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G8.1 Motivation
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G8. Trial-based Heuristic Tree Search Motivation

AO∗ & LAO∗: Recap

I Iteratively build explicated graph

I Extend explicated graph by expanding fringe node in partial
solution graph

I State-value estimates are initialized with admissible heuristic

I Propagate information with Bellman backups in partial
solution graph
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G8. Trial-based Heuristic Tree Search Motivation

(Labeled) Real-Time Dynamic Programming: Recap

I Iteratively performs trials

I Simulates greedy policy in each trial

I Encountered states are updated with Bellman backup

I Admissible heuristic used if no state-value estimate available

I Labeling procedure marks states that have converged
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G8. Trial-based Heuristic Tree Search Motivation

Monte-Carlo Tree Search: Recap

I Iteratively explicates search tree in trials

I Uses tree policy to traverse tree

I First encountered state not yet in tree added to search tree

I State-value estimates are initialized with default policy

I Propagates information with Monte-Carlo backups in reverse
order through visited states
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G8. Trial-based Heuristic Tree Search Motivation

Trial-based Heuristic Tree Search

I All are asymptotically optimal (or such a version exists)

I In practice, all have complementary strengths

I There are a significant differences between these algorithms

I but they also have a lot in common

I common framework that allows to describe all three:
Trial-based Heuristic Tree Search (THTS)
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G8. Trial-based Heuristic Tree Search Trial-based Heuristic Tree Search Framework

G8.2 Trial-based Heuristic Tree
Search Framework
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G8. Trial-based Heuristic Tree Search Trial-based Heuristic Tree Search Framework

Trial-based Heuristic Tree Search

I Perform trials to explicate search tree
I decision (OR) nodes for states
I chance (AND) nodes for actions

I Annotate nodes with
I state-/action-value estimate
I visit counter
I solved label

I Initialize search nodes with heuristic

I 6 variable ingredients:
I action selection
I outcome selection

I initialization
I trial length
I backup function
I recommendation function

abc
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G8. Trial-based Heuristic Tree Search Trial-based Heuristic Tree Search Framework

Trial-based Heuristic Tree Search

THTS for SSP T = 〈S , L, c ,T , s0,S?〉
d0 = create root node associated with s0
while time allows:

visit decision node(d0, T )
return recommend(d0)
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G8. Trial-based Heuristic Tree Search Trial-based Heuristic Tree Search Framework

THTS: Visit a Decision Node

visit decision node for decision node d , SSP T = 〈S , L, c ,T , s0, S?〉
if s(d) ∈ S? then return 0
a := select action(d)
if a not explicated:

cost = expand and initialize(d , a)
if not trial length reached(d)

let c be the node in children(d) with a(c) = a
cost = visit chance node(c , T )

backup(d ,cost)
return cost
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G8. Trial-based Heuristic Tree Search Trial-based Heuristic Tree Search Framework

THTS: Visit a Chance Node

visit chance node for chance node c , SSP T = 〈S , L, c ,T , s0,S?〉
s ′ = select outcome(s(c), a(c))
if s ′ not explicated:

cost = expand and initialize(c , s ′)
if not trial length reached(c)

let d be the node in children(c) with s(d) = s ′

cost = visit decision node(d , T )
cost = cost + c(s(c), a(c))
backup(c ,cost)
return cost
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G8. Trial-based Heuristic Tree Search THTS Algorithms

G8.3 THTS Algorithms
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G8. Trial-based Heuristic Tree Search THTS Algorithms

MCTS in the THTS Framework

I Trial length: terminate trial when node is explicated

I Action selection: tree policy

I Outcome selection: sample

I Initialization: add single node to the tree
and initialize with heuristic that simulates the default policy

I Backup function: Monte-Carlo backups

I Recommendation function: expected best arm
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G8. Trial-based Heuristic Tree Search THTS Algorithms

AO∗ (Tree Search Version) in the THTS Framework

I Trial length: terminate trial when node is expanded

I Action selection: greedy

I Outcome selection: depends on AO∗ version

I Initialization: expand decision node and all its chance node
successors, then initialize all V̂ k with admissible heuristic

I Backup function: Bellman backups & solved labels

I Recommendation function: expected best arm
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G8. Trial-based Heuristic Tree Search THTS Algorithms

LRTDP (Tree Search Version) in the THTS Framework

I Trial length: finish trials only in goal states

I Action selection: greedy

I Outcome selection: sample unsolved outcome

I Initialization: expand decision node and all its chance node
successors, then initialize all V̂ k with admissible heuristic

I Backup function: Bellman backups & solved labels

I Recommendation function: expected best arm

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 17, 2018 21 / 34

G8. Trial-based Heuristic Tree Search THTS Algorithms

Further Ingredients from Literature

I Recommendation function:
I Most played arm [Bubeck et al. 2009, Chaslot et al. 2008]
I Empirical distribution of plays [Bubeck et al. 2009]
I Secure arm [Chaslot et al. 2008]

I Initialization:
I Expand decision node and initialize chance nodes with

heuristic for state-action pairs [Keller & Eyerich, 2012]
I Any classical heuristic on any determinization
I Occupation measure heuristic [Trevizan et al., 2017]
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G8. Trial-based Heuristic Tree Search THTS Algorithms

Further Ingredients from Literature

Backup functions:

I Temporal Differences [Sutton & Barto, 1987]

I Q-Learning [Watkins, 1989]

I Selective Backups [Feldman & Domshlak, 2012; Keller, 2015]

I MaxMonte-Carlo [Keller & Helmert, 2013]

I Partial Bellman [Keller & Helmert, 2013]
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G8. Trial-based Heuristic Tree Search THTS Algorithms

Further Ingredients from Literature

Action selections:

I Uniform sampling (UNI)

I ε-greedy (ε-G)
I ε-G with decaying ε:

I εLIN-G [Singh et al., 2000; Auer et al., 2002]
I εRT-G [Keller, 2015]
I εLOG-G [Keller, 2015]

I Boltzmann exploration (BE)

I BE with logarithmic decaying τ (BE-DT) [Singh et al., 2000]

I UCB1 [Auer et al., 2002]

I Root-valued UCB (RT-UCB) [Keller, 2015]
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G8. Trial-based Heuristic Tree Search THTS Algorithms

Experimental Comparison

I THTS allows to mix and match ingredients

I Not all combinations asymptotically optimal

I Analysis based on properties of ingredients possible

I In [Keller, 2015], comparison of:
I 1 trial length, 1 outcome selection, 1 initialization
I 2 different recommendation functions
I 9 different backup functions
I 9 different action selections

I ⇒ 162 different THTS algorithms

I 115 shown to be asymptotically optimal
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G8. Trial-based Heuristic Tree Search THTS Algorithms

Asymptotic Optimality
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G8. Trial-based Heuristic Tree Search THTS Algorithms

Experimental Evaluation

I Most played arm recommendation function often better than
same configuration with expected best arm

I Boltzman exploration and root-valued UCB1 perform best in
most domains

I Monte-Carlo and Partial Bellman backups perform best in
most domains

I almost all action selections and backup functions perform best
in at least one domain
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G8. Trial-based Heuristic Tree Search THTS Algorithms

Implementation: Prost

I The Prost planner implements THTS framework

I mixing and matching of ingredients very simple

I to add new ingredients, just inherit from the corresponding
class

https://bitbucket.org/tkeller/prost/
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G8.4 Summary
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G8. Trial-based Heuristic Tree Search Summary

Summary

I MCTS, AO∗and RTDP have complementary strengths

I But also a similar structure

I THTS allows to combine ideas from MCTS, Heuristic Search
and DP

I Mixing and matching ingredients leads to novel and
sometimes better algorithms
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