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Motivation

m Monte-Carlo Tree Search is a framework of algorithms
m Concrete MCTS algorithms are specified in terms of:

m tree policy

m default policy
m For most tasks, a well-suited MCTS configuration exists
m But: for each task, many MCTS configurations ill-suited
m And: every MCTS configuration that works well in one

problem performs poorly in another problem

= no dominating MCTS configuration
= we present and analyze different tree and default policies
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Tree Policy: Recap

m Tree policy used to traverse
explicated tree, starting at root

m Assigns probability distribution
over actions to each decision node

m May access information from
current search tree

m Comparable to evaluation function
in best-first search

m Tree policy more general:
evaluation function determined
upon node generation, while tree
policy dynamic in each trial
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Default Policy: Recap

Default policy used to simulate
run, starting at recently added
decision node

Assigns probability distribution
over actions to each state

Independent from current search
tree

Same role in MCTS as heuristic in
heuristic search

Heuristic more general: default
policy is a specific kind of heuristic
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Default Policy

Default Policy for state s of SSP T

cost =0

while s ¢ S,:
sample action a from default policy 7(- | s)
cost := cost + c(a)
s :~ succ(s, a)

return cost )

m Default policy used to simulate run
m Role of default policy comparable to role of heuristic

m Heuristic value is accumulated cost of simulated run
under default policy
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Default Policy as Heuristic: Properties

Is a default policy
m goal-aware?

m safe?
m admissible?

m consistent?
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Is a default policy
m goal-aware? = Yes
m safe?

m admissible?

m consistent?
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Default Policy as Heuristic: Properties

Is a default policy
m goal-aware? = Yes

m safe? = Only for proper policy and dead end free SSP.
Otherwise, no guarantee for termination of computation

m admissible?

m consistent?

Summar
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Default Policy as Heuristic: Properties

Is a default policy
m goal-aware? = Yes

m safe? = Only for proper policy and dead end free SSP.
Otherwise, no guarantee for termination of computation

m admissible? = Possible for few SSPs (e.g., if optimal policy is
deterministic), but usually not.

m consistent?
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Summary

Is a default policy

goal-aware? = Yes

safe? = Only for proper policy and dead end free SSP.
Otherwise, no guarantee for termination of computation

admissible? = Possible for few SSPs (e.g., if optimal policy is
deterministic), but usually not.

consistent? = Possible for few SSPs (e.g., if optimal policy is
deterministic), but usually not.
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Default Policy Realizations

Early work on MCTS proposed random walk default policy:

7T(a|s):{|L(15)| if ae€ L(s)

0 otherwise

Random walks are proper

Poor guidance, and due to high variance even misguidance
= Variant: run multiple random walks and use average

Computation expensive if probability to reach goal is low
= Variant: apply heuristic after finite number of steps

m Predominant alternative: domain-dependent solutions
e.g., neural networks of AlphaGo variants
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Optimal Search

Optimal heuristic search algorithms AO* and RTDP use
greedy policy

m with admissible heuristic

m and full Bellman backups to guarantee optimality
m MCTS uses Monte-Carlo backups
[

and default policy is not admissible
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Optimal Search

Optimal heuristic search algorithms AO* and RTDP use
greedy policy

m with admissible heuristic

m and full Bellman backups to guarantee optimality
m MCTS uses Monte-Carlo backups
[

and default policy is not admissible

= MCTS requires different way to guarantee optimality
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Asymptotic Optimality

Asymptotic Optimality

An MCTS algorithm is asymptotically optimal if Q¥(c) converges
to the optimal action-value Q,(s(c), a(c)) for all ¢ € succ(dp)
when the number of trials k approaches infinity (k — o).
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Asymptotic Optimality

Asymptotic Optimality

An MCTS algorithm is asymptotically optimal if Q¥(c) converges
to the optimal action-value Q,(s(c), a(c)) for all ¢ € succ(dp)
when the number of trials k approaches infinity (k — o).

Note: this definition does not catch all MCTS configurations that
are asymptotically optimal

(e.g., if all Q¥(c) converge to £- Q,(s(c), a(c)) for some £ € RT).
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Asymptotically Optimal Tree Policy

An MCTS algorithm is asymptotically optimal if
@ its tree policy explores forever:

m the (infinite) sum of the probabilities that a decision node is
visited must diverge

m = every search node is explicated eventually and visited
infinitely often

@ its tree policy is greedy in the limit:
m probability that optimal action is selected converges to 1

m = in the limit, backups based on iterations where only
an optimal policy is followed dominate suboptimal backups

© its default policy initializes decision nodes with finite values
m = require proper default policy and dead end free SSP
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Example: Uniform Tree Policy

Consider the random tree policy for decision node d where:

W(a|d):{m if a € L(s(d))

0 otherwise

The random tree policy explores forever:

a decision node at depth h is visited with probability at least

(|71| . B)h' where pi= min{s,a,5/|T(s,a,s/)>0} 7_(57 a, Sl) and hence

k
1 1
Z(m-g)h:k-(m-g)h—)oowhen k — oo
i=1
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Example: Uniform Tree Policy

Consider the random tree policy for decision node d where:

w(a] d) = {m if a € L(s(d))

0 otherwise

The random tree policy is not greedy in the limit:
the probability that an optimal action a is selected in node d is

1
1-— Z mﬁlwhenk—)oo.

{a’eL(d(s))|a’ suboptimal}

~» Random tree policy not asymptotically optimal
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Example: Greedy Tree Policy

Consider the greedy tree policy for decision node d where:

1 2 k
e ) — {I_Li(d)l if 2 € L(d)

0 otherwise,

with L¥(d) = {a(c) € L(s(d)) | c € arg MIN¢/echildren(d) Qk(cl)}-

<

m Greedy tree policy is greedy in the limit

m Greedy tree policy does not explore forever

~ Greedy tree policy not asymptotically optimal
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Tree Policy: Objective

To satisfy both requirements, MCTS tree policies have two
contradictory objectives:

m explore parts of the search space that have not been
investigated thoroughly

m exploit knowledge about good actions to focus search
on promising areas of the search space

central challenge: balance exploration and exploitation

= borrow ideas from related multi-armed bandit problem
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Multi-armed Bandit Problem

m Most commonly used tree policies are inspired from research
on the multi-armed bandit problem (MAB)

m MAB is a learning scenario (model not revealed to agent)

m agent repeatedly faces the same decision:
to pull one of several arms of a slot machine
m pulling an arm yields stochastic reward
Note: In this section, we consider rewards rather than costs

m can be modeled as MDP



Motivation Default Policy Optimality Summar

Multi-armed Bandit Problem
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Multi-armed Bandit Problem: Planning Scenario

m Compute Q.(a) for a € {a1, a2, a3}

m Pull arm arg max,c(a,. 2,a,} @+(2) = a3 forever

m Expected accumulated reward after k trials is 8 - k
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Multi-armed Bandit Problem: Learning Scenario

m Pull arms following policy to explore or exploit
m Update Q and N based on observations
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Multi-armed Bandit Problem: Learning Scenario

m Pull arms following policy to explore or exploit
m Update Q and N based on observations

m Accumulated reward after 1 trial is 3
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Multi-armed Bandit Problem: Learning Scenario

m Pull arms following policy to explore or exploit
m Update Q and N based on observations

m Accumulated reward after 2 trials is 3+6 =9
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Multi-armed Bandit Problem: Learning Scenario

m Pull arms following policy to explore or exploit
m Update Q and N based on observations
m Accumulated reward after 3 trialsis3+6+0=9
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Multi-armed Bandit Problem: Learning Scenario

m Pull arms following policy to explore or exploit
m Update Q and N based on observations
m Accumulated reward after 4 trialsis3+6+ 0+ 6 = 15
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Multi-armed Bandit Problem: Learning Scenario

m Pull arms following policy to explore or exploit
m Update Q and N based on observations
m Accumulated reward after 5 trialsis3+6+0+6+0=15
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Multi-armed Bandit Problem: Learning Scenario

m Pull arms following policy to explore or exploit
m Update Q and N based on observations
m Accumulated reward after 6 trialsis34+64+0+6+0+8 =23




Policy Quality

m Since model unknown to MAB agent, it cannot achieve
accumulated reward of k- V, with V, := max, Q,(a) in k trials

m Quality of MAB policy m measured in terms of regret, i.e., the
difference between k - V, and expected reward of 7 in k trials

m Regret cannot grow slower than logarithmic in number of trials
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Connection between MCTS Tree Policy and MAB

~ Blackboard
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Summary

m Default policies simulate run under policy
m Default policy not admissible

m MCTS requires different idea to achieve optimality than
heuristic search:
tree policy must be greedy in the limit and explore forever

m Central challenge of tree policies:
balance exploration and exploitation

m Each decision of MCTS tree policy can be viewed as
multi-armed bandit problem
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