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Motivation

I Monte-Carlo Tree Search is a framework of algorithms
I Concrete MCTS algorithms are specified in terms of:

I tree policy
I default policy

I For most tasks, a well-suited MCTS configuration exists

I But: for each task, many MCTS configurations ill-suited

I And: every MCTS configuration that works well in one
problem performs poorly in another problem

⇒ no dominating MCTS configuration
⇒ we present and analyze different tree and default policies
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Tree Policy: Recap

I Tree policy used to traverse
explicated tree, starting at root

I Assigns probability distribution
over actions to each decision node

I May access information from
current search tree

I Comparable to evaluation function
in best-first search

I Tree policy more general:
evaluation function determined
upon node generation, while tree
policy dynamic in each trial

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 6 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Motivation

Default Policy: Recap

I Default policy used to simulate
run, starting at recently added
decision node

I Assigns probability distribution
over actions to each state

I Independent from current search
tree

I Same role in MCTS as heuristic in
heuristic search

I Heuristic more general: default
policy is a specific kind of heuristic
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G6.2 Default Policy
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Default Policy

Default Policy for state s of SSP T
cost = 0
while s /∈ S?:

sample action a from default policy π(· | s)
cost := cost + c(a)
s :∼ succ(s, a)

return cost

I Default policy used to simulate run

I Role of default policy comparable to role of heuristic

I Heuristic value is accumulated cost of simulated run
under default policy
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Default Policy as Heuristic: Properties

Is a default policy

I goal-aware? ⇒ Yes

I safe? ⇒ Only for proper policy and dead end free SSP.
Otherwise, no guarantee for termination of computation

I admissible? ⇒ Possible for few SSPs (e.g., if optimal policy is
deterministic), but usually not.

I consistent? ⇒ Possible for few SSPs (e.g., if optimal policy is
deterministic), but usually not.
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Default Policy Realizations

I Early work on MCTS proposed random walk default policy:

π(a | s) =

{
1
|L(s)| if a ∈ L(s)

0 otherwise

I Random walks are proper

I Poor guidance, and due to high variance even misguidance
⇒ Variant: run multiple random walks and use average

I Computation expensive if probability to reach goal is low
⇒ Variant: apply heuristic after finite number of steps

I Predominant alternative: domain-dependent solutions
e.g., neural networks of AlphaGo variants
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G6.3 Asymptotic Optimality
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Optimal Search

I Optimal heuristic search algorithms AO∗ and RTDP use
greedy policy

I with admissible heuristic

I and full Bellman backups to guarantee optimality

I MCTS uses Monte-Carlo backups

I and default policy is not admissible

⇒ MCTS requires different way to guarantee optimality
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Asymptotic Optimality

Asymptotic Optimality

An MCTS algorithm is asymptotically optimal if Q̂k(c) converges
to the optimal action-value Q?(s(c), a(c)) for all c ∈ succ(d0)
when the number of trials k approaches infinity (k →∞).

Note: this definition does not catch all MCTS configurations that
are asymptotically optimal
(e.g., if all Q̂k(c) converge to ` · Q?(s(c), a(c)) for some ` ∈ R+).
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Asymptotically Optimal Tree Policy

An MCTS algorithm is asymptotically optimal if
1 its tree policy explores forever:

I the (infinite) sum of the probabilities that a decision node is
visited must diverge

I ⇒ every search node is explicated eventually and visited
infinitely often

2 its tree policy is greedy in the limit:
I probability that optimal action is selected converges to 1
I ⇒ in the limit, backups based on iterations where only

an optimal policy is followed dominate suboptimal backups

3 its default policy initializes decision nodes with finite values
I ⇒ require proper default policy and dead end free SSP
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Example: Uniform Tree Policy

Example

Consider the random tree policy for decision node d where:

π(a | d) =

{
1

|L(s(d))| if a ∈ L(s(d))

0 otherwise

The random tree policy explores forever:
a decision node at depth h is visited with probability at least
( 1
|L| · p)h, where p := min{s,a,s′|T (s,a,s′)>0} T (s, a, s ′) and hence

k∑
i=1

(
1

|L|
· p)h = k · ( 1

|L|
· p)h →∞ when k →∞
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Example: Uniform Tree Policy

Example

Consider the random tree policy for decision node d where:

π(a | d) =

{
1

|L(s(d))| if a ∈ L(s(d))

0 otherwise

The random tree policy is not greedy in the limit:
the probability that an optimal action a is selected in node d is

1−
∑

{a′∈L(d(s))|a′ suboptimal}

1

|L(s(d))|
6→ 1 when k →∞.

 Random tree policy not asymptotically optimal
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Example: Greedy Tree Policy

Example

Consider the greedy tree policy for decision node d where:

π(a | d) =

{
1

|Lk?(d)|
if a ∈ Lk?(d)

0 otherwise,

with Lk?(d) = {a(c) ∈ L(s(d)) | c ∈ arg minc ′∈children(d) Q̂
k(c ′)}.

I Greedy tree policy is greedy in the limit

I Greedy tree policy does not explore forever

 Greedy tree policy not asymptotically optimal
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Tree Policy: Objective

To satisfy both requirements, MCTS tree policies have two
contradictory objectives:

I explore parts of the search space that have not been
investigated thoroughly

I exploit knowledge about good actions to focus search
on promising areas of the search space

central challenge: balance exploration and exploitation

⇒ borrow ideas from related multi-armed bandit problem
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G6.4 Multi-armed Bandit Problem
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Multi-armed Bandit Problem

I Most commonly used tree policies are inspired from research
on the multi-armed bandit problem (MAB)

I MAB is a learning scenario (model not revealed to agent)

I agent repeatedly faces the same decision:
to pull one of several arms of a slot machine

I pulling an arm yields stochastic reward
Note: In this section, we consider rewards rather than costs

I can be modeled as MDP
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Multi-armed Bandit Problem
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I Compute Q?(a) for a ∈ {a1, a2, a3}
I Pull arm arg maxa∈{a1,a2,a3}Q?(a) = a3 forever

I Expected accumulated reward after k trials is 8 · k
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Multi-armed Bandit Problem: Planning Scenario
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I Compute Q?(a) for a ∈ {a1, a2, a3}
I Pull arm arg maxa∈{a1,a2,a3}Q?(a) = a3 forever

I Expected accumulated reward after k trials is 8 · k
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Multi-armed Bandit Problem: Learning Scenario
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I Pull arms following policy to explore or exploit

I Update Q̂ and N based on observations

I
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Multi-armed Bandit Problem: Learning Scenario
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I Pull arms following policy to explore or exploit

I Update Q̂ and N based on observations

I Accumulated reward after 1 trial is 3
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Multi-armed Bandit Problem: Learning Scenario
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I Pull arms following policy to explore or exploit

I Update Q̂ and N based on observations

I Accumulated reward after 2 trials is 3 + 6 = 9
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Multi-armed Bandit Problem: Learning Scenario
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I Pull arms following policy to explore or exploit

I Update Q̂ and N based on observations

I Accumulated reward after 3 trials is 3 + 6 + 0 = 9
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Multi-armed Bandit Problem: Learning Scenario
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I Pull arms following policy to explore or exploit

I Update Q̂ and N based on observations

I Accumulated reward after 4 trials is 3 + 6 + 0 + 6 = 15
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Multi-armed Bandit Problem: Learning Scenario
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I Pull arms following policy to explore or exploit

I Update Q̂ and N based on observations

I Accumulated reward after 5 trials is 3 + 6 + 0 + 6 + 0 = 15
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Multi-armed Bandit Problem: Learning Scenario
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I Pull arms following policy to explore or exploit

I Update Q̂ and N based on observations

I Accumulated reward after 6 trials is 3 + 6 + 0 + 6 + 0 + 8 = 23
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Policy Quality

I Since model unknown to MAB agent, it cannot achieve
accumulated reward of k ·V? with V? := maxa Q?(a) in k trials

I Quality of MAB policy π measured in terms of regret, i.e., the
difference between k · V? and expected reward of π in k trials

I Regret cannot grow slower than logarithmic in number of trials
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Connection between MCTS Tree Policy and MAB

 Blackboard
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G6.5 Summary
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Summary

I Default policies simulate run under policy

I Default policy not admissible

I MCTS requires different idea to achieve optimality than
heuristic search:
tree policy must be greedy in the limit and explore forever

I Central challenge of tree policies:
balance exploration and exploitation

I Each decision of MCTS tree policy can be viewed as
multi-armed bandit problem
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