
Planning and Optimization

M. Helmert, T. Keller
S. Eriksson, F. Pommerening, S. Sievers

University of Basel
Fall Semester 2019

Exercise Sheet F
Due: December 8, 2019

The files required for this exercise are in the directory exercise-f of the course repository (https:
// bitbucket. org/ aibasel/ planopt-hs19 ). All paths are relative to this directory. Update
your clone of the repository with hg pull -u to see the files.

Exercise F.1 (3+5+2 marks)

Push your Luck is a simple dice game where the player repeatedly rolls a single fair die to get
rewards. The player can roll the die until she decides to collect her “accumulated” reward. The
accumulated reward is defined as the product of all die outcomes since the last game reset, or
0, if no die has been rolled yet since that reset (the beginning of the game is also considered a
game reset). The game “resets” when either the player collects the accumulated reward, or the
die shows a number that had already appeared since the last reset.
As an example, imagine that after three rolls with a six-sided die the outcomes have been 1, 3, 4.
The player might decide to collect now, in which case her reward will be 1 · 3 · 4 = 12, and the
game will reset. Or she might be tempted to wait a bit, since perhaps she gets a 6 on the next
roll, in which case she could collect a much more attractive reward of 1 ·3 ·4 ·6 = 72. On the other
hand, waiting is risky: if she gets any outcome in {1, 3, 4}, then the game resets, but without her
getting any reward. In any case, the player can continue playing forever.

(a) Formalize the game with an N -sided die as an MDPMN,γ = 〈S,L,R, T, s0, γ〉 where N and
the discount factor γ are parameters. For the set of states S, use the powerset of the set
χ = {1, . . . , N}, i.e., S = 2χ. The interpretation is that χ contains all possible die rolls and
a state s ∈ S contains exactly the die rolls obtained since the last reset.

(b) The file mdps/push-your-luck.py contains a skeleton of a script to generate the LP model
for computing V ∗ and an optimal policy forMN,γ . Complete the script for your MDP model
from (a).

The script uses PySCIPOpt, a Python interface to an optimization suite including SoPlex.
Use install-scip. sh to install it and have a look at scipdemo. py for example code.

(c) Use your script from (b) to experiment with the game for a six-sided die (N = 6) and a
discount factor γ = 0.9. Discuss the following questions:

What is the optimal state value V ∗(s0) corresponding to the initial state? What is the
optimal action to take in that state? What is the optimal action to take after having
obtained the sequence of die outcomes 1, 2, 3? And the sequence 4, 5, 6? How do the above
answers depend on the discount factor that you use? Play a bit with the factor and observe
the differences, if any.



Exercise F.2 (4+4+2 marks)

Consider the discounted reward MDP T = 〈S,L,R, T, s0, γ〉 with

◦ S = {0, 1, 3, 9},

◦ L = {g0, g1, g3, c1, c3, c9},

◦ R = {g0 → 0, g1 → 0, g3 → 0, c1 → 1, c3 → 3, c9 → 9},

◦ T = {〈0, g0, 1〉 → 1, 〈1, g1, 3〉 → 2
3 , 〈1, g1, 0〉 →

1
3 , 〈3, g3, 9〉 →

1
3 , 〈3, g3, 0〉 →

2
3 , 〈1, c1, 0〉 →

1, 〈3, c3, 0〉 → 1, 〈9, c9, 0〉 → 1},

◦ s0 = 0 and

◦ γ = 0.9.

A graphical description of T can be seen below:

9

3

1

0

g0

g1

g3

c1

c3

c9

1

3

9

0

0

0

p = 1

p = 1

p = 1

p = 1

p = 2
3

p = 1
3

p = 1
3

p = 2
3

(a) Consider policy π = {0 → g0, 1 → c1, 3 → c3, 9 → c9}. Perform two iterations of policy
iteration with initial policy π and ε = 0.1 as a termination criterion for policy evaluation
(you may round intermediate results to two decimals). In the first iteration of the algorithm,
use initial values Vπ(0) = 4.7, Vπ(1) = 5.2, Vπ(3) = 7.3, Vπ(9) = 13.3 for policy evaluation
(in principle, you can use an arbitrary initialization, but these values allow policy evaluation
to converge faster). In the second iteration of the algorithm, initialize the values for policy
evaluation to the last values of the previous iteration. You do not need to provide all
intermediate values of policy evaluation, but after both iterations of the algorithm, write
down the final values of policy evaluation as well as the updated policy. Would you need to
perform further iterations of policy iteration?

(b) Perform three iterations of value iteration with initial values V (s) = 0 for all states s ∈ S.
Provide the values for all states after each iteration, and provide the policy that results from
the values after the third iteration. Would you need to perform further iterations?

(c) If you performed asynchronous value iteration in (b) and you wanted to update all four
states in the first four value updates, in which order would you prefer to update them? In
which values would those four updates result? Briefly justify your choice.


