Planning and Optimization G8. Trial-based Heuristic Tree Search

Gabriele Röger and Thomas Keller

Universität Basel

December 17, 2018

Content of this Course

Motivation •0000

AO* & LAO*: Recap

- Iteratively build explicated graph
- Extend explicated graph by expanding fringe node in partial solution graph
- State-value estimates are initialized with admissible heuristic
- Propagate information with Bellman backups in partial solution graph

- Iteratively performs trials
- Simulates greedy policy in each trial
- Encountered states are updated with Bellman backup
- Admissible heuristic used if no state-value estimate available
- Labeling procedure marks states that have converged

Monte-Carlo Tree Search: Recap

- Iteratively explicates search tree in trials
- Uses tree policy to traverse tree
- First encountered state not yet in tree added to search tree
- State-value estimates are initialized with default policy
- Propagates information with Monte-Carlo backups in reverse order through visited states

Trial-based Heuristic Tree Search

- All are asymptotically optimal (or such a version exists)
- In practice, all have complementary strengths
- There are a significant differences between these algorithms
- but they also have a lot in common
- common framework that allows to describe all three: Trial-based Heuristic Tree Search (THTS)

Trial-based Heuristic Tree Search Framework

■ Perform trials to explicate search tree

- decision (OR) nodes for states
 - chance (AND) nodes for actions
- Annotate nodes with
 - state-/action-value estimate
 - visit counter
 - solved label
- Initialize search nodes with heuristic

Tal-based Heuristic Tree Search

- Perform trials to explicate search tree
 - decision (OR) nodes for states
 - chance (AND) nodes for actions
- Annotate nodes with
 - state-/action-value estimate
 - visit counter
 - solved label
- Initialize search nodes with heuristic
- 6 variable ingredients:
 - action selection
 - outcome selection

Trial-based Heuristic Tree Search

- Perform trials to explicate search tree
 - decision (OR) nodes for states
 - chance (AND) nodes for actions
- Annotate nodes with
 - state-/action-value estimate
 - visit counter
 - solved label
- Initialize search nodes with heuristic
- 6 variable ingredients:
 - action selection
 - outcome selection
 - initialization
 - trial length

- Perform trials to explicate search tree
 - decision (OR) nodes for states
 - chance (AND) nodes for actions
- Annotate nodes with
 - state-/action-value estimate
 - visit counter
 - solved label
- Initialize search nodes with heuristic
- 6 variable ingredients:
 - action selection
 - outcome selection
 - initialization
 - trial length
 - backup function

iai based fredristic free Scarci

- Perform trials to explicate search tree
 - decision (OR) nodes for states
 - chance (AND) nodes for actions
- Annotate nodes with
 - state-/action-value estimate
 - visit counter
 - solved label
- Initialize search nodes with heuristic
- 6 variable ingredients:
 - action selection
 - outcome selection
 - initialization
 - trial length
 - backup function
 - recommendation function

Trial-based Heuristic Tree Search

```
THTS for SSP \mathcal{T} = \langle S, L, c, \overline{T}, s_0, S_{\star} \rangle
```

 d_0 = create root node associated with s_0 while time allows: visit_decision_node(d_0, \mathcal{T})

return recommend(d_0)

THTS: Visit a Decision Node

```
visit_decision_node for decision node d, SSP \mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle
if s(d) \in S_{\star} then return 0
a := select\_action(d)
if a not explicated:
     cost = expand_and_initialize(d, a)
if not trial_length_reached(d)
     let c be the node in children(d) with a(c) = a
     cost = visit\_chance\_node(c, T)
backup(d,cost)
return cost
```

THTS: Visit a Chance Node

```
visit_chance_node for chance node c, SSP \mathcal{T} = \langle S, L, c, \mathcal{T}, s_0, S_\star \rangle
s' = \text{select\_outcome}(s(c), a(c))
if s' not explicated:
    cost = expand_and_initialize(c, s')
if not trial_length_reached(c)
    let d be the node in children(c) with s(d) = s'
    cost = visit_decision_node(d, \mathcal{T})
cost = cost + c(s(c), a(c))
backup(c,cost)
return cost
```

THTS Algorithms

MCTS in the THTS Framework

- Trial length: terminate trial when node is explicated
- Action selection: tree policy
- Outcome selection: sample
- Initialization: add single node to the tree and initialize with heuristic that simulates the default policy
- Backup function: Monte-Carlo backups
- Recommendation function: expected best arm

AO* (Tree Search Version) in the THTS Framework

- Trial length: terminate trial when node is expanded
- Action selection: greedy
- Outcome selection: depends on AO* version
- Initialization: expand decision node and all its chance node successors, then initialize all \hat{V}^k with admissible heuristic
- Backup function: Bellman backups & solved labels
- Recommendation function: expected best arm

LRTDP (Tree Search Version) in the THTS Framework

- Trial length: finish trials only in goal states
- Action selection: greedy
- Outcome selection: sample unsolved outcome
- Initialization: expand decision node and all its chance node successors, then initialize all \hat{V}^k with admissible heuristic
- Backup function: Bellman backups & solved labels
- Recommendation function: expected best arm

Recommendation function:

- Most played arm [Bubeck et al. 2009, Chaslot et al. 2008]
- Empirical distribution of plays [Bubeck et al. 2009]
 - Secure arm [Chaslot et al. 2008]

Initialization:

- Expand decision node and initialize chance nodes with heuristic for state-action pairs [Keller & Eyerich, 2012]
- Any classical heuristic on any determinization
- Occupation measure heuristic [Trevizan et al., 2017]

Further Ingredients from Literature

Backup functions:

- Temporal Differences [Sutton & Barto, 1987]
- Q-Learning [Watkins, 1989]
- Selective Backups [Feldman & Domshlak, 2012; Keller, 2015]
- MaxMonte-Carlo [Keller & Helmert, 2013]
- Partial Bellman [Keller & Helmert, 2013]

Further Ingredients from Literature

Action selections:

- Uniform sampling (UNI)
- \bullet ε -greedy (ε -G)
- ε -G with decaying ε :
 - \bullet ε_{LIN} -G [Singh et al., 2000; Auer et al., 2002]
 - \bullet ε_{RT} -G [Keller, 2015]
 - $\epsilon_{I,OG}$ -G [Keller, 2015]
- Boltzmann exploration (BE)
- BE with logarithmic decaying τ (BE-DT) [Singh et al., 2000]
- UCB1 [Auer et al., 2002]
- Root-valued UCB (RT-UCB) [Keller, 2015]

Experimental Comparison

- THTS allows to mix and match ingredients
- Not all combinations asymptotically optimal
- Analysis based on properties of ingredients possible

Experimental Comparison

- THTS allows to mix and match ingredients
- Not all combinations asymptotically optimal
- Analysis based on properties of ingredients possible
- In [Keller, 2015], comparison of:
 - 1 trial length, 1 outcome selection, 1 initialization
 - 2 different recommendation functions
 - 9 different backup functions
 - 9 different action selections
- ⇒ 162 different THTS algorithms
- 115 shown to be asymptotically optimal

Asymptotic Optimality

	4			<i>S S S S S S S S S S</i>	Ç	C SE	,	S .	SCB 27
	175	S ec	et.	So est	is of	PRE	BE	RI	JCB1
LSMC									
\mathbf{MC}									
\mathbf{ESMC}									
\mathbf{LSTD}									
\mathbf{TD}									
\mathbf{ESTD}									
${f QL}$									
\mathbf{MaxMC}									
PB									

 Most played arm recommendation function often better than same configuration with expected best arm

	ACP	JEMIC CRC	SSING Flf	VATOR:	, AA	ICATIOT REC	91(1) 97 ⁹	il 648	ADMIN TAN	ARISK TRA	FFIC TRI	ANGLE WII	Dring.
${ m MC_{MPA}^{UCB1}}$	27	65	78	86	45	92	77	89	86	71	46	84	70
Prost 2011	26	62	49	84	42	90	69	88	83	60	49	85	66

- Most played arm recommendation function often better than same configuration with expected best arm
- Boltzman exploration and root-valued UCB1 perform best in most domains

- Most played arm recommendation function often better than same configuration with expected best arm
- Boltzman exploration and root-valued UCB1 perform best in most domains
- Monte-Carlo and Partial Bellman backups perform best in most domains

- Most played arm recommendation function often better than same configuration with expected best arm
- Boltzman exploration and root-valued UCB1 perform best in most domains
- Monte-Carlo and Partial Bellman backups perform best in most domains
- almost all action selections and backup functions perform best in at least one domain

Implementation: Prost

- The Prost planner implements THTS framework
- mixing and matching of ingredients very simple
- to add new ingredients, just inherit from the corresponding class

https://bitbucket.org/tkeller/prost/

Summary

Summary

- MCTS, AO*and RTDP have complementary strengths
- But also a similar structure
- THTS allows to combine ideas from MCTS, Heuristic Search and DP
- Mixing and matching ingredients leads to novel and sometimes better algorithms