

Planning and Optimization

G7. Monte-Carlo Tree Search: Algorithms Part II

Gabriele Röger and Thomas Keller

Universität Basel

December 12, 2018

Planning and Optimization

December 12, 2018 — G7. Monte-Carlo Tree Search: Algorithms Part II

G7.1 Motivation

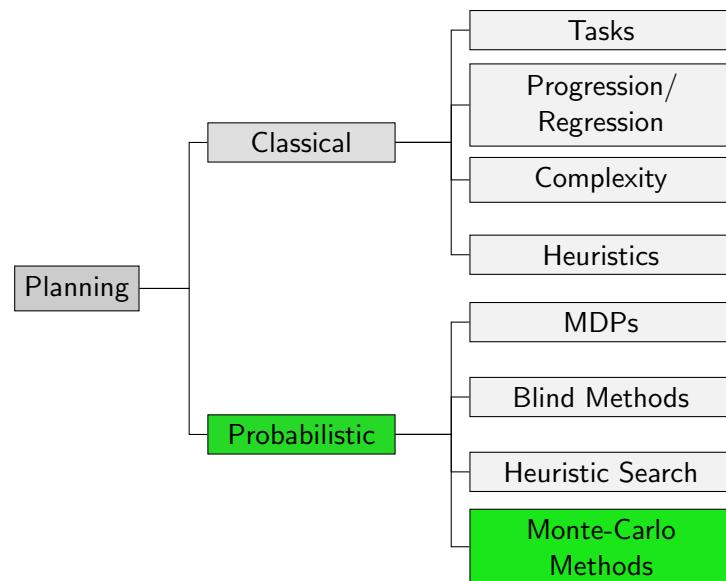
G7.2 ε -greedy

G7.3 Softmax

G7.4 UCB1

G7.5 Summary

Content of this Course



G7.1 Motivation

Motivation

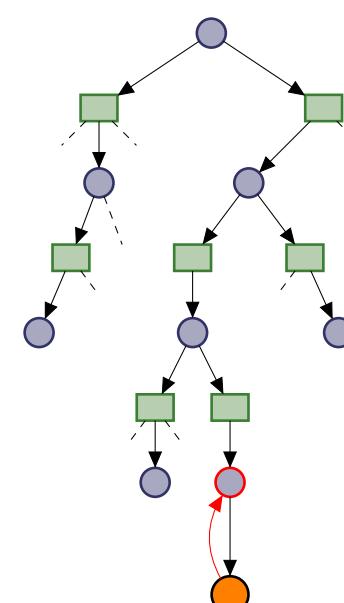
- ▶ Monte-Carlo Tree Search is a **framework** of algorithms
- ▶ Concrete MCTS algorithms are specified in terms of:
 - ▶ tree policy
 - ▶ default policy
- ▶ For most tasks, a **well-suited** MCTS configuration exists
- ▶ **But:** for each task, many MCTS configurations **ill-suited**
- ▶ **And:** every MCTS configuration that **works well** in one problem **performs poorly** in another problem

⇒ no dominating MCTS configuration

⇒ we present and analyze different tree and default policies

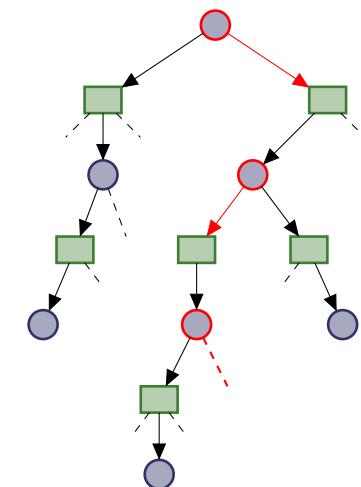
Tree Policy: Recap

- ▶ Tree policy used to **traverse** **exploited tree**, starting at root
- ▶ Assigns probability distribution over actions to each **decision node**
- ▶ May access information from current search tree
- ▶ Comparable to **evaluation function** in best-first search
- ▶ Tree policy **more general**: evaluation function determined upon node generation, while tree policy dynamic in each trial



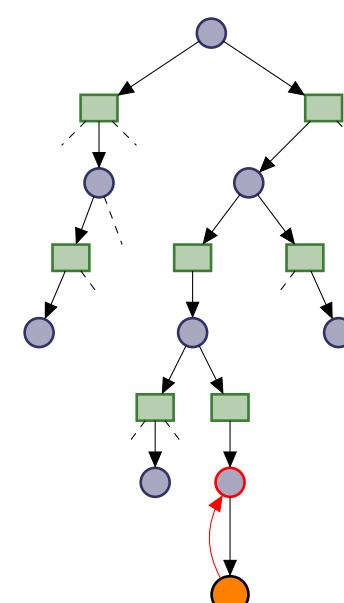
Tree Policy: Recap

- ▶ Tree policy used to **traverse** **exploited tree**, starting at root
- ▶ Assigns probability distribution over actions to each **decision node**
- ▶ May access information from current search tree
- ▶ Comparable to **evaluation function** in best-first search
- ▶ Tree policy **more general**: evaluation function determined upon node generation, while tree policy dynamic in each trial



Default Policy: Recap

- ▶ Default policy used to **simulate** **run**, starting at recently added decision node
- ▶ Assigns probability distribution over actions to each **state**
- ▶ Independent from current search tree
- ▶ Same role in MCTS as **heuristic** in heuristic search
- ▶ Heuristic **more general**: default policy is a specific kind of heuristic



G7.2 ε -greedy

ε -greedy: Idea

- Tree policy parametrized with constant parameter ε
- With probability $1 - \varepsilon$, pick one of the **greedy** actions uniformly at random
- Otherwise, pick non-greedy successor **uniformly at random**

ε -greedy Tree Policy

$$\pi(a | d) = \begin{cases} \frac{1-\varepsilon}{|L_*^k(d)|} & \text{if } a \in L_*^k(d) \\ \frac{\varepsilon}{|L(d(s)) \setminus L_*^k(d)|} & \text{otherwise,} \end{cases}$$

with $L_*^k(d) = \{a(c) \in L(s(d)) \mid c \in \arg \min_{c' \in \text{children}(d)} \hat{Q}^k(c')\}$.

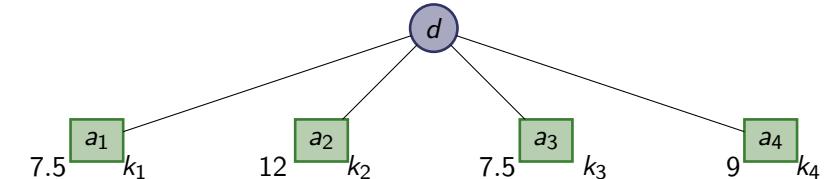
ε -greedy: Asymptotic Optimality

Asymptotic Optimality of ε -greedy

- explores forever
- not greedy in the limit
- ↪ **not asymptotically optimal**

asymptotically optimal variant uses **decaying ε** , e.g. $\varepsilon = \frac{1}{k}$

ε -greedy: Example



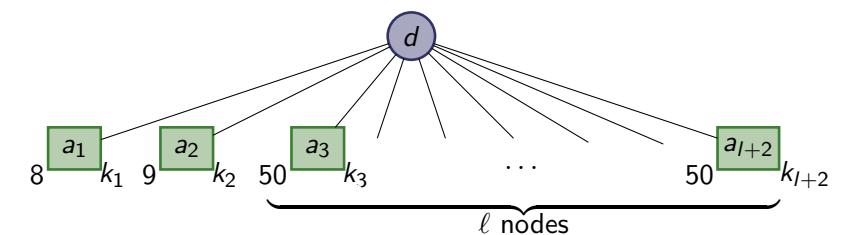
Assuming $\varepsilon = 0.2$ and an **SSP** setting, we get:

- $\pi(a_1 | d) = 0.4$
- $\pi(a_2 | d) = 0.1$
- $\pi(a_3 | d) = 0.4$
- $\pi(a_4 | d) = 0.1$

ε -greedy: Weakness

Problem:

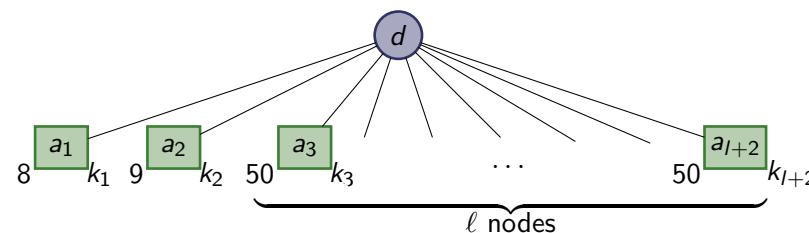
when ε -greedy explores, all non-greedy actions are treated **equally**



Assuming $\varepsilon = 0.2$, $l = 9$ and an **SSP** setting, we get:

- $\pi(a_1 | d) = 0.8$
- $\pi(a_2 | d) = \pi(a_3 | d) = \dots = \pi(a_{11} | d) = 0.02$

G7.3 Softmax



Assuming $\varepsilon = 0.2$, $\ell = 9$, $\tau = 10$ and an SSP setting, we get:

- ▶ $\pi(a_1 | d) = 0.49$
- ▶ $\pi(a_2 | d) = 0.45$
- ▶ $\pi(a_3 | d) = \dots = \pi(a_{11} | d) = 0.007$

Softmax: Idea

- ▶ Tree policy with constant parameter τ
- ▶ Select actions **proportionally** to their action-value estimate
- ▶ Most popular softmax tree policy uses **Boltzmann exploration**
- ▶ ⇒ selects actions proportionally to $e^{\frac{-\hat{Q}_k(c)}{\tau}}$

Tree Policy based on Boltzmann Exploration

$$\pi(a(c) | d) = \frac{e^{\frac{-\hat{Q}_k(c)}{\tau}}}{\sum_{c' \in \text{children}(d)} e^{\frac{-\hat{Q}_k(c')}{\tau}}}$$

Softmax: Example

Boltzmann Exploration: Asymptotic Optimality

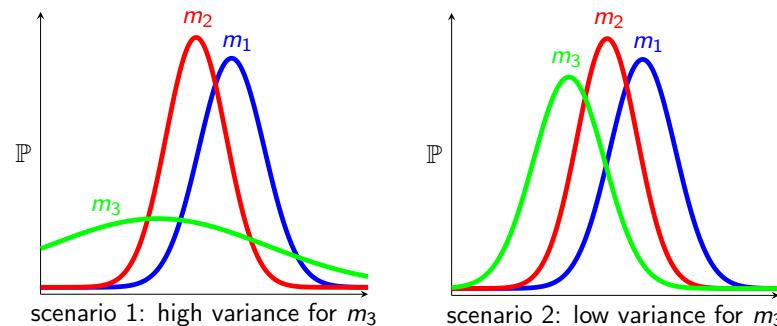
Asymptotic Optimality of Boltzmann Exploration

- ▶ explores forever
- ▶ not greedy in the limit:
 - ▶ state- and action-value estimates converge to finite value
 - ▶ therefore, probabilities also converge to positive, finite value
- ▶ not asymptotically optimal

asymptotically optimal variant uses **decaying τ** , e.g. $\tau = \frac{1}{\log k}$

careful: τ must not decay faster than logarithmically
(i.e., must have $\tau \geq \frac{\text{const}}{\log k}$) to explore infinitely

Boltzmann Exploration: Weakness



- ▶ Boltzmann exploration (as well as ε -greedy) only considers **mean** of sampled action-values
- ▶ as we sample the same node many times, we can also gather information about variance (how **reliable** the information is)
- ▶ Boltzmann exploration ignores the variance, treating the two scenarios equally

G7.4 UCB1

Upper Confidence Bounds: Idea

Balance **exploration** and **exploitation** by preferring actions that

- ▶ have been **successful in earlier iterations** (exploit)
- ▶ have been **selected rarely** (explore)

Upper Confidence Bounds: Idea

- ▶ Select successor c of d that maximizes $\hat{Q}_k(c) + E(d) \cdot B(c)$
- ▶ based on **action-value estimate** $\hat{Q}(c)$,
- ▶ **exploration factor** $E(d)$ and
- ▶ **bonus term** $B(c)$.
- ▶ Select $B(c)$ such that $Q_*(s(c), a(c)) \leq \hat{Q}^k(c) + E(d) \cdot B(c)$ with high probability
- ▶ **Idea:** $\hat{Q}^k(c) + E(d) \cdot B(c)$ is an **upper confidence bound** on $Q_*(s(c), a(c))$ under the collected information

Careful: MDP setting considered here,
replace $\hat{Q}_k(c)$ with $-\hat{Q}_k(c)$ for SSPs

Bonus Term of UCB1

- ▶ Use $B(c) = \sqrt{\frac{2 \cdot \ln N_k(d)}{N_k(c)}}$ as bonus term
- ▶ Bonus term is derived from **Chernoff-Hoeffding bound**:
 - ▶ gives the probability that a **sampled value** (here: $\hat{Q}^k(c)$) is far from its **true expected value** (here: $Q_*(s(c), a(c))$) in dependence of the **number of samples** (here: $N^k(c)$)
- ▶ Picks the optimal action **exponentially** more often
- ▶ Concrete MCTS algorithm that uses UCB1 is called **UCT**

Exploration Factor

- ▶ Exploration factor serves two roles
- ▶ UCB1 designed for MAB with reward in $[0, 1]$
 $\Rightarrow \hat{Q}_k(c) \in [0; 1]$ for all k and c
- ▶ Bonus term always ≥ 0 and most of the time ≤ 1
- ▶ **First role:** to make sure $\hat{Q}_k(c)$ and $B(c)$ are of comparable size, set $E(d) := \hat{V}_k(d)$ (dynamically for each decision)
- ▶ **Second role:** $E(d)$ allows to adjust **balance** between exploration and exploitation
- ▶ Search with $E(d) = \hat{V}_k(d)$ very greedy
- ▶ In practice, $E(d)$ is often **multiplied** with constant > 1
- ▶ UCB1 often requires **hand-tailored** $E(d)$ to work well

Asymptotic Optimality

Asymptotic Optimality of UCB1

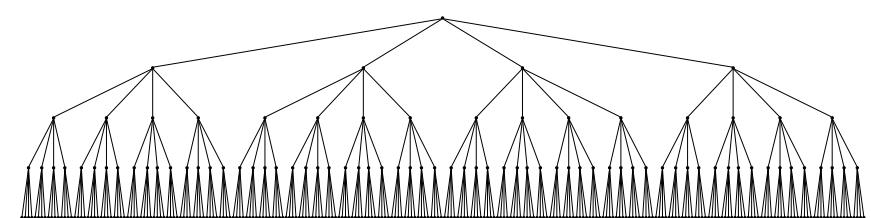
- ▶ explores forever
- ▶ greedy in the limit
- ~~ **asymptotically optimal**

However:

- ▶ No **theoretical justification** to use UCB1 in **MDPs** (MAB proof requires **stationary rewards**)
- ▶ Development of tree policies active **research topic**

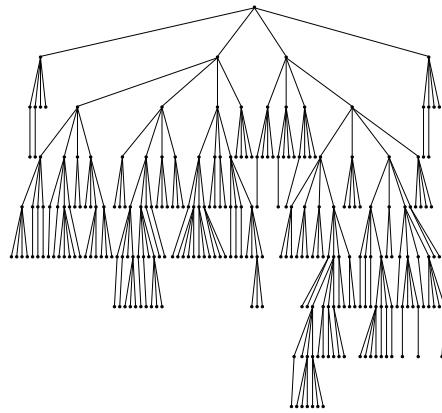
Symmetric Search Tree up to depth 4

full tree up to depth 4



Asymmetric Search Tree of UCB1

(equal number of search nodes)



G7.5 Summary

Summary

- ▶ ε -greedy, Boltzmann exploration and UCB1 **balance exploration and exploitation** with different methods
- ▶ ε -greedy selects **greedy action** with probability $1 - \varepsilon$ and another action uniformly at random otherwise
- ▶ ε -greedy selects non-greedy actions with **same probability**
- ▶ Boltzmann exploration selects each action **proportional to its action-value estimate**
- ▶ Boltzmann exploration does not take **confidence of estimate** into account
- ▶ UCB1 selects actions greedily w.r.t. **upper confidence bound** on action-value estimate