
Planning and Optimization

M. Helmert, T. Keller
S. Eriksson, F. Pommerening, S. Sievers

University of Basel
Fall Semester 2019

Exercise Sheet B
Due: October 20, 2018

The exercise sheets can be submitted in groups of three students. Please submit one single copy of
the exercises per group (only one member of the group does the submission), and provide all student
names on the submission. The files required for this exercise are in the directory exercise-b of the
course repository (https: // bitbucket. org/ aibasel/ planopt-hs19 ). All paths are relative to
this directory. Update your clone of the repository with hg pull -u to see the files.

Exercise B.1 (3+5 marks)

(a) Consider the propositional planning task Π = 〈V, I,O, γ〉 with

V = {a, b, c, d, e}
I(a) = T

I(v) = F for all v ∈ V \ {a}
O = {o1, o2, o3, o4}
γ = e

and

o1 = 〈>, b ∧ d〉
o2 = 〈¬e, a ∧ ¬b〉
o3 = 〈c, (d B e)〉
o4 = 〈a ∧ ¬b, c ∧ ¬a〉

Plot the search space explored by a progression and by a regression breadth-first search
through this task. In the regression search simplify the state formula as much as possible at
every node of the search tree. Do not expand the node further if that formula is unsatisfiable
or logically entails the state formula of a previously expanded node. In the progression search
do not expand a node if its state is a duplicate of a previously expanded state.

(b) Look up the following 5 planners in planner abstracts of the International Planning Com-
petition (IPC) 2008, 2014, and 2018. Categorize each of them in a similar fashion as the
examples in lecture B1. That is, list their problem class (satisficing or optimal), algorithm
class (explicit, SAT or symbolic), the design choices of their respective class (for example
the search direction for explicit search) and other aspects that stand out.

1. OLCFF

2. MAPlan

3. HSP∗
0

4. Madagascar

5. Symple

You can find planner abstracts on the competition websites reachable from the ICAPS website
(http: // icaps-conference. org/ index. php/ Main/ Competitions ).



Exercise B.2 (5+2+3+3+3 marks)

In this exercise we consider the solitaire game Beleaguered Castle (http://justsolitaire.com/
Beleaguered_Castle_Solitaire/). It consists of a deck of cards stacked face-up in several
tableau piles. For each suit in the deck there is a discard pile consisting only of the ace initially.
There are three types of legal moves:

• The top card of a tableau pile can be moved on top of another tableau pile if the top card
of the target pile has a value that is one higher. The suit of both cards does not matter for
this move. For example, 2♣ can be moved on 3♥, 10♣ on J♠, or Q♦ on K♦.

• The top card of a tableau pile can be moved to an empty tableau pile. This is allowed for
all cards (not just for kings as in other solitaire games).

• The top card of a tableau pile can be moved to the discard pile for the matching suit if the
top card on the discard pile has a value one lower. For example, if 7♥ was discarded last,
then 8♥ can be discarded next. Discarded cards can never be moved again.

The objective of the game is to move all cards to their corresponding discard pile. We consider
a generalization of the game with m tableau piles Tableaus = {t1, . . . , tm} and any set of cards
Cards. For a given card c ∈ Cards we use suit(c) and value(c) to refer to its suit and numerical
value. The set of discard piles contains one discard pile for each suit: Discards = {discards |
s = suit(c) for some c ∈ Cards}. The set of all piles is Piles = Tableaus ∪Discards.

(a) In the file regression/strips regression.py you will find a partial implementation of a
breadth-first regression search for STRIPS tasks. Complete the missing parts. Only regress
a formula through an operator if that operator adds at least one proposition of the formula.
Ignore search states with an unsatisfiable formula or a formula that is equivalent to the
formula of a previously expanded state. You don’t have to ignore formulas that imply the
formula of a previously expanded state but are not equivalent (i.e., represent strict subsets
of states).

Test your implementation by solving the given instance of “Beleaguered Castle”. You can
find a grounded PDDL domain in STRIPS and a small instance in the directory castle.

How many states are generated and expanded? Have a look at some of the generated states
and explain why so many states are expanded.

(b) Extend your code from exercise (a) with mutex-based pruning by completing the following
steps:

• Complete the method create mutexes by mapping each proposition to a set of propo-
sitions that are mutually exclusive with it. Normally, such mutex groups would be
discovered automatically from the planning task but here you can manually add mutex
groups for the specific instance. More specifically, use the mutex groups Lc = {c-on-x |
x ∈ Piles ∪ Cards \ {c}} adapted to the instance.

• Before starting the search, call create mutexes and store the result.

• Before inserting a node into the queue, loop over all propositions in the formula. For
each proposition check if the set of propositions mutex with it intersects the formula.
If it does, there are two mutually exclusive propositions in the formula and it does not
have to be added to the queue.

Repeat the experiment from exercise (a) and discuss the differences.

(c) The file regression/general regression.py contains a partial implementation of general
regression of a formula through an effect. Complete the implementation. Regress the goal
through each operator and list the resulting formulas. Simplify the formulas as much as
possible (within your implementation or manually). If a formula violates mutexes, list at
least one of the violated mutexes (without proof).



Test your implementation and use it on the task vampire/p01 grounded.pddl. Provide the
sequence of operators and formulas that you obtain through regressing the goal of the task.
Underline violated mutexes.

(d) Provide a family of planning tasks Πn such that the size of Πn is polynomial in n, and
such that a breadth-first search with regression expands only a polynomial number of search
nodes in n, whereas a breadth-first search with progression needs to expand an exponential
number of search nodes in n. Assume the progression search prunes all duplicate states and
the regression prunes a state if its formula logically entails the formula of its parent.

(e) Provide a family of planning tasks Πn such that the size of Πn is polynomial in n, and such
that a breadth-first search with progression expands only a polynomial number of search
nodes in n, whereas a breadth-first search with regression needs to expand an exponential
number of search nodes in n. Assume the same pruning as in exercise (d).

Exercise B.3 (5+3 marks)

Pyperplan (https://bitbucket.org/malte/pyperplan/src/default/) is a lightweight STRIPS
planner written in Python. While it doesn’t come with as strong performance as Fast Downward,
it is very easy to extend and modify.

(a) In the file pyperplan/src/search/bdd bfs.py you can find an incomplete implementation
of a BDD-based breadth-first search. Complete it by using the utility methods in the file
pyperplan/src/search/bdd.py. Do not modify anything else than the file pyperplan/src/
search/bdd bfs.py (and do not modify the constructor of BDDSearch yet, this is for part
(b)). Test your search on the tasks in the directory blocks and make sure that it can find
valid plans.

You can run the code with the command
./pyperplan/src/pyperplan.py -s bdd blocks/domain.pddl blocks/p1.pddl

(b) The constructor of BDDSearch contains a commented out alternative variable order for the
variables within the BDD. Change the order by commenting out the old order and including
the new order instead. Print the number of total BDD nodes after adding each operator and
after each expansion step (use the provided method print bdd nodes()). Compare the two
variable orders on a small task and discuss the results.

Exercise B.4 (3+5 marks)

For this exercise, you need to have minisat (minisat.se/MiniSat.html) installed. The simplest
option is to install the package pysat, which will also install several other SAT solvers. You can
install everything you need by running the following command: ./install-pysat.sh

(a) The file pyperplan/src/search/sat.py already contains a complete implementation of a
SAT search using a sequential encoding. Comment out the lines that add the positive
frame clauses to the set of clauses. Explain why this is possible without making the SAT
search compute incorrect solutions. Furthermore, investigate what effect on performance
this change has experimentally. To do so, compare the runtime of the program with and
without these clauses on the tasks in the directories blocks, gripper and logistics. You
don’t have to run the search longer than one minute.

You can run the code with the command
./pyperplan/src/pyperplan.py -s sat-seq gripper/prob01.pddl

(The domain file will be automatically inferred.)

Please note that the printed wallclock time can be quite off. Instead, please use the linux
built-in time command by prepending it to the above command to obtain real CPU runtimes
in seconds (example output: “real 0m32,177s”).



(b) The file pyperplan/src/search/sat.py contains an incomplete method build parallel model.
Please complete the implementation using the parallel encoding presented in the lecture. You
don’t have to change any of the other existing methods for this task.

Test your implementation on the same tasks as in part (a), using the command
./pyperplan/ src/pyperplan.py -s sat-par gripper/prob01.pddl.
What is the effect of the parallel encoding compared to the sequential one that you used in
part (a)? Plase explain the reason for this effect.


