
Planning and Optimization

M. Helmert, T. Keller
S. Eriksson, F. Pommerening, S. Sievers

University of Basel
Fall Semester 2019

Exercise Sheet C
Due: October 27, 2019

The exercise sheets can be submitted in groups of three students. Please submit one single copy of
the exercises per group (only one member of the group does the submission), and provide all student
names on the submission. The files required for this exercise are in the directory exercise-c of the
course repository (https: // bitbucket. org/ aibasel/ planopt-hs19 ). All paths are relative to
this directory. Update your clone of the repository with hg pull -u to see the files. For the runs
with Fast Downward, set a time limit of 1 minute and a memory limit of 2 GB. Using Linux, such
limits can be set with ulimit -t 60 and ulimit -v 2000000, respectively.

Exercise C.1 (3+2+2 marks)

(a) The delete relaxation of SAS+ is different from propositional tasks because there is no notion
of a negative effect. Instead of ignoring negative effects, we can consider the variables to
have sets of values where new values can only be added. For example, a variable describing
the position of an agent will have the value {A} if the agent is at A. Moving from A to B in
the delete relaxation adds the value B to this set, so afterwards the variable has the value
{A,B} and the agent is considered to be at A and B.

Define this idea formally for arbitrary SAS+ tasks Π. This should include a definition for
Π+ and o+; for satisfying a formula (s |= χ); for domination of states (s dominates s′); and
a definition of applying a relaxed operator (sJo+K) in such tasks. Prove that the following
results also hold with your definitions:

• Domination Lemma: Let s and s′ be states and χ a formula without negation symbols.
If s |= χ and s′ dominates s then s′ |= χ.

• Monotonicity lemma: Let s be a state and o an operator. Then sJo+K dominates s.

Refer to the proofs presented in the lecture for parts of the proofs that remain the same.

(b) Provide unit-cost planning tasks in STRIPS with the following characteristics. In cases
where this is not possible, explain why and use positive normal form instead of STRIPS. If
this is also not possible, justify why no such task can exist:

(i) A task Π1 with 2 operators, such that Π+
1 has an optimal plan cost of 3.

(ii) A task Π2 with 2 variables, such that Π+
2 has an optimal plan cost of 3.

(iii) A task Π3 with at least one plan with cost 3, where Π+
3 is unsolvable.

(iv) An infinite family of planning tasks P = {P1, P2, . . .} (the definition of Pi is parametrized
by the value of the integer parameter i) such that the optimal plan cost of Pi is twice
the cost of an optimal plan for P+

i for all i.

(c) Take the simple instance of the Visitall domain (from the International Planning Competi-
tion) in directory visitall-untyped, and make sure you understand the problem. What is
the optimal solution value h∗(I)? What is the value of h+(I)? Draw the full Relaxed Task
Graph corresponding to the instance, and label each node with the final cost that results
from (manually) applying the algorithm seen in class for computing hmax. What is the value
of hmax(I)? Finally, label the graph again, but with the costs that result from hadd instead
of hmax.



Exercise C.2 (3+3+4+2+3+2 marks)

(a) The files fast-downward/src/search/planopt heuristics/and or graph.* contain an im-
plementation of an AND/OR graph. Implement the so-called generalized Dijkstra’s algorithm
in the method most conservative valuation to find the most conservative valuation of a
given AND/OR graph by following the approach outlined in the code comments.

The example graphs from the lecture are implemented in the method test and or graphs.
You can use them to test and debug your implementation by calling Fast Downward as
./fast-downward.py --test-and-or-graphs.

(b) The files fast-downward/src/search/planopt heuristics/relaxed task graph.* con-
tain a partial implementation of a relaxed task graph for STRIPS tasks. Complete it by
constructing the appropriate AND/OR nodes and edges between them in the constructor.
Also complete the method is goal relaxed reachable by querying the AND/OR graph.

You can use the heuristic planopt relaxed task graph() (which prunes states that are not
relaxed solvable) to test your implementation.

(c) Modify the construction of the relaxed task graph by setting the variable direct cost of
each operator effect node you create to the actual cost of the operator.

Then implement the method weighted most conservative valuation for AND/OR graphs
to compute hadd by following the approach outlined in the code comments. Use a comment
to point out the change you would have to make to turn this into a computation for hmax.

Finally, implement the method additive cost of goal of the relaxed task graph class to
return the hadd value of the task based on the implementation above.

(d) The heuristic planopt add() uses your implementation from exercise (d) as heuristic values.
Use it in an eager greedy search on the instances in the directory sokoban. Which of the
instances are relaxed solvable? Which ones can you solve with this heuristic within the
resource limits? Compare the heuristic values of the initial state with the cost of an optimal
relaxed plan, the discovered plan and an optimal plan.

You can compute optimal relaxed plans by explicitly creating the delete relaxation of the task
and solving it with an optimal search algorithm. This can be done with the Fast Downward
options --search "astar(lmcut())" --translate-options --relaxed. This is not the
ideal way of computing optimal relaxed plans, so it will not complete on all instances. If the
search does not complete, the last reached f -layer is a lower bound to the optimal relaxed
solution cost.

The values of planopt add() and the built-in implementation of Fast Downward ( add())
should match, so you can use the built-in implementation for debugging exercise 2(d).

(e) Modify your solution of exercise (d) so that every time you reduce the cost of an OR node,
the ID of the responsible successor is stored in the achiever field of the OR node.

Then implement the method ff cost of goal by collecting all best achievers. Start from
the goal node and recursively collect all successors of each encountered AND node and the
stored best achiever from each encountered OR node. Return the sum of direct costs of all
collected nodes.

(f) The heuristic planopt ff() uses your implementation from exercise (f) as heuristic values.
Use it in an eager greedy search on the instances in the directory sokoban and compare the
heuristic values of the initial state with the cost of an optimal relaxed plan, the discovered
plan and an optimal plan. Also compare the results to the results of exercise 2(e).

The values of planopt ff() and the built-in implementation of Fast Downward ( ff()) are
not guaranteed to match, but should lead to similar results on these benchmarks.



Exercise C.3 (6 marks)

We consider four variants of the problem from exercise A.1. All of them are defined based on a
directed graph G = 〈N,E〉, start and target location s, t ∈ N for the agent, a set of locked doors
L ⊆ E, and a set of keys K. Each key k ∈ K has an initial location initial-location(k) ∈ N and fits
in a subset of doors fits(k) ⊆ L. Note that in this general form one key can unlock multiple doors
but we will restrict that to a single door in some of the variants. In all variants, the set of variables
is V = {at-x | x ∈ N} ∪ {unlocked-x-y | 〈x, y〉 ∈ E} ∪ {k-at-x | k ∈ K,x ∈ N} ∪ {holding-k |
k ∈ K} ∪ {usable-k | k ∈ K}. The initial state sets the following variables to true and all other
variables to false: at-s; unlocked-x-y for each 〈x, y〉 ∈ E \ L; and usable-k for each k ∈ K;
k-at-initial-location(k) for each k ∈ K. The goal in all cases is at-t. We assume that all tasks
are solvable and use the following operators to define the variants. We define operators in terms
of three sets pre(o), add(o), and del(o) as mentioned in lecture A6 (slide 23).

Operator o pre(o) add(o) del(o)

move-x-y {at-x, unlocked-x-y} {at-y} {at-x}
move-back-x-y {at-y, unlocked-x-y} {at-x} {at-y}
pick-up-x-k {at-x, k-at-x} {holding-k} {k-at-x}
drop-x-k {at-x, holding-k} {k-at-x} {holding-k}
unlock-x-y-k {at-x, holding-k} {unlocked-x-y} {}
lock-x-y-k {at-x, holding-k} {} {unlocked-x-y}
unlock-otk-x-y-k {at-x, holding-k, usable-k} {unlocked-x-y} {usable-k}

We group the operators as follows:

OM = {move-x-y | 〈x, y〉 ∈ E}
OM−1 = {move-back-y-x | 〈x, y〉 ∈ E}
OP = {pick-up-x-k | x ∈ N, k ∈ K}
OD = {drop-x-k | x ∈ N, k ∈ K}
OU = {unlock-x-y-k | k ∈ K, 〈x, y〉 ∈ fits(k)}
OL = {lock-x-y-k | k ∈ K, 〈x, y〉 ∈ fits(k)}

OUO = {unlock-otk-x-y-k | k ∈ K, 〈x, y〉 ∈ fits(k)}

The variants are distinguished by the allowed actions and whether keys can fit multiple doors.

Variant 1: |K| = |L| = 0 and O1 = OM .

Variant 2: |fits(k)| ≥ 1 for all k ∈ K and O2 = OM ∪OP ∪OUO.

Variant 3: |fits(k)| = 1 for all k ∈ K and O3 = OM ∪OM−1 ∪OP ∪OU .

Variant 4: |fits(k)| = 1 for all k ∈ K and O4 = OM ∪OM−1 ∪OP ∪OU ∪OD ∪OL.

How well would you expect enforced hill-climbing with the optimal delete relaxation heuristic (h+)
to work in each of these cases? Justify your answer by discussing the heuristic error of h+ in each
of these cases and the properties of the search spaces as defined in the following paper.

• Hoffmann, J. (2001). Local Search Topology in Planning Benchmarks: An Empirical Anal-
ysis. In Proceedings of the 17th International Joint Conference on Artificial Intelligence
(IJCAI 2001), 453–458.

A good answer can be written in 0.5–1 page and does not require formal proofs.


