
Planning and Optimization

M. Helmert, T. Keller
S. Eriksson, F. Pommerening, S. Sievers

University of Basel
Fall Semester 2019

Exercise Sheet D
Due: November 10, 2019

The files required for this exercise are in the directory exercise-d of the course repository
(https: // bitbucket. org/ aibasel/ planopt-hs19 ). All paths are relative to this directory.
Update your clone of the repository with hg pull -u to see the files. For the runs with Fast
Downward, set a time limit of 1 minute and a memory limit of 2 GB. Using Linux, such limits
can be set with ulimit -t 60 and ulimit -v 2000000, respectively.

Exercise D.1 (4+2+4+3 marks)

(a) Consider the following graph G depicting a simple transition system. The cost function is
cost = {o1 7→ 1, o2 7→ 5, o3 7→ 7, o4 7→ 1, o5 7→ 2, o6 7→ 9}. As usual, an incoming arrow
indicates the initial state, and goal states are marked by a double rectangle.

G : s1,1 s2,1 s3,1 s4,1

s1,2 s2,2 s3,2 s4,2

o1 o2 o3

o4 o4
o5

o6

Provide the following graphs:

• a graph G1 which is isomorphic to G but not the same.

• a graph G2 which is graph equivalent to G but not isomorphic to it.

• a graph G3 which is a strict homomorphism of G but not graph equivalent to it.

• a graph G4 which is a non-strict homomorphism of G but not graph equivalent to it.

• a graphG5 which is the transition system induced by the abstraction α with α(sx,y) = x.

• a graph G6 which is the induced transition system of a non-trivial coarsening of α.

• a graph G7 which is the induced transition system of a non-trivial refinement of α.

In all graphs, highlight an optimal path and compute its cost. For graphs G1–G4, justify
(one sentence is enough) why they don’t have the property they are not supposed to have,
for example, why G2 is not isomorphic to G.

Bonus exercise: You will recieve one additional mark for this exercise if 6 out of your 7
graphs G1, . . . , G7 have a pairwise different shortest path cost.

(b) In the Sokoban domain, a worker has to push boxes to goal positions, but cannot pull them.
The figure below illustrates an example problem. The red dot denotes the initial position
of the worker, the blue cells denote the initial positions of the boxes, and the green cells
denote the goal positions of the boxes, where it does not matter which box is finally located
at which goal position. The letters (A – V) are only shown to indicate the cells.



A B C D

E F G H

I J K L M

N O P Q R

S T U V

Point out the problems with the following ideas for abstraction mappings in this domain:

α1: Each state is mapped to the number of boxes that are on a goal location.

α2: Each state is mapped to an abstract state by ignoring the position of the agent.

α3: Each state s is mapped to f(s) modulo n where f is the perfect hash function for all
states (see lecture slides D3) and n = 106 is used to limit the number of abstract states.

α4: A state is mapped to s1 if 5 or fewer moves are necessary to move all boxes to a goal
location; it is mapped to s2 if between 5 and 10 moves are necessary; and so on.

(c) Let Π be a SAS+ planning task and let P be a pattern for Π. Prove that T (Π|P )
G∼ T (Π)πP ,

i.e., T (Π|P ) is graph-equivalent to T (Π)πP .

As there are three involved transition systems (T (Π), T (Π)πP , T (Π|P )), a clear and con-
sistent notation (variable names, etc.) is important. For full marks, the proof should not
only be correct but also easy to follow.

(d) Discuss why the theorem from exercise (c) is relevant. Why would we need to define Π|P , if
we already saw that πP is a valid abstraction of T (Π), and hence we could use hπP as our
heuristic?

Exercise D.2 (3+3+1 marks)

Consider the SAS+ representation of the Sokoban problem depicted in exercise 1(b) with variables
posw, posb1, posb2, posb3 (which denote the positions of the worker and the three boxes), atgoalb1,
atgoalb2, atgoalb3 (which indicate whether the boxes are at goal positions), and contentA, . . . ,
contentV (which denote the content of the individual cells). Formally, the variable domains are
defined as follows:

• dom(posw) = dom(posb1) = dom(posb2) = dom(posb3) = {A, . . . , V }

• dom(atgoalb1) = dom(atgoalb2) = dom(atgoalb3) = {T,F}

• dom(contentA) = · · · = dom(contentV ) = {empty , w, b1, b2, b3}

The initial state is defined by the set consisting of the following mappings:

• posw 7→ A, posb1 7→ F , posb2 7→ O, posb3 7→ N , atgoalb1 7→ F, atgoalb2 7→ F, atgoalb3 7→ F

• contentF 7→ b1, contentO 7→ b2, contentN 7→ b3, contentA 7→ w

• contentx 7→ empty for all x ∈ {A, . . . , V } \ {A,F,N,O}

The goal is given by the formula atgoalb1 = T∧atgoalb2 = T∧atgoalb3 = T. The operators (move
and push) are defined as usual (recall that it is not allowed to pull boxes). We call cells c and c′

adjacent if c′ is either above, below, left or right to c (i.e., diagonal cells are not adjacent).

• move operators: For adjacent cells c and c′, the worker can move from c to c′ if the worker
is currently at c and c′ is empty. After moving, c is empty and the worker is at c′.



• push operators: For cells c, c′, c′′ such that c is adjacent to c′ in direction X iff c′ is adjacent
to c′′ in direction X for X ∈ {above,below, left, right}, the worker can push a box bi from
c′ to c′′ if the worker is at c, the box is at c′ and c′′ is empty. After pushing, c is empty, the
worker is at c′, and the box is at c′′. atgoalbi is set depending on whether the box moved
from a nongoal to a goal position or vice versa.

Consider the pattern collection C that consists of exactly the following patterns:

• P1 = {atgoalb1, posb1}

• P2 = {atgoalb1, contentH , contentM}

• P3 = {atgoalb3, posw}

• P4 = {atgoalb3, contentA}

• P5 = {atgoalb2, posb2, atgoalb3}

• P6 = {posb1, contentD, contentE}

• P7 = {atgoalb2, posb2}

(a) Simplify the collection by removing trivial patterns and causally irrelevant variables from
patterns.

(b) Construct the compatibility graph for C and determine the maximal cliques.

(c) Provide the canonical heuristic hC and simplify it with help of the Dominated Sum Theorem
if possible.

Exercise D.3 (10 marks)

Write a tutorial about constrained pattern databases based on the two papers listed below. Your
tutorial should enable someone familiar with the planning and optimization course (up to this
point) to understand what constrained pattern databases are and how they relate to their non-
constrained version in terms of heuristic strength. Use the terminology from the lecture, and use
an illustrative example from a domain different than blocksworld. Also explain why variables
that are not causally relevant in a pattern might still be interesting to include in patterns for
constrained PDBs.
You can include theoretical results from papers directly as long as you cite their origin. But when
doing so, add an intuitive explanation of the result and why it holds in your own words. A good
answer can be written in 0.75 pages.

• Haslum, P., Bonet, B., Geffner, H. (2005). New Admissible Heuristics for Domain-Independent
Planning. In Proceedings of AAAI, 1163–1168.

• Haslum, P., Botea, A., Helmert, M., Bonet, B., Koenig, S. (2007). Domain-Independent
Construction of Pattern Database Heuristics for Cost-Optimal Planning. In Proceedings of
AAAI, 1007–1012.

Exercise D.4 (3+3+4 marks)

In this exercise, you are asked to implement and evaluate a shrink strategy in Fast Downward. In
the lecture, we have seen that merge-and-shrink is a powerful framework for computing abstrac-
tions through the means of applying transformations to factored transition systems. Shrinking
is one type of such transformations, and it means to apply an abstraction to a single transition
system of the factored transition system. In practice, given a transition system and a size limit
imposed on it, the question is how to come up with a good abstraction of the factor. This is
what a shrink strategy does: it is an algorithm that computes an abstraction of a given transition
system so that its new size is guaranteed to obey a given limit.



In Fast Downward, a shrink strategy is given a transition system and an object that allows to
retrieve distances for states of the transition system. The strategy then has to compute an equiva-
lence relation over the states, i.e., a partitioning over states. All states of the same equivalence class
(or partition) are then mapped to the same new abstract state. Your task will be to implement
the logic of the strategy for computing the state equivalence relation (the state partitioning).

(a) In fast-downward/src/search/merge-and-shrink/shrink h preserving.cc you find an
incomplete implementation of a h-preserving shrink strategy that aims at abstracting all
states with the same h-value to the same abstract state. It works as follows: first, partition
all states of the transition system according to their h-value. Then, iterate over all partitions
in increasing order of their h-value and simply assign all states of a partition to the same
equivalence class in the result, as long this does not violate the given size limit. If the size of
the resulting equivalence relation reaches the given size limit, then the strategy cannot turn
each partition into a separate equivalence class anymore, but instead, it assigns all states of
all remaining partitions to the last equivalence class created (i.e., the last equivalence class
possibly holds states that have different h-values due to the size limit).

You can test your strategy using
./fast-downward/fast-downward.py --alias mas-h-preserving-x blocks/p1.pddl

where x ∈ {1, 10, 100, 1000} denotes the size limit imposed on transition systems.

(b) In fast-downward/src/search/merge-and-shrink/shrink random.cc you find an incom-
plete implementation of a random shrink strategy that abstracts states uniformly at random.
This can be implemented as follows: Iterate over all states in a random order. As long as
the size of the resulting equivalence relation has not reached the imposed size limit, assign
the state to its own equivalence class, thus increasing the size of the resulting equivalence
relation by 1. Once the size limit is reached, assign the state to a random equivalence class
(in this case, there are exactly as many equivalence classes as the size limit allows).

You can test your strategy using
./fast-downward/fast-downward.py --alias mas-random-x blocks/p1.pddl

where x ∈ {1, 10, 100, 1000} denotes the size limit imposed on transition systems.

(c) Evaluate both strategies on the tasks in the directories gripper and blocks, using all four
size limits ({1, 10, 100, 1000}). For each run, report the runtime of the merge-and-shrink
algorithm (“Merge-and-shrink algorithm runtime: ”), the total runtime (“Total time: ”),
and the number of expanded states (“Expanded until last jump: ”), which denotes the
number of expanded states excluding the last f -layer of the A∗ search. (On the last f -layer,
the number of expanded states only depends on tie-breaking which we don’t want to include
in our evaluation.) Discuss the results. (In particular, explain the results. Note that this
can, to some extent, also be done without a working implementation.)

Please structure your table as follows:

Shrink strategy h− 1 h− 10 h− 100 h− 1000 r − 1 r − 10 r − 100 r − 1000

blocks 6-0, M&S:
blocks 6-0, Exp:
blocks 6-0, Total:


