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AO∗ & LAO∗: Recap

Iteratively build explicated graph

Extend explicated graph by expanding fringe node in partial
solution graph

State-value estimates are initialized with admissible heuristic

Propagate information with Bellman backups in partial
solution graph
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(Labeled) Real-Time Dynamic Programming: Recap

Iteratively performs trials

Simulates greedy policy in each trial

Encountered states are updated with Bellman backup

Admissible heuristic used if no state-value estimate available

Labeling procedure marks states that have converged
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Monte-Carlo Tree Search: Recap

Iteratively explicates search tree in trials

Uses tree policy to traverse tree

First encountered state not yet in tree added to search tree

State-value estimates are initialized with default policy

Propagates information with Monte-Carlo backups in reverse
order through visited states
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Trial-based Heuristic Tree Search

All are asymptotically optimal (or such a version exists)

In practice, all have complementary strengths

There are a significant differences between these algorithms

but they also have a lot in common

common framework that allows to describe all three:
Trial-based Heuristic Tree Search (THTS)
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Trial-based Heuristic Tree Search
Framework
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Trial-based Heuristic Tree Search

Perform trials to explicate search tree

decision (OR) nodes for states
chance (AND) nodes for actions

Annotate nodes with

state-/action-value estimate
visit counter
solved label

Initialize search nodes with heuristic

6 variable ingredients:

action selection
outcome selection

initialization
trial length
backup function
recommendation function

abc
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Trial-based Heuristic Tree Search

THTS for SSP T = 〈S , L, c ,T , s0,S?〉
d0 = create root node associated with s0
while time allows:

visit decision node(d0, T )
return recommend(d0)
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THTS: Visit a Decision Node

visit decision node for decision node d , SSP T = 〈S , L, c,T , s0, S?〉

if s(d) ∈ S? then return 0
a := select action(d)
if a not explicated:

cost = expand and initialize(d , a)
if not trial length reached(d)

let c be the node in children(d) with a(c) = a
cost = visit chance node(c, T )

backup(d ,cost)
return cost
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THTS: Visit a Chance Node

visit chance node for chance node c , SSP T = 〈S , L, c ,T , s0,S?〉

s ′ = select outcome(s(c), a(c))
if s ′ not explicated:

cost = expand and initialize(c , s ′)
if not trial length reached(c)

let d be the node in children(c) with s(d) = s ′

cost = visit decision node(d , T )
cost = cost + c(s(c), a(c))
backup(c ,cost)
return cost
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THTS Algorithms
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MCTS in the THTS Framework

Trial length: terminate trial when node is explicated

Action selection: tree policy

Outcome selection: sample

Initialization: add single node to the tree
and initialize with heuristic that simulates the default policy

Backup function: Monte-Carlo backups

Recommendation function: expected best arm
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AO∗ (Tree Search Version) in the THTS Framework

Trial length: terminate trial when node is expanded

Action selection: greedy

Outcome selection: depends on AO∗ version

Initialization: expand decision node and all its chance node
successors, then initialize all V̂ k with admissible heuristic

Backup function: Bellman backups & solved labels

Recommendation function: expected best arm
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LRTDP (Tree Search Version) in the THTS Framework

Trial length: finish trials only in goal states

Action selection: greedy

Outcome selection: sample unsolved outcome

Initialization: expand decision node and all its chance node
successors, then initialize all V̂ k with admissible heuristic

Backup function: Bellman backups & solved labels

Recommendation function: expected best arm
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Further Ingredients from Literature

Recommendation function:

Most played arm [Bubeck et al. 2009, Chaslot et al. 2008]
Empirical distribution of plays [Bubeck et al. 2009]
Secure arm [Chaslot et al. 2008]

Initialization:

Expand decision node and initialize chance nodes with
heuristic for state-action pairs [Keller & Eyerich, 2012]
Any classical heuristic on any determinization
Occupation measure heuristic [Trevizan et al., 2017]
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Further Ingredients from Literature

Backup functions:

Temporal Differences [Sutton & Barto, 1987]

Q-Learning [Watkins, 1989]

Selective Backups [Feldman & Domshlak, 2012; Keller, 2015]

MaxMonte-Carlo [Keller & Helmert, 2013]

Partial Bellman [Keller & Helmert, 2013]
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Further Ingredients from Literature

Action selections:

Uniform sampling (UNI)

ε-greedy (ε-G)

ε-G with decaying ε:

εLIN-G [Singh et al., 2000; Auer et al., 2002]
εRT-G [Keller, 2015]
εLOG-G [Keller, 2015]

Boltzmann exploration (BE)

BE with logarithmic decaying τ (BE-DT) [Singh et al., 2000]

UCB1 [Auer et al., 2002]

Root-valued UCB (RT-UCB) [Keller, 2015]
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Experimental Comparison

THTS allows to mix and match ingredients

Not all combinations asymptotically optimal

Analysis based on properties of ingredients possible

In [Keller, 2015], comparison of:

1 trial length, 1 outcome selection, 1 initialization
2 different recommendation functions
9 different backup functions
9 different action selections

⇒ 162 different THTS algorithms

115 shown to be asymptotically optimal
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Asymptotic Optimality
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Experimental Evaluation

Most played arm recommendation function often better than
same configuration with expected best arm

Boltzman exploration and root-valued UCB1 perform best in
most domains

Monte-Carlo and Partial Bellman backups perform best in
most domains

almost all action selections and backup functions perform best
in at least one domain
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Implementation: Prost

The Prost planner implements THTS framework

mixing and matching of ingredients very simple

to add new ingredients, just inherit from the corresponding
class

https://bitbucket.org/tkeller/prost/

https://bitbucket.org/tkeller/prost/
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Summary
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Summary

MCTS, AO∗and RTDP have complementary strengths

But also a similar structure

THTS allows to combine ideas from MCTS, Heuristic Search
and DP

Mixing and matching ingredients leads to novel and
sometimes better algorithms
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