoding as in the proof of Theorem 3.1, the following can be
demonstrated.

Theorem 3.4 PLANSAT! is PSPACE-complete.

Proof: For this reduction, each Turing machine must be modified so that if it accepts the
input, then the tape is left blank (e.g., filled in with the special symbol #), the Turing
machine is in a special state g, and the tape head is at position 1. This type of modification
does not require significantly more space. If the space used by the Turing machine is bounded
by m, then the corresponding goal state for the planning instance is:

G =at(l,qs;) Nin(0,#) Nin(L,#) A ... ANin(m — 1,#)

Let Do; g = {do(u,v,w) | u # 1 Av # gAw # z} (all do conditions except for do(z, g, z)).
Let At = {at(u,v)} (all at conditions). Let In;, = {in(u,v) | v = iAv # z} (all in conditions
whose first argument is 7 and second argument is not ).

Now the Turing machine transition described above can be encoded using the following
three operators:

at(i,q) = do(s,q,z) Aat(i,g) A \ P

pEln; ,

in(i,z) = in(i,y) Nin(i,z) A AD A A\ P
pEAL PEDOi,q,z

do(i,q,z) = at(i + 1,q') A do(,q,2) A /\ D

p€ln;y

These three operators correspond to the three operators in the reduction for Theorem 3.1.
Note that each operator adds at most one condition and deletes at least one condition. Be-
cause the goal state requires as many positive conditions as in the initial state, each operator
must add one condition and delete only one condition. In effect, in(z, ) must be true to apply
the first operator (otherwise, no in condition would be true for the ith position). do(z,q,z)
must be true to apply the second operator (otherwise, no at or do condition would be true).
Finally, in(z,y) must be true to apply the third operator (otherwise, no in condition would
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be true for the ith position). Consequently, these three operators must be used as if they
were the three operators from the proof for Theorem 3.1. O

Note that the second operator includes all but one of the at and do conditions. This is
why any number of postconditions is necessary (for this reduction). Also, note that there
are multiple goals. As shown below, if there is a limit on the number of goals, the problem
becomes polynomial.

I have not determined the precise complexity of PLANSAT* and PLANSAT} for when &
is a constant, k£ > 1. I speculate that these problems fall into the polynomial hierarchy in a
regular way, but the results in this paper only show that they are NP-hard and in PSPACE.

3.2 NP-Complete PLANSAT
Theorem 3.5 PLANSAT, s NP-complete.

Proof: Operators without negative postconditions can never negate a condition, so a previous
state is always a subset of succeeding states. Also, operators within an operator sequence
that have no effect can always be removed. Hence, if a solution exists, the length of the
smallest solution can be no longer than the number of conditions. Thus, PLANSAT, is in
NP because only a linear number of nondeterministic choices is required.

3SAT can be polynomially reduced to PLANSAT,. 3SAT is the problem of satisfying
a formula in propositional calculus in conjunctive normal form, in which each clause has at
most three literals.

Let F be a formula in propositional calculus in 3SAT form. Let U = {u1,us,...,un} be
the variables used in F. Let n be the number of clauses in F. An equivalent PLANSAT,
instance can be constructed using the following types of conditions.

T(z) w; = true is selected.
F(i) w; = false is selected.
C(j) The jth clause is satisfied.

The initial state and goals can be specified as:

=10
G=C()ANC2)A...ANC(n)

That is, the goals are to satisfy all of the clauses.
For each variable u;, two operators are needed:

F(i) = T(9)

T() = F(5)

That is, u; = true can be selected only if u; = false is not, and vice versa. In this fashion,
only one of u; = true and u; = false can be selected.
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For each case where a clause C(j) contains a variable u;, the first operator below is
needed; for a negated variable u;, the second operator below is needed:

T(:) = C(3)
F(i) = C(5)

Clearly, every C(j) can be made true if and only if a satisfying assignment can be found.
Thus PLANSAT, is NP-hard. Since PLANSAT, is also in NP, it follows that it is NP-

complete. O

Note that each operator above only requires one precondition and one positive postcon-
dition. This leads to the following corollary.

Corollary 3.6 PLANSAT], is NP-complete.

It is worth noting again at this point that a PLANSAT instance can be transformed to
one with just positive postconditions if the postconditions between any two operators do not
conflict. Recall that a postcondition “conflict” is when a postcondition of one operator is
the negation of a postcondition of another operator.

3.3 Polynomial Propositional Planning

Theorem 3.7 PLANSATY is polynomial.

Proof: The apparent difficulty is that some negative goals might need to be temporarily
true to make some positive goals true or some negative goals false. However, because of the
restrictions on the operators, it is sufficient to only consider plans that first make conditions
true and then make conditions false.

Consider a sequence of operators in which the preconditions of each operator become
true. Suppose that there are adjacent operators o; and o0;,1 such that o;’s postcondition is
negative and o;,1’s postcondition is positive. Let p; be 0;’s negative postcondition and p;q
be 0;.1’s positive postcondition. If p; = p;11, then o; can be deleted because o;y; reverses
o;’s effect. If p; # pi11, then o; can be switched with o0;11 because their postconditions are
independent of each other’s preconditions. All of 0;41’s preconditions are true after o;, so
leaving p; positive cannot cause o;y1’s preconditions to become false. Similarly, making p;1;
positive cannot cause o;’s preconditions to become false. Repeating these changes until there
are no such adjacent operators will result in an equivalent sequence of operators that first
makes conditions true and then makes conditions false.

Thus, if there is a solution, there is an intermediate state S that has the following
properties:

S can be reached from the initial state Z via operators with positive postconditions;

the positive goals G, are a subset of S; and
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S\G_,i.e., a state that satisfies the negative goals, can be reached from S via operators
with negative postconditions. Because each operator has only positive preconditions
and affects only one condition, and because the positive goals are true of S, the only
thing remaining is to make all the negative goals false, i.e., to achieve S\ G_.

The algorithm for this problem depends on finding an intermediate state S that satisfies
these properties.

Let TURNON be a subroutine that inputs a set of conditions X, and returns the maximal
state S C (P \ X) that can be reached from the initial state Z. It is assumed that X NZ = 0.
TURNON can be implemented by the following algorithm.

TURNON(X)
S—17
repeat
temp «— S
for o € O do
if (S C Result(S,0)) A (X N Result(S,0) = 0)
then S « Result(S,0)
until § = temp
return S

TURNON simply keeps applying all operators until no more conditions can be added, making
sure that no conditions in X are added. Adding a condition does not prevent the application
of any other operator, so the maximal state S is unique. For n conditions and m operators,
TURNON is O(mn?) (Result is O(n) because an operator can have up to n preconditions).

Let TURNOFF be another subroutine that inputs a set of conditions S and returns the
maximal state S’ C S such that S\ G_ can be reached from 5.

TURNOFF(S)
S — S\G_
repeat
temp «— S’
for o€ O do
if (o C S) A (Result(S'Uo_,0) = 5")
then S’ «— S'"Uo_
until §’ = temp
return S’

TURNOFF searches backward from S\ G_ to determine what operators can be used reach
that state, as long as each operator only requires conditions in S. There is a unique maximal
state S’ because the backward search always adds conditions to S’, which can only make
more operators applicable, never fewer. For n conditions and m operators, TURNOFF is

O(mn?).
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SATISFY determines if a solution exists by iterating between TURNON and TURNOFF:

SATISFY

X <0

loop
S «— TURNON(X)
if Gy € S then return reject
S’ « TURNOFF(S)
if § =5’ then return accept
X —XU(S\95)
if X N7 # 0 then return reject

In the first iteration S is set to TURNON(D), i.e., S contains all the conditions that can
be made true. If the positive goals are not true of S, then there is no way to achieve them,
and the first if statement rejects the instance. Otherwise, S’ is set to TURNOFF(S), i.e., S’
is the maximum subset of S that can reach the negative goals. Because no other conditions
can be made positive, S’ is also the maximum subset of P that can reach the negative goals.
If § = &', then a solution exists, and the second if statement accepts the instance. If § # 5,
then there must be some negative goals true of S that prevent the goal state from being
reached. To achieve a goal state, these negative goals must never become true, and so are
added to X. If some of these conditions are true of the initial state, the third if statement
rejects the instance.

The next iteration is just like the first except that nothing in X is made true. This
iteration might uncover additional conditions that, if made true, prevent the goal state from
being reached. These conditions are added to X. In following iterations, either additional
conditions are inserted in X, or one of the if statements classifies the instance. Because X
grows monotonically and its size has an upper bound of n (n =| P |), SATISFY performs
at most n iterations. Both TURNON and TURNOFF are O(mn?) (m =| O |), so SATISFY is
O(mn?). O

I show in a following section how Theorem 3.7 applies to the blocks-world.
Theorem 3.8 For a constant g, PLANSAT?! limited to g goals is polynomial.

Proof: The following algorithm solves this problem by exhaustively searching backward from
the goals.

Create a directed graph such that each vertex corresponds to a satisfiable set of g positive
and negative conditions, and each edge (u,v) corresponds to u resulting from applying some
operator o to v, i.e., u would be true of the next state if v were true of the previous state.
Perform breadth-first search on the graph starting from the vertex corresponding to the goal.
If a vertex true of the initial state is reached, then accept, otherwise reject.

This algorithm takes advantage of the following property of PLANSAT!—a single goal
cannot expand into multiple subgoals. Thus, if the g goals are reachable from the initial
state, they can be traced to g or fewer (positive and negative) conditions true of the initial
state. The graph constructed by the algorithm contains all possible links of any trace based
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on the operators. It is just a matter of graph search to find a path from the goals to a set
of conditions true of the initial state.

Although the algorithm is polynomial, it is not a very good one. For n conditions, there
are 29 (;) sets of g conditions, which is O(n9). One operator can lead to O(n??) edges, e.g.,
an operator with no preconditions and n postconditions applies to all sets of g conditions
and can lead to (:) sets of g conditions. Breadth-first search is linear in the number of

vertices and edges, so the above algorithm is O(mn?9). O

Limiting operators to one precondition is crucial for this theorem. Otherwise, if operators
can have more than one precondition, then a conjunctive goal problem can be converted into
a single goal problem by adding operators that transform the original set of goals onto a
single “supergoal.”

Theorem 3.9 PLANSAT® is polynomial.

Proof: The following algorithm solves PLANSAT® by working backwards from the goals.

Find an operator o that does not clobber any of the goals (for m operators and n condi-
tions, this is O(mn)). Remove goals achieved by o from consideration. Also remove o from
further consideration. Repeat the above until the remaining goals are true of the initial state
(accept) or until no more appropriate operators can be found (reject). There are at most n
goals, so this algorithm is O(mn?).

If a goal state can be reached, some operator must be the last operator, and it cannot
reach the goal state if its postconditions are inconsistent with the goals. Whatever goals are
achieved by this operator can be safely removed from consideration because the operator has
no preconditions to worry about. Then the problem is simplified to a search for operators
to achieve the remaining goals. O

3.4 Polynomial Planning without Explicit Operator Representa-
tions

The polynomial PLANSAT problems in this section have an interesting property. Suppose
that the pre- and postconditions of the operators are not explicitly represented, but, instead,
the Result function is supplied. In other words, a planning instance would have a set of
operators and a function to simulate them, but no explicit representation of the structure of
the operators.

It turns out that each problem is still polynomial. (Also, each PSPACE- and NP-complete
PLANSAT problem remains PSPACE- and NP-complete.) For PLANSAT! restricted to g
goals and PLANSAT?, it is sufficient to note that the preconditions and postconditions of the
operators can be recovered in polynomial time with appropriate use of the Result function.

For PLANSATY, note that TURNON only requires the Result function and TURNOFF
only needs to know the negative postconditions of operators. For this problem, the negative
postcondition of an operator o, if any, can be easily determined by looking at the result of

Result(P, o).
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Thus, there is a very striking difference between intractable and tractable PLANSAT
problems. The tractable problems are easy even if the operators are implicitly represented.
The intractable problems are hard even if the operators are explicitly represented.

3.5 The Blocks World

Theorem 3.7 can be used to show why finding non-optimal solutions to blocks-world instances
is tractable.

Theorem 3.10 The blocks-world problem can be reduced to PLANSATT .

Proof: Note that stacking one block on another can be accomplished by first moving the
former block on the table and then moving it on top of the latter block. Thus, solving any
blocks-world instance only requires operators to move a block to the table and to move a
block from the table.

Let {Bi, Bs,...,B,} be the blocks in an instance of the blocks-world problem. The

conditions can be encoded as follows:
off(i,7) B; is not on top of B;.

If B; is on the table, then all off (i, k) will be true. If B; has a clear top, then all off (k,?)
will be true. If B; is on top of B;, then all off (¢, k) except for off (¢,7) will be true. off is
used instead of the usual on in order to make the preconditions positive.

For each B; and Bj;, 1 # j, the operator to move B; from on top of B; to the table can
be encoded as:

n

i1 n
N off (ki) A N off (k) A N\ off (k,5) = off (4, 5)
k=1 k=1 k=it+1
That is, if nothing is on B; and nothing is on B; except possibly B;, then when this operator
is applied, the result is that B; will not be on top of Bj.

For each B; and Bj, 7 # j, the operator to move B; from on the table to on top of B;
can be encoded as:

n n n

A off (ki) A N\ o Gy k) A N\ off (k) = oF G 7)
k=1 k=1 k=1
That is, if nothing is on B;, B; is not on top of any other block, and nothing is on Bj;, then
when this operator is applied, the result is that B; will be on top of Bj;.
Since there are only O(n?) (4,7) combinations, only O(n?) conditions and operators are
needed to encode a blocks-world instance.
As required, all preconditions are positive and each operator has only one postcondition.
Thus, Theorem 3.7, in a sense, explains why the blocks world is tractable.!® O

10The SATISFY algorithm for Theorem 3.7 corresponds to the unimaginative, but robust, strategy of
moving all the blocks to the table, which makes all the conditions positive, and then forming the stacks from
the table on up.
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An operator to move a block from one stack to another requires two postconditions.
However, as noted above, moving a block from one stack to another has the same effect as
two existing operators, each with one postcondition. Erol et al. [16] show that such “macro”
operators can lead to shorter plans, and the problem remains tractable.

4 Complexity Results for PLANMIN

This section describes and demonstrates complexity results for PLANMIN, the decision prob-
lem of determining whether an instance of propositional STRIPS planning has a solution of
k or fewer operators, where k is given as part of the input. First, I show that all the in-
tractability results for PLANSAT transfer over to PLANMIN, then I consider the complexity
of PLANMIN for restrictions that are tractable for PLANSAT.

4.1 Intractability Results for PLANMIN

Theorem 4.1

PLANMIN is PSPACE-complete.!!
PLANMINS" is PSPACE-complete.
PLANMIN; s PSPACE-complete.
PLANMIN' is PSPACE-complete.
PLANMIN, is NP-complete.'!
PLANMIN, is NP-complete.

Proof: Let n =| P |. The first four problems are in PSPACE because the size of a state is
limited by n, and a sequence of operators can be nondeterministicly chosen. The last two
problems are in NP because the length of the shortest solution is bounded by n.

The PSPACE-hardness for the first four PLANMIN problems follows from the PSPACE-
hardness of the corresponding PLANSAT problems. The PLANSAT problems can be re-
duced to the PLANMIN problems by setting & = 2".

The NP-hardness of the last two PLANMIN problems follows from the NP-hardness of
the corresponding PLANSAT problems. The PLANSAT problems can be reduced to the
PLANMIN problems by setting k£ to n. O

Theorem 4.2 PLANMINT is NP-complete.

Proof: Because PLANSATY is in NP, it follows that PLANMIN{ is in NP. 3SAT can be
reduced to PLANMIN{ .

Let U = {u1,us,...,un} be the variables used in a instance of 3SAT. Let n be the number
of clauses. An equivalent PLANMIN; instance can be constructed using the following types

11 Also shown in Erol et al. [16].
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of conditions.

T(z) w; = true is selected.

F(i) w; = false is selected.

V(i) some value for u; has been selected.
C(j) The jth clause is satisfied.

2

J

The initial state and goals can be specified as:

=10
G=V(OAVRIAN...AV(m)ACL)AC(2)A...ANC(n)

That is, the goals are to select a value for each variable and satisfy each of the clauses.
For each variable u;, four operators are needed:

= T(7)
= F(1)
T(i) = V(i)
F(i) = V(i)

That is, there are operators to select values for u;, and to ensure that a value has been
selected for u;. Although nothing prevents the selection of both true and false for a variable,
it requires two operator applications to do so.

For each case where a clause C(j) contains a variable u;, the first operator below is
needed; for a negated variable u;, the second operator below is needed:

T(:) = C(3)
F(i) = C(5)

If the 3SAT formula is satisfiable, then only one value needs to be selected for each vari-
able (m operators), m operators are needed to set the V(¢)’s, and n operators are needed to
set the C(7)’s, for a total of 2m + n operators. If the 3SAT formula is not satisfiable, then
both values must be selected for some variable to achieve the goals, which means more than
2m + n operators are needed. Thus, the 3SAT formula is satisfiable if and only if there is a
plan of size k = 2m + n. O

All of the operators in the previous proof at most require one positive precondition and
one positive postcondition, which leads to the following corollary.

Corollary 4.3 PLANMIN:T is NP-complete.

This improves on the result in Erol et al. [16], who show that PLANMIN* is NP-

complete, but do not derive the minimum number of postconditions to obtain this result.

Theorem 4.4 (Erol et al.) PLANMINY, is NP-complete.
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Proof: Erol et al.’s reduction from minimum set covering to PLANMINE’ can be trivially
modified to show that PLANMINY, is NP-complete. In their reduction, the number of post-
conditions in an operator corresponds to the size of the cover. Minimum set covering is
NP-complete for covers of size 3. O

Recall that PLANSAT? is polynomial. However, the above theorem leads to the following
corollary.

Corollary 4.5 PLANMIN® is NP-complete.
There is one last intractable PLANMIN problem to demonstrate.
Theorem 4.6 PLANMINY is NP-complete.

Proof: Because PLANSAT? is in NP, so is PLANMINY. 3SAT can be reduced to PLANMINY.

Using the same conditions as in the proof for PLANMIN{, a PLANMINY instance equiv-
alent to a 3SAT instance can be constructed as follows. Use the following initial state and
goals:

=20
G=TUWAN...NTm)ANF(L)A...ANFm)AV(L)AN...ANV(m)ACQ)A...AC(n)
That is, the goals are to deselect the values for each variable and satisfy each of the clauses.

For each case where a clause C; contains a variable u;, the first operator below is needed;
for a negated variable u;, the second operator below is needed:

T(:) A C(5)
F(E) A C(3)

That is, to make C(j) true, some value for some variable must be selected.
For each variable u;, four operators are needed:

T(3)
F(i)
T(H)AV(E)
FE) A V(i)

A value can be deselected at any time. To make V; true, some value must be selected for u;.

To make each V(7) true, at least one value for each u; must be selected (m operators).
n operators are needed to make the C(j)’s true. At least m values will have been selected,
so another m operators are needed to deselect the values. If the 3SAT formula is satisfiable,
only m values need to be selected, and 2m + n operators need to be applied. If it is not,
then both values must be selected for some variable to make all the C(5)’s true, which means
more than 2m + n operators are needed. Thus, the 3SAT formula is satisfiable if and only
if there is a plan of size k = 2m 4+ n. O

23



4.2 Polynomial PLANMIN Problems

The above results do not leave much room for polynomial problems. Nevertheless, there are
a few.

Theorem 4.7 For a constant g, PLANMIN' limited to g goals is polynomial.

Proof: The polynomial algorithm presented in the proof for Theorem 3.8 finds the shortest
path from the initial state to a goal state. This is because each edge in the trace graph
corresponds to achieving one set of g conditions from another set of g conditions via one
operator, because the trace graph contains all such edges, and because breadth-first search
finds the shortest path. O

Theorem 4.8 PLANMINY, is polynomial.

Proof: This can be reduced to maximum matching of a graph, which has a polynomial
algorithm [29]. A matching of a graph is a set of edges such that no two edges are incident
to the same vertex.

Assuming that the goal is reachable, the reduction from a given PLANMINY_ instance
is as follows. Each operator that makes a negative goal true is removed. Each condition
that is initially true is removed. Also, each condition that is not a positive goal is removed.
Each remaining condition of the instance is mapped to a vertex. Each remaining operator
with two postconditions is mapped to an edge (operators with one postcondition are ignored
here). Now the maximum matching of this graph corresponds to applying the corresponding
operators, where each operator achieves a disjoint pair of goals. Any remaining goals are
achieved one at a time. If there are n positive goals to be achieved, and there are m operators
in the maximum matching, then a goal state can be achieved using n — m operators.

If there were a shorter plan, that would imply that more than m operators can achieve
disjoint pairs of goals, which would imply that the maximum matching of the graph is larger
than m, which is a contradiction. Therefore, the shortest plan must be of size n — m.

Determining reachability can be done in time linear in the number of conditions plus the
number of operators. Micali and Vazivani’s maximum matching algorithm [29] is O(e/v),
where e is the number of edges, and v is the number of vertices. So for m operators and n
conditions, checking for reachability is O(m +n) and maximum matching is O(m+/n), which
implies that the total time is O(n 4+ m4/n). O

Theorem 4.9 PLANMIN?Y is polynomial.

Proof: Trivial. O

5 Extended Propositional STRIPS Planning

In this section, I define a augmented version of propositional STRIPS planning. After the
definition, related work and a blocks-world example are discussed.
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5.1 Definitions

Aninstance of eztended propositional STRIPS planning is specified by a tuple (P,%,0,D,Z,G),
where:

P is a finite set of ground atomic formulas, called the conditions;

Y is a set of ground formulas, called the domain theory, that only uses ground atomic
formulas from P.

O is a finite set of operators, where each operator has the form Pre = Post:

Pre is a satisfiable conjunction of positive and negative conditions, respectively
called the positive preconditions (o*) and the negative preconditions (o~) of the
operator;

Post is a satisfiable conjunction of positive and negative conditions, respectively
called the positive postconditions (o) and the negative postconditions (o_) of the
operator;

Y U {Pre} and ¥ U {Post} are consistent.

D, called the default preference ordering, is a total ordering of all positive and negative
conditions, i.e., of all literals;

T C P is the initial state, where XUZ U {p | p € P\ I} is consistent; and

G, called the goals, is a satisfiable conjunction of positive and negative conditions,
respectively called the positive goals (G) and the negative goals (G_), where ¥ U {G}
is consistent.

Again, a state is specified by a subset S C P, indicating that p € P is true in that state
if and only if p € §. A state S is possible if it is consistent with the domain theory ¥, i.e., if
YUSU{p|pe P\ S} is consistent. The definition of an operator must be consistent with
); otherwise, impossible states can occur. Also, the initial state must be possible, and some
possible state must satisfy the goals.

The default preference ordering D specifies which literals that are true before applying
an operator are preferred to be true after applying an operator. The idea is that by default
literals true of the previous state are true of the next state. However, if conflicts occur,
i.e., inconsistency with the domain theory 3, then D indicates which default is preferred. A
precise definition is given below.

The consistency requirements simplify further definitions. Of course, determining whether
a set of formulas is consistent can also be a hard problem. However, I shall only be consid-
ering tractable types of domain theories (definite Horn and Krom).

A finite sequence of operators (o1, 02,...,0,) is a solution if Result(Z,(o1,0s,...,0s)) is
a goal state, where Result is defined as follows:

Result(S,()) = S
FEztend(S,X,0,,0_,D) if ot C Sand SNo™ =0
Result(S, (o)) = {S ( + ) otherwise

Result(S, (01,02,...,0n))
= Result(Result(S,(01)),(02,.-.,0n))
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As before, o*, 07, o, and o_ respectively denote the sets of positive preconditions,
negative preconditions, positive postconditions, and negative postconditions of operator o.
Also, any operator can be applied to a state, but only has an effect if its preconditions
are satisfied. An operator can appear multiple times in a sequence of operators. If its
preconditions are satisfied, the next state is determined by the Fztend function, which is
defined as follows:

E'z:tend(S,E,Sl,Sz,( )) == 51
FExtend(S, X, S1, 82, (p,l1,. .., 1)) =
FEaxtend(S,%, 51U {p}, Sa,(l1,...,1n))

if pe S and

YUS1U{p}U{q|q€ S»} is consistent
FEaxtend(S,%, 51,52 U {p},(l1,...,1n))

if pe S and

YUSIU{g|qe S} P
FEaxtend(S, %, 51,82, (l1,...,1n))

ifpgs
E'ztend(S, E, Sl, 52, (?, ll, e ,ln)) =
FEaxtend(S,%, 51,52 U {p},(l1,...,1n))

if pg S and

YUS U{p}U{q|q € S2} is consistent
FEaxtend(S,%, 51U {p}, Sa,(l1,...,1n))

ifpg S and

YUSIU{glg€e S} Fp
FEaxtend(S, %, 51,82, (l1,...,1n))

ifpe S

If an operator is applied to a state S, and its preconditions are true, then
FEaxtend(S,%,04,0_,D) uses the postconditions and the default preference ordering D to
decide whether literals true of the previous state S are true in the next state. Initially,
literals appearing in the postconditions are assigned truth values, then the literals in D are
considered in order. If a literal [ is true in the previous state S and is consistent with the
domain theory, the effects of the operator, and previously assigned literals, then [ is assigned
true in the next state; else if [/ is true in the previous state S, and the domain theory, the
effects of the operator, and previously assigned literals imply the negation of I, then [ is
assigned false in the next state; else the decision is postponed.

The Ezxtend function has the following properties. Given a possible state, Fztend results
in a possible state. Also, Eztend makes a minimal number of changes from the previous
state, i.e., the explicit effects of the operator plus sufficient changes to make the next state
possible.

Propositional STRIPS planning is equivalent to extended propositional STRIPS planning
with the domain theory ¥ = (). Thus, extended propositional STRIPS planning is a strict
generalization of propositional STRIPS planning.

Assuming that the default preference ordering is sufficiently expressive to resolve ambigu-
ous results, first-order STRIPS planning can be polynomially reduced to extended proposi-
tional STRIPS planning under the same conditions as for propositional STRIPS planning
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with the following generalizations: the initial state, operators, and goals can contain non-
literal formulas; all non-literal formulas in the initial state and in the postconditions of
operators are true in all states, as is done in [28]; each quantified variable in a formula is
limited to a polynomial number of values; and each formula is limited to a constant number
of quantified variables.

5.2 Related Work

Extended propositional STRIPS planning is closely related to Ginsberg and Smith’s [20]
possible worlds approach to reasoning about actions. A possible state S in my framework
corresponds to a “partial world” W (a set of first-order formulas) in theirs. Each partial
world would also include the domain theory ¥ as “protected” formulas. The postconditions
of an operator o in my framework correspond to the consequences C of an action in theirs.
They define a “possible world” as a maximal subset of W U that includes C, the protected
formulas, and is consistent. The possible state resulting from the default preference ordering
corresponds to a single possible world,'? ignoring all other possible worlds. Ginsberg and
Smith briefly discuss “prioritizing facts” in a manner similar to the default preference or-
dering so that a single possible world is preferred, but in their formalization, the resulting
partial world is taken to be the intersection of all possible worlds.

Other approaches have dealt with the problem of determining the resulting state in a
variety of ways. In TMM [13], when a set of time tokens conflict with a new time token, all
the time tokens in the set are constrained to end before or begin after the new one. This
conservative approach would possibly create more constraints than necessary to eliminate
the contradiction. The plan net approach of Drummond [15] requires a “reconciliation set
selection function” to choose among alternative ways to resolve inconsistency, but does not
specify any constraints on its definition. Of course, in the situation calculus, this is where
the infamous frame problem appears [22].

This problem can be recast as preferring one model over another, as in Shoham’s prefer-
ence logics [36]. Note that it is easy to map a possible state to its model. The result of the
Eztend function can then be formalized as follows:

Let S be a possible state, and M, its corresponding model. Let o be an operator whose
preconditions are satisfied by S. Let S; and S; (with respective models M; and Mj) be
two possible states consistent with o’s postconditions. Let D = {ly,l,...,[,} be a default
preference ordering. Then My — M, (M, is preferred over M) if there exists an [; such that:

for all I;, j <4, My =1; if and only if M, E [;
MEL, My £L,and My EL;; ot M L, My =L, and M, £ L.
Of course, the fact that Eztend can be formalized in terms of model preference ordering
does not make it reasonable. Doyle and Wellman [14] point out that any model preference

ordering that is based on local ordering criteria (e.g., the default preference ordering) and that
prefers one model over all others (e.g., the Eztend function) generally violates some principle

12A minor(?) difference is that the formulas left out of a possible world are not negated in that possible
world, while in a possible state, every condition is either true or false. To me, it looks like Ginsberg and
Smith’s definitions could be easily modified to take this into account.
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of rational reasoning. In this case, extended propositional STRIPS planning violates the
nondictatorship principle that no local criterion dominates all other criteria. For example,
if [ is true of the previous state, is consistent with the postconditions and domain theory,
and is first in the default preference ordering, then any possible state with [; true will be
preferred as the next state over any possible state with [, false. Thus, Doyle and Wellman’s
result suggests that the default preference ordering is unreasonable for many domains, but it
also suggests that either ambiguity must be tolerated (as in Ginsberg and Smith’s possible
world approach) or some other principle must be violated. Whatever alternative is chosen,
it would be folly to expect much improvement in computational complexity.

5.3 Blocks-World Example

In the Sussman anomaly, there are three blocks A, B, and C. Initially C is on A, 4 is on
the table, and B is on the table. The goal is to have A on B and B on C. Only one block at

a time can be moved. The conditions, initial state, and goals can be represented as follows:
P = {on(A, B), on(A,C), on(B,A), on(B,C), on(C,A), on(C, B),
on(A,table), on(B,table), on(C,table), clear(A), clear(B), clear(C)}
T = {clear(C), on(C, A), on(A,table), clear(B), on(B,table)}
M = {on(A,B), on(B,C)}
N ={}

The operators to stack and unstack blocks can be represented as:

clear(A) A clear(B) = on(A, B)

clear(A) A clear(C) = on(A4,C)
clear(B) A clear(A) = on(B, A)
clear(B) A clear(C) = on(B,C)
clear(C) A clear(A) = on(C, A)
clear(C) A clear(B) = on(C, B)
clear(A) = on(A,table)
clear(B) = on(B,table)
clear(C) = on(C,table)

That is, if two blocks are clear, then stacking the first block on the second has the “direct”
effect of the first block being on top of the second. If a block is clear, then unstacking the
block has the “direct” effect of the block being on the table.

The other effects of these operators can be inferred from domain knowledge. Some effects
can be inferred from the direct effects, e.g., if A is on B, then A cannot be on C or on the
table. These are encoded in the domain theory X, which includes the following:

on(A,B)V on(A4,C)
A,B)V on(A,table)
)V on(A,table)
YV on(C,A)
)
)

on

V clear(A)
V clear(A)

on

n(
(A,C
on(B, A
(B, A
(C,A

on
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on(A,B)V on(A,C)V on(A,table)
on(B,A)V on(B,C)V on(B,table)
on(C,A)V on(C,B) V on(C,table)
on(B,A)V on(C,A)V clear(A)
on(A,B)V on(C, B) V clear(B)
on(A,C)V on(B,C) V clear(C)

Other effects depend on what was true in the previous state, e.g., if A was on C and is
moved to B, then C is now clear. However, from the effect on(A, B) of the operator and
the domain theory formulas on(A, B)V on(A4,C) and on(A,C)V on(B,C)V clear(C), it can
only be inferred that either B is now on C or that C is now clear. Note though that in
this encoding of the blocks-world, no on condition can indirectly become true after applying
an operator, i.e., by default, false on conditions stay false. This domain knowledge can be
encoded in the default preference ordering D by ordering negative on conditions before all
others, as follows:

D = (on(A, B), on(A,C), on(A,table), ...,
on(A, B), on(A,C), on(A,table), ...,
clear(A), clear( ), clear(C),
clear(A), clear(B), clear(C))

As it happens, the ordering for the other conditions does not matter. Once negative on
conditions are propagated from the previous state to the next state, all other changes are
unambiguously implied by the domain theory.

Given the initial state of the Sussman anomaly, suppose that the operator to stack B on
C is chosen:

clear(B) A clear(C) = on(B,C)

Given the direct effect on(B,C), the Eztend function would be used to determine ad-
ditional effects. Because negative on conditions are first in the default preference ordering
D, any negative on conditions true in the initial state and consistent with the operator’s
effect are determined to be true in the new state. Of course, on(B,C) is not consistent with
on(B,C), but the following literals are:

on(A,B), on(A,C), on(B,A), on(C, B), on(C,table)

Positive on conditions are next in D. on(B,table) is not consistent with on(B,C) and
on(B,C)V on(B,table) and so on(B,table) is inferred. The other positive on conditions—
on(C, A) and on(A,table)—remain true.

Negative clear conditions are next in D. Only clear(A) is true of the initial state. It is
also consistent with the effect of the operator, the indirect effects inferred so far, and the
domain theory, so it is true of the new state.

Positive clear conditions are the last literals in D. clear(B) is consistent with the effects
and the domain theory. clear(C) is inconsistent with on(B,C) and on(B,C) V clear(C), so
clear(C) is inferred.
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6 Complexity Results for EPLANSAT

This section considers the computational complexity of extended propositional STRIPS plan-
ning assuming various restrictions on the domain theory and on operators. Let EPLANSAT
be the decision problem of whether an instance of extended propositional STRIPS planning
has a solution. As before, the notation EPLANSATS is used to denote EPLANSAT with
restrictions a on the preconditions and restrictions 8 on the postconditions. For example,

EPLANSATY, denotes EPLANSAT with operators limited to zero preconditions and one
positive postcondition.

6.1 No Restrictions
Theorem 6.1 EPLANSAT s PSPACE-complete.

Proof: The results in Figure 1 from correspond to the case where the domain theory ¥ is
the empty set. Hence, EPLANSAT under the restriction that ¥ = () is PSPACE-complete,
which implies that EPLANSAT is PSPACE-hard.

EPLANSAT is in PSPACE because the size of a state is bounded by the number of
conditions. That is, if there are n conditions and there is a solution, then the length of the
smallest solution path must be less than 2™. Any solution of length 2™ or larger must have
“loops,” i.e., there must be some state that it visits twice. Such loops can be removed, re-
sulting in a solution of length less than 2". Hence, no more than 2" nondeterministic choices
are required. Because NPSPACE = PSPACE, EPLANSAT is also in PSPACE. Because it
is also PSPACE-hard, EPLANSAT is PSPACE-complete. O

6.2 Definite Horn Domain Theories

A domain theory Y is definite Horn if each formula in ¥ is a definite Horn clause, i.e., a
disjunction of literals containing exactly one positive literal.

Theorem 6.2 E'PLANSAT?_I_ restricted to definite Horn domain theories is PSPACE-complete.

Proof: PLANSAT with operators limited to two positive preconditions and two postcon-
ditions is PSPACE-complete (Corollary 3.2). Each such operator can be converted into two
operators, each with zero preconditions and one positive postcondition in combination with
adding conditions to P, adding definite Horn clauses to ¥, and imposing an appropriate
preference ordering on literals.

Suppose there are m operators to convert. Suppose p;; A p;a = pis A P is operator o; to
be converted (converting other kinds of operators will be similar).

Let = pre(z) be the first operator, let pre(z), in(z), post(z), and nil be new conditions,
add the following definite Horn clauses to X:

(2) VP V Piz Vin(i)

pre(i) V pre(3) V nil 1# ]
pre(i) Vin(j) V nil 1# ]
pre(i) V post(j) V nil 1<j<m

pre
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and impose the following orderings in the default preference ordering D:

nil <1 for any other literal [

If p;1 and piy are true and nil false, then the result of applying = pre(7) will be that
pre(i) and in(7) are true, all other pre(j) and in(j) are false, and all post(j) are false. The
orderings ensure that nil remains false, and p;; and p;s remain true.

Let = post(z) be the second operator, add the following definite Horn clauses to X:

post(i) Vin(z) V pir V nil
post(i) V post(j) V nil 1#£ ]
post(i) V pre(j) V nil 1<j<m

and impose the following orderings in the default preference ordering D:

nil <1 for any other literal [
'LTL(’L) =< Pi

If 4n(2) is true and nil false, then the result of applying = post(z) will be that post(z)
and p;3 are true, p;; is false, all other post(j) are false, and all pre(y) are false. The orderings
ensure that nil remains false, and in(7) remains true.

To have the effect of operator o;, operator = pre(i) can be followed by = post(z). Also,
any sequence of the converted operators will only have the effect of some sequence of original
operators. Only a = post(z) operator can affect the original conditions, and then only if in(z)
is true, which is possible only if = pre(i) has been previously applied, if the preconditions
of o; are true, and if no intervening = pre(y) has deleted in(z).

Thus, starting with any initial state (new conditions initially false) and goals (new con-
ditions not included), some sequence of the converted operators is a solution if and only
if some sequence of the original operators is a solution. Thus, EPLANSAT?_I_ restricted to
definite Horn domain theories is PSPACE-hard. Because EPLANSAT is PSPACE-complete,
this problem is also PSPACE-complete. O

6.3 Krom Domain Theories

A domain theory Y is Krom if each formula in ¥ is a Krom clause, i.e., a disjunction of two
literals. Note that the default preference ordering does not matter because no “ambiguities”
about indirect effects can occur for Krom domain theories, i.e., if one literal in a clause
becomes false, the other literal must become true.

Theorem 6.3 For any k > 0 and g > 1, the following problems can be polynomazally reduced
to each other:
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1. EPLANSAT® restricted to Krom domain theories g goals.
2. PLANSAT® restricted to g goals; and

3. E'PLANSAT’H restricted to Krom domawn theories and g goals;

Proof: The first problem is clearly the most general of the three. Let o; be an operator
from some instance of the first problem, and let 3 be the instance’s Krom domain theory.

Because ¥ is Krom, the “indirect” effects of o; will be exactly the same for any state
satisfying o;’s preconditions. A new operator o} can be constructed that explicitly includes
these effects in its postconditions. This can be done for every original operator, thus making
Y superfluous. Therefore, any instance of the first problem can be converted to an instance
for the second problem.

For the third problem, a new operator o, can be constructed as follows. Suppose o; has
k preconditions. Let o} be the operator pre(i,1) A ... A pre(i, k) = post(i), where pre, 1),
..., pre(i, k), and post(i) are new literals. Note that there are k positive preconditions, and
that there is exactly one positive postcondition. If [; is the jth precondition of o;, then
add I; V pre(i,j) and [; V pre(i,) to ¥. Thus, for any possible state, o}’s preconditions
are satisfied exactly when o;’s preconditions are satisfied. If [ is a postcondition of o;, then
add post(i) VI to X. This ensures that the effects of o} include the effects of o;. Also, add
post(i) V post(j) for © # j to X. This ensures that o} does not have any more effects than o;,
except for any changes to new literals.

Now if pre(7,j) conditions are added as needed to the initial state of the instance of the
first problem so that the initial state is possible, then a sequence of converted operators is a
solution if and only if the corresponding sequence of original operators is a solution. O

This theorem leads to the following corollaries derived from the complexity results for

PLANSAT.
Corollary 6.4 E'PLANSAT%:'I'_ restricted to Krom domawn theories 1s PSPACE-complete.
Corollary 6.5 EPLANSAT?! restricted to Krom domain theories and g goals is polynomial.

Corollary 6.6 EPLANSAT® restricted to Krom domain theories is polynomial.

7 Complexity Results for EPLANMIN

Let EPLANMIN be the problem of determining the existence of a solution of k operators
or less for extended propositional STRIPS planning, where k is given as part of the input.
For each PSPACE(NP)-complete EPLANSAT problem, it is also PSPACE(NP)-complete
for EPLANMIN.

Theorem 7.1 EPLANMIN s PSPACE-complete.
E'PLANMIN?_I_ restricted to definite Horn domawn theories 1s PSPACE-complete.
E'PLANMIN%i restricted to Krom domawn theories 1s PSPACE-complete.
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Proof: 1t is easy to set k so that the EPLANMIN problem is equivalent to the corre-
sponding EPLANSAT problem. O

What remains are to consider the restrictions that are polynomial for EPLANSAT. The
proof of Theorem 6.3 shows how to translate instances of extended propositional STRIPS
planning with Krom domain theories to and from instances of propositional STRIPS plan-
ning. In each case, one operator in one instance is translated to an operator in the other
instance with essentially identical effects. Thus, the proof of Theorem 6.3 also supports the
translation of complexity results for PLANMIN to complexity results for EPLANMIN with
Krom domain theories.

Theorem 7.2 EPLANMIN® restricted to Krom domain theories is NP-complete, even if
operators are limited to one positive postcondition.

Proof. Follows from NP-completeness of PLANMIN®. O

Theorem 7.3 EPLANMIN' restricted to Krom domain theories and g goals is polynomial.
Proof: Follows from polynomial result for PLANMIN! restricted to g goals. O

8 Conclusion

This analysis shows that extremely severe restrictions on both the operators and the domain
theory are required to guarantee tractability or even NP-completeness for planning problems.
One must be careful, however, concerning the implications of these results.

Work on reactive and anytime planning systems is partly motivated by the complexity
of planning. However, this motivation is somewhat misguided because the complexity arises
from the properties of the problem, not from the properties of any particular algorithm that
solves the problem. In other words, the complexity results specify how hard it is to find a
sequence of actions that accomplish a set of goals, but are completely neutral to how the
sequence of actions is generated. Whether or not a system is reactive, anytime, or sound
and complete, it is equally hard to achieve goals by performing actions. This in no way
invalidates work on different types of planning algorithms, just that they must be put into
the proper context.

Nevertheless, many successful planning systems attest to the fact that planning is indeed
possible and practical for many domains. What then accounts for the large gap between the
theoretical hardness of planning and its practical application? Perhaps a large part of the
answer is that the complexity analysis only considers properties of planning problems that are
domain-independent, and so have some chance of being generally applicable. However, the
analysis strongly suggests that there is no such thing as a set of generally-applicable domain-
independent properties that lead to efficient planning. A pessimistic view is that practical
planning domains are efficient for domain-dependent reasons, which in turn demand domain-
dependent analyses and planning algorithms. More optimistically, it is possible that specific
classes of planning domains might be efficiently solvable for similar reasons. In any case, the
key question is how much can domain-independent planning live up to its name.
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