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The files required for this exercise are in the directory exercise-e of the course repository (https:
// bitbucket. org/ aibasel/ planopt-hs19 ). All paths are relative to this directory. Update
your clone of the repository with hg pull -u to see the files.

Exercise E.1 (1+2+2 marks)

Consider the STRIPS task Π = 〈V, I,O, γ〉 with variable set V = {a, b, c, d, e, f, g}, initial state I
with I(a) = > and I(v) = ⊥ for all v ∈ V \ {a}, operator set O = {o1, o2, o3, o4, o5, o6} and goal
γ = e. All operators in O have cost 1 and are defined as follows:

o1 = 〈a, b ∧ ¬a〉
o2 = 〈a, c〉
o3 = 〈b, d〉
o4 = 〈c, d〉
o5 = 〈d ∧ g, e ∧ f〉
o6 = 〈>, g〉

(a) Provide the simplified relaxed task graph sRTG(Π+) in graphical form.

(b) Compute the set of causal fact landmarks with the fixed-point algorithm introduced in
chapter E2. You can annotate the nodes of your graph from (a) as in the lecture, but denote
in which order you update the values of the nodes, and if you change the same node several
times provide all intermediate values.

(c) Are the following two operator sets disjunctive action landmarks? Briefly justify your answer
(no formal proof required):

• O1 = {o1, o3}
• O2 = {o3, o4}

Exercise E.2 (4+3+3+2 marks)

(a) In fast-downward/src/search/planopt heuristics/justification graph.*, you can find
an incomplete implementation of the justification graph used by the LM-cut heuristic.
Complete the implementation of the constructor and the methods mark goal zone and
find cut edges by following the comments in the code. Then compute the LM-cut algo-
rithm in the method compute heuristic of the file lmcut.cc in the same directory. What
is the heuristic value of the initial state of tasks/exercise2a.pddl? What is the number
of expanded states excluding the last f -layer (printed as “Expanded until last jump”) in the
same task, if you run an A∗ search with your implementation of hLM-cut?

The hmax computation is integrated into the class DeleteRelaxedNormalFormTask for ef-
ficiency. The classes for operators and propositions track their hmax achievers and costs.
Calling the method compute hmax on the task will update these stored values.

You can call your heuristic as planopt lmcut(). If you compare it to the built-in implemen-
tation, note that the result of each heuristic evaluation depends on the precondition-choice
function that was used. The two implementations are not guaranteed to pick the same achiev-
ers, so they might give different results. However, in most tasks the heuristic value of the
initial state should be similar.



(b) Draw the justification graphs generated by LM-cut in the heuristic computation for the
initial state of tasks/exercise2b.pddl. Label each node of the graph with the name of
the represented proposition and its hmax value. Label transitions with the correct operator
and its current cost. Also mark the goal zone and the cut in each graph.

You can do this exercise manually but it may be easier to adapt your algorithm from exercise
(a) to print the necessary information during the computation.

(c) In the files fast-downward/src/search/planopt heuristics/and or graph.* you can find
an incomplete implementation of the algorithm discovering landmarks in AND/OR graphs.
Complete the method compute landmarks to compute the set of landmarks for reaching the
given node in the graph.

You can use your implementation to compute disjunctive action landmarks and causal fact
landmarks for I in sRTG(Π+) by calling the planner as ./fast-downward.py /path/to/task

--compute-landmarks. The output lists all disjunctive action landmarks and the causal fact
landmarks that are not already true in the initial state.

(d) Use your implementation from exercise (c) to compute action and fact landmarks for
tasks/exercise2d.pddl.

Is the number of action landmarks an admissible heuristic for this task? Is the number
of fact landmarks (without those already true in the initial state) an admissible estimate?
Under which conditions are these statements true in general?

Exercise E.3 (4+2+3+1+2+1 marks)

Consider the following task Π = 〈V, I,O, γ〉 with

• Variables V = {a, b, c, d} with dom(a) = dom(b) = {1, 2}, dom(c) = {1, 2, 3}, and dom(d) =
{1, 2, 3, 4},

• Initial state I = {a 7→ 1, b 7→ 1, c 7→ 1, d 7→ 1},

• Operators O = {o1, . . . , o6} where

– o1 = 〈(a = 2) ∧ (b = 1) ∧ (c = 1), (a := 1) ∧ (b := 2) ∧ (c := 3)〉, cost(o1) = 3

– o2 = 〈(a = 1), (a := 2)〉, cost(o2) = 5

– o3 = 〈(b = 1) ∧ (d = 1), (b := 2) ∧ (d := 2)〉, cost(o3) = 3

– o4 = 〈(c = 1) ∧ (d = 1), (c := 2) ∧ (d := 3)〉, cost(o4) = 3

– o5 = 〈(c = 2) ∧ (d = 3), (c := 1) ∧ (d := 4)〉, cost(o5) = 1

– o6 = 〈(c = 2) ∧ (d = 2), (c := 3) ∧ (d := 4)〉, cost(o6) = 1

• Goal γ = (b = 2) ∧ (c = 3) ∧ (d = 4).

(a) Use SoPlex to compute an optimal non-negative cost partitioning of the four projections to
a, b, c, and d. Please submit the result in three forms: (i) a file encoding the LP with clear
names for variables and constraints, (ii) a table with one column per operator and one row
per abstraction where each cell contains the cost of the operator in the abstraction, and (iii)
the abstract transition systems where edges are annotated with the local cost function and
states are annotated with their abstract goal distances. Do not include transitions caused
by operators that have no effect on the abstraction.

Instructions on how to install and use SoPlex are in the file soplex-readme.txt.

To reduce the work load of this exercise, we provided LATEX source code for drawing the
abstract transition systems in the directory cost-partitioning which you can adapt for
your solution. This directory also contains a Python file encoding the task, in case you want
to create the LP file with a program. However, programming is not required for this exercise
and you should not submit source code.



(b) Repeat exercise (a) for a general cost partitioning.

(c) Repeat exercise (a) for computing the posthoc optimization heuristic. The table and graph
annotation in this case should show the cost partitioning that is implicitly computed by the
heuristic.

(d) Discuss the following question: In exercises (a)–(c) the projection Ππa always has a heuristic
value of 0. Does this mean that it is safe to ignore this abstraction in the cost partitioning?

(e) Discuss the differences between the three ways of partitioning the costs.

(f) Find an unsolvable task where all projections to single variables are solvable but optimal
general cost partitioning over the projections shows unsolvability. Explain your example.

Exercise E.4 (2+3+3 marks)

Consider the following task Π = 〈V, I,O, γ〉 with

• Variables V = {a, b, c} with dom(a) = dom(c) = {1, 2, 3, 4, 5}, and dom(b) = {1, 2, 3, 4, 5, 6, 7},

• Initial state I = {a 7→ 1, b 7→ 1, c 7→ 1},

• Operators O = {o1, . . . , o12} where

– o1 = 〈(a = 1), (a := 2)〉
– o2 = 〈(a = 2) ∧ (b = 1) ∧ (c = 1), (a := 1) ∧ (b := 3)〉
– o3 = 〈(a = 1) ∧ (b = 4) ∧ (c = 1), (b := 2) ∧ (c := 2)〉
– o4 = 〈(a = 1) ∧ (b = 3) ∧ (c = 1), (b := 4)〉
– o5 = 〈(a = 2) ∧ (b = 2) ∧ (c = 2), (b := 4)〉
– o6 = 〈(a = 2) ∧ (b = 4) ∧ (c = 2), (b := 3)〉
– o7 = 〈(a = 2) ∧ (b = 3) ∧ (c = 2), (b := 6) ∧ (c := 4)〉
– o8 = 〈(a = 2) ∧ (b = 3) ∧ (c = 2), (a := 3) ∧ (b := 5)〉
– o9 = 〈(a = 2) ∧ (b = 6) ∧ (c = 2), (a := 4) ∧ (c := 3)〉
– o10 = 〈(c = 4), (c := 2)〉
– o11 = 〈(a = 3) ∧ (b = 5) ∧ (c = 4), (a := 5) ∧ (b := 7) ∧ (c := 5)〉
– o12 = 〈(a = 4) ∧ (b = 6) ∧ (c = 3), (a := 5) ∧ (b := 7) ∧ (c := 5)〉

and cost(o) = 1 for all o ∈ O,

• Goal γ = (a = 5) ∧ (b = 7) ∧ (c = 5).

(a) Provide the LP solved by the flow heuristic for I as an input file for SoPlex (see exercise
E.3). Use each atom as the constraint name for its flow constraint so it is easy to see which
constraint belongs to which atom. Then solve the LP and provide the objective value.

As for exercise E.3, Python code encoding the task is available in the directory network-flow

but no programming is required.

(b) Draw the transition systems of the three projections to a, b, and c. For operators that do not
mention the variable, include just one representative self-loop at the goal state to keep the
transition system concise. Annotate each edge with the flow of the operator from exercise
(a) and highlight edges with a non-zero value. What do you notice in the abstractions?
Discuss your observations.

As for exercise E.3, LATEX source code for drawing the abstract transition systems is available
in the directory network-flow.



(c) Let Π = 〈V, I,O, γ〉 be a task in TNF with atoms A. Let hflow be the flow heuristic and
hpot an admissible and consistent potential heuristic with atomic features that maximizes
the heuristic value of I. The general form of the LP computed for hflow(I) can be written
like this:

Minimize
∑
o∈O

cost(o)Counto subject to∑
o∈O

([a ∈ eff(o)]− [a ∈ pre(o)])Counto = [a ∈ γ]− [a ∈ I] for all a ∈ A

Counto ≥ 0 for all o ∈ O.

Compare the dual of this LP to the LP computed for hpot(I).

Exercise E.5 (7 marks)

In this exercise, we want to draw a connection from linear programming to delete-relaxed planning
tasks. In particular, the paper below describes an IP model for the delete relaxation. Explain
the IP in detail, i.e., explain the meaning of all involved variables and constraints. Use your own
words and the notation from the lecture instead of the notation from the paper. Also explain how
the IP can be extended with operator counting constraints, again using notation from the lecture.

Tatsuya Imai and Alex Fukunaga. A Practical, Integer-Linear Programming Model for
the Delete-Relaxation in Cost-Optimal Planning. In Proc. ECAI 2014. pp. 459–464,
2014.

A good answer can be written in about 1 page.

Exercise E.6 (5 marks)

Describe the following heuristics as potential heuristics by defining appropriate state features and
a weight for each feature. When defining the features, make reasonable assumptions about the
encoding of the problem and describe them as well.

• Use atomic features to encode the Manhattan distance heuristic in the sliding tile puzzle.

• Use binary features to encode the “last move enhancement” of the Manhattan distance
heuristic in the sliding tile puzzle. (We do not consider linear conflicts here, so ignore issues
arising from a tile influencing both the last move and a linear conflict.) A binary feature
fX=x∧Y=y is defined analogously to a atomic feature as

fX=x∧Y=y(s) =

{
1 if s[X] = x and s[Y] = y

0 otherwise.

• Use binary features to encode the “corner enhancement” of the Manhattan distance heuristic
in the sliding tile puzzle.

• Use atomic features to encode the goal-counting heuristic in an SAS+ task.

• Use atomic features to encode the material value of a chess position.

You can find details about the sliding tile puzzle, the Manhattan distance heuristics and its en-
hancements in the following paper:

Richard Korf and Larry Taylor. Finding optimal solutions to the twenty-four puzzle.
In Proc. AAAI 1996, pp. 1202–1207, 1996.

For information on the material value of a chess position see for example: https://en.wikipedia.

org/wiki/Chess_piece_relative_value


