
Planning and Optimization
G6. Monte-Carlo Tree Search: Algorithms Part I

Gabriele Röger and Thomas Keller

Universität Basel

December 12, 2018



Motivation Default Policy Optimality MAB Summary

Content of this Course

Planning

Classical

Tasks

Progression/
Regression

Complexity

Heuristics

Probabilistic

MDPs

Blind Methods

Heuristic Search

Monte-Carlo
Methods



Motivation Default Policy Optimality MAB Summary

Motivation



Motivation Default Policy Optimality MAB Summary

Motivation

Monte-Carlo Tree Search is a framework of algorithms

Concrete MCTS algorithms are specified in terms of:

tree policy
default policy

For most tasks, a well-suited MCTS configuration exists

But: for each task, many MCTS configurations ill-suited

And: every MCTS configuration that works well in one
problem performs poorly in another problem

⇒ no dominating MCTS configuration
⇒ we present and analyze different tree and default policies



Motivation Default Policy Optimality MAB Summary

Tree Policy: Recap

Tree policy used to traverse
explicated tree, starting at root

Assigns probability distribution
over actions to each decision node

May access information from
current search tree

Comparable to evaluation function
in best-first search

Tree policy more general:
evaluation function determined
upon node generation, while tree
policy dynamic in each trial



Motivation Default Policy Optimality MAB Summary

Default Policy: Recap

Default policy used to simulate
run, starting at recently added
decision node

Assigns probability distribution
over actions to each state

Independent from current search
tree

Same role in MCTS as heuristic in
heuristic search

Heuristic more general: default
policy is a specific kind of heuristic



Motivation Default Policy Optimality MAB Summary

Default Policy



Motivation Default Policy Optimality MAB Summary

Default Policy

Default Policy for state s of SSP T
cost = 0
while s /∈ S?:

sample action a from default policy π(· | s)
cost := cost + c(a)
s :∼ succ(s, a)

return cost

Default policy used to simulate run

Role of default policy comparable to role of heuristic

Heuristic value is accumulated cost of simulated run
under default policy



Motivation Default Policy Optimality MAB Summary

Default Policy as Heuristic: Properties

Is a default policy

goal-aware?

⇒ Yes

safe?

⇒ Only for proper policy and dead end free SSP.
Otherwise, no guarantee for termination of computation

admissible?

⇒ Possible for few SSPs (e.g., if optimal policy is
deterministic), but usually not.

consistent?

⇒ Possible for few SSPs (e.g., if optimal policy is
deterministic), but usually not.



Motivation Default Policy Optimality MAB Summary

Default Policy as Heuristic: Properties

Is a default policy

goal-aware? ⇒ Yes

safe?

⇒ Only for proper policy and dead end free SSP.
Otherwise, no guarantee for termination of computation

admissible?

⇒ Possible for few SSPs (e.g., if optimal policy is
deterministic), but usually not.

consistent?

⇒ Possible for few SSPs (e.g., if optimal policy is
deterministic), but usually not.



Motivation Default Policy Optimality MAB Summary

Default Policy as Heuristic: Properties

Is a default policy

goal-aware? ⇒ Yes

safe? ⇒ Only for proper policy and dead end free SSP.
Otherwise, no guarantee for termination of computation

admissible?

⇒ Possible for few SSPs (e.g., if optimal policy is
deterministic), but usually not.

consistent?

⇒ Possible for few SSPs (e.g., if optimal policy is
deterministic), but usually not.



Motivation Default Policy Optimality MAB Summary

Default Policy as Heuristic: Properties

Is a default policy

goal-aware? ⇒ Yes

safe? ⇒ Only for proper policy and dead end free SSP.
Otherwise, no guarantee for termination of computation

admissible? ⇒ Possible for few SSPs (e.g., if optimal policy is
deterministic), but usually not.

consistent?

⇒ Possible for few SSPs (e.g., if optimal policy is
deterministic), but usually not.



Motivation Default Policy Optimality MAB Summary

Default Policy as Heuristic: Properties

Is a default policy

goal-aware? ⇒ Yes

safe? ⇒ Only for proper policy and dead end free SSP.
Otherwise, no guarantee for termination of computation

admissible? ⇒ Possible for few SSPs (e.g., if optimal policy is
deterministic), but usually not.

consistent? ⇒ Possible for few SSPs (e.g., if optimal policy is
deterministic), but usually not.



Motivation Default Policy Optimality MAB Summary

Default Policy Realizations

Early work on MCTS proposed random walk default policy:

π(a | s) =

{
1
|L(s)| if a ∈ L(s)

0 otherwise

Random walks are proper

Poor guidance, and due to high variance even misguidance
⇒ Variant: run multiple random walks and use average

Computation expensive if probability to reach goal is low
⇒ Variant: apply heuristic after finite number of steps

Predominant alternative: domain-dependent solutions
e.g., neural networks of AlphaGo variants



Motivation Default Policy Optimality MAB Summary

Asymptotic Optimality



Motivation Default Policy Optimality MAB Summary

Optimal Search

Optimal heuristic search algorithms AO∗ and RTDP use
greedy policy

with admissible heuristic

and full Bellman backups to guarantee optimality

MCTS uses Monte-Carlo backups

and default policy is not admissible

⇒ MCTS requires different way to guarantee optimality



Motivation Default Policy Optimality MAB Summary

Optimal Search

Optimal heuristic search algorithms AO∗ and RTDP use
greedy policy

with admissible heuristic

and full Bellman backups to guarantee optimality

MCTS uses Monte-Carlo backups

and default policy is not admissible

⇒ MCTS requires different way to guarantee optimality



Motivation Default Policy Optimality MAB Summary

Asymptotic Optimality

Asymptotic Optimality

An MCTS algorithm is asymptotically optimal if Q̂k(c) converges
to the optimal action-value Q?(s(c), a(c)) for all c ∈ succ(d0)
when the number of trials k approaches infinity (k →∞).

Note: this definition does not catch all MCTS configurations that
are asymptotically optimal
(e.g., if all Q̂k(c) converge to ` · Q?(s(c), a(c)) for some ` ∈ R+).



Motivation Default Policy Optimality MAB Summary

Asymptotic Optimality

Asymptotic Optimality

An MCTS algorithm is asymptotically optimal if Q̂k(c) converges
to the optimal action-value Q?(s(c), a(c)) for all c ∈ succ(d0)
when the number of trials k approaches infinity (k →∞).

Note: this definition does not catch all MCTS configurations that
are asymptotically optimal
(e.g., if all Q̂k(c) converge to ` · Q?(s(c), a(c)) for some ` ∈ R+).



Motivation Default Policy Optimality MAB Summary

Asymptotically Optimal Tree Policy

An MCTS algorithm is asymptotically optimal if
1 its tree policy explores forever:

the (infinite) sum of the probabilities that a decision node is
visited must diverge
⇒ every search node is explicated eventually and visited
infinitely often

2 its tree policy is greedy in the limit:

probability that optimal action is selected converges to 1
⇒ in the limit, backups based on iterations where only
an optimal policy is followed dominate suboptimal backups

3 its default policy initializes decision nodes with finite values

⇒ require proper default policy and dead end free SSP



Motivation Default Policy Optimality MAB Summary

Example: Uniform Tree Policy

Example

Consider the random tree policy for decision node d where:

π(a | d) =

{
1

|L(s(d))| if a ∈ L(s(d))

0 otherwise

The random tree policy explores forever:
a decision node at depth h is visited with probability at least
( 1
|L| · p)h, where p := min{s,a,s′|T (s,a,s′)>0} T (s, a, s ′) and hence

k∑
i=1

(
1

|L|
· p)h = k · ( 1

|L|
· p)h →∞ when k →∞



Motivation Default Policy Optimality MAB Summary

Example: Uniform Tree Policy

Example

Consider the random tree policy for decision node d where:

π(a | d) =

{
1

|L(s(d))| if a ∈ L(s(d))

0 otherwise

The random tree policy is not greedy in the limit:
the probability that an optimal action a is selected in node d is

1−
∑

{a′∈L(d(s))|a′ suboptimal}

1

|L(s(d))|
6→ 1 when k →∞.

 Random tree policy not asymptotically optimal



Motivation Default Policy Optimality MAB Summary

Example: Greedy Tree Policy

Example

Consider the greedy tree policy for decision node d where:

π(a | d) =

{
1

|Lk?(d)|
if a ∈ Lk?(d)

0 otherwise,

with Lk?(d) = {a(c) ∈ L(s(d)) | c ∈ arg minc ′∈children(d) Q̂
k(c ′)}.

Greedy tree policy is greedy in the limit

Greedy tree policy does not explore forever

 Greedy tree policy not asymptotically optimal



Motivation Default Policy Optimality MAB Summary

Tree Policy: Objective

To satisfy both requirements, MCTS tree policies have two
contradictory objectives:

explore parts of the search space that have not been
investigated thoroughly

exploit knowledge about good actions to focus search
on promising areas of the search space

central challenge: balance exploration and exploitation

⇒ borrow ideas from related multi-armed bandit problem



Motivation Default Policy Optimality MAB Summary

Multi-armed Bandit Problem



Motivation Default Policy Optimality MAB Summary

Multi-armed Bandit Problem

Most commonly used tree policies are inspired from research
on the multi-armed bandit problem (MAB)

MAB is a learning scenario (model not revealed to agent)

agent repeatedly faces the same decision:
to pull one of several arms of a slot machine

pulling an arm yields stochastic reward
Note: In this section, we consider rewards rather than costs

can be modeled as MDP



Motivation Default Policy Optimality MAB Summary

Multi-armed Bandit Problem

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3 80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

Compute Q?(a) for a ∈ {a1, a2, a3}
Pull arm arg maxa∈{a1,a2,a3}Q?(a) = a3 forever

Expected accumulated reward after k trials is 8 · k



Motivation Default Policy Optimality MAB Summary

Multi-armed Bandit Problem: Planning Scenario

s0

a1 a2 a3
4

3

3 1

8

5.5 2

6

0

6

6 1

6

6 2

0

4 3

8

0

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

Compute Q?(a) for a ∈ {a1, a2, a3}
Pull arm arg maxa∈{a1,a2,a3}Q?(a) = a3 forever

Expected accumulated reward after k trials is 8 · k



Motivation Default Policy Optimality MAB Summary

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3 80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

Pull arms following policy to explore or exploit

Update Q̂ and N based on observations



Motivation Default Policy Optimality MAB Summary

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6

0

6

6 1

6

6 2

0

4 3 8

0

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

Pull arms following policy to explore or exploit

Update Q̂ and N based on observations

Accumulated reward after 1 trial is 3



Motivation Default Policy Optimality MAB Summary

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3 8

0

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

Pull arms following policy to explore or exploit

Update Q̂ and N based on observations

Accumulated reward after 2 trials is 3 + 6 = 9



Motivation Default Policy Optimality MAB Summary

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3 80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

Pull arms following policy to explore or exploit

Update Q̂ and N based on observations

Accumulated reward after 3 trials is 3 + 6 + 0 = 9



Motivation Default Policy Optimality MAB Summary

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3 80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

Pull arms following policy to explore or exploit

Update Q̂ and N based on observations

Accumulated reward after 4 trials is 3 + 6 + 0 + 6 = 15



Motivation Default Policy Optimality MAB Summary

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3

80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

Pull arms following policy to explore or exploit

Update Q̂ and N based on observations

Accumulated reward after 5 trials is 3 + 6 + 0 + 6 + 0 = 15



Motivation Default Policy Optimality MAB Summary

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2

6 0

6

6 1

6

6 2

0

4 3

80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

Pull arms following policy to explore or exploit

Update Q̂ and N based on observations

Accumulated reward after 6 trials is 3 + 6 + 0 + 6 + 0 + 8 = 23



Motivation Default Policy Optimality MAB Summary

Policy Quality

Since model unknown to MAB agent, it cannot achieve
accumulated reward of k ·V? with V? := maxa Q?(a) in k trials

Quality of MAB policy π measured in terms of regret, i.e., the
difference between k · V? and expected reward of π in k trials

Regret cannot grow slower than logarithmic in number of trials



Motivation Default Policy Optimality MAB Summary

Connection between MCTS Tree Policy and MAB

 Blackboard



Motivation Default Policy Optimality MAB Summary

Summary



Motivation Default Policy Optimality MAB Summary

Summary

Default policies simulate run under policy

Default policy not admissible

MCTS requires different idea to achieve optimality than
heuristic search:
tree policy must be greedy in the limit and explore forever

Central challenge of tree policies:
balance exploration and exploitation

Each decision of MCTS tree policy can be viewed as
multi-armed bandit problem


	Motivation
	Default Policy
	Asymptotic Optimality
	Multi-armed Bandit Problem
	Summary

