Planning and Optimization
G6. Monte-Carlo Tree Search: Algorithms Part |

Gabriele Roger and Thomas Keller

Universitat Basel

December 12, 2018

Planning and Optimization
December 12, 2018 — G6. Monte-Carlo Tree Search: Algorithms Part |

G6.1 Motivation

G6.2 Default Policy

G6.3 Asymptotic Optimality

G6.4 Multi-armed Bandit Problem

G6.5 Summary

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 1/34
Content of this Course
—| Tasks |
Progression/
- Regression
—I Complexity |
—| Heuristics |
Planning

= MDPs |
— Blind Methods |
—I Heuristic Search |

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 3 /34

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 2 /34
G6. Monte-Carlo Tree Search: Algorithms Part | Motivation
G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 4/ 34

G6. Monte-Carlo Tree Search: Algorithms Part | Motivation

Motivation

> Monte-Carlo Tree Search is a framework of algorithms
» Concrete MCTS algorithms are specified in terms of:

> tree policy

» default policy
» For most tasks, a well-suited MCTS configuration exists
» But: for each task, many MCTS configurations ill-suited
» And: every MCTS configuration that works well in one

problem performs poorly in another problem

= no dominating MCTS configuration
= we present and analyze different tree and default policies

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 5/ 34

G6. Monte-Carlo Tree Search: Algorithms Part | Motivation

Tree Policy: Recap

> Tree policy used to traverse
explicated tree, starting at root

> Assigns probability distribution
over actions to each decision node

» May access information from
current search tree

» Comparable to evaluation function
in best-first search

> Tree policy more general:
evaluation function determined
upon node generation, while tree
policy dynamic in each trial

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 6 /34

G6. Monte-Carlo Tree Search: Algorithms Part | Motivation

Default Policy: Recap

» Default policy used to simulate
run, starting at recently added
decision node

> Assigns probability distribution
over actions to each state

» Independent from current search
tree

» Same role in MCTS as heuristic in
heuristic search

» Heuristic more general: default
policy is a specific kind of heuristic

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 7/ 34

G6. Monte-Carlo Tree Search: Algorithms Part | Default Policy

G6.2 Default Policy

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 8 / 34

G6. Monte-Carlo Tree Search: Algorithms Part | Default Policy

Default Policy

Default Policy for state s of SSP T

cost =0

while s ¢ S,
sample action a from default policy 7 (- | s)
cost := cost + ¢(a)
s i~ succ(s, a)

return cost

» Default policy used to simulate run
> Role of default policy comparable to role of heuristic

» Heuristic value is accumulated cost of simulated run
under default policy

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 9 /34

G6. Monte-Carlo Tree Search: Algorithms Part | Default Policy

Default Policy as Heuristic: Properties

Is a default policy
> goal-aware? = Yes

» safe? = Only for proper policy and dead end free SSP.
Otherwise, no guarantee for termination of computation

» admissible? = Possible for few SSPs (e.g., if optimal policy is
deterministic), but usually not.

» consistent? = Possible for few SSPs (e.g., if optimal policy is
deterministic), but usually not.

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 10 / 34

G6. Monte-Carlo Tree Search: Algorithms Part | Default Policy

Default Policy Realizations

» Early work on MCTS proposed random walk default policy:
1 .
r(als) = ey fae L(s)
0 otherwise

v

Random walks are proper

v

Poor guidance, and due to high variance even misguidance
= Variant: run multiple random walks and use average

» Computation expensive if probability to reach goal is low
=- Variant: apply heuristic after finite number of steps

v

Predominant alternative: domain-dependent solutions
e.g., neural networks of AlphaGo variants

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 11 / 34

G6. Monte-Carlo Tree Search: Algorithms Part | Asymptotic Optimality

G6.3 Asymptotic Optimality

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 12 / 34

G6. Monte-Carlo Tree Search: Algorithms Part | Asymptotic Optimality

Optimal Search

» Optimal heuristic search algorithms AO* and RTDP use
greedy policy

» with admissible heuristic
» and full Bellman backups to guarantee optimality
» MCTS uses Monte-Carlo backups

» and default policy is not admissible

= MCTS requires different way to guarantee optimality

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 13 / 34

G6. Monte-Carlo Tree Search: Algorithms Part |

Asymptotic Optimality

Asymptotic Optimality
An MCTS algorithm is asymptotically optimal if Qk(c) converges

to the optimal action-value Q. (s(c), a(c)) for all ¢ € succ(dp)
when the number of trials k approaches infinity (k — 00).

Note: this definition does not catch all MCTS configurations that
are asymptotically optimal

(e.g., if all Q¥(c) converge to £- Q.(s(c), a(c)) for some £ € RY).

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018

Asymptotic Optimality

14 / 34

G6. Monte-Carlo Tree Search: Algorithms Part | Asymptotic Optimality

Asymptotically Optimal Tree Policy

An MCTS algorithm is asymptotically optimal if
© its tree policy explores forever:

» the (infinite) sum of the probabilities that a decision node is
visited must diverge

» = every search node is explicated eventually and visited
infinitely often

@ its tree policy is greedy in the limit:
» probability that optimal action is selected converges to 1
» =>in the limit, backups based on iterations where only
an optimal policy is followed dominate suboptimal backups

© its default policy initializes decision nodes with finite values
» = require proper default policy and dead end free SSP

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 15 / 34

G6. Monte-Carlo Tree Search: Algorithms Part |

Example: Uniform Tree Policy

Example
Consider the random tree policy for decision node d where:

r(a]d)— {u(s%dm if a € L(s(d))

0 otherwise

The random tree policy explores forever:

a decision node at depth h is visited with probability at least

(ﬁ -B)h, where p 1= ming, , |7 (s,a,5)>0} T(s,a,s’) and hence

1 1
Z(W.B)h:k-(m-g)h—)oowhen k — oo

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018

Asymptotic Optimality

16 / 34

G6. Monte-Carlo Tree Search: Algorithms Part | Asymptotic Optimality

Example: Uniform Tree Policy

Example
Consider the random tree policy for decision node d where:

1 .
r(a|d) = Te@ fa€Ls(d)
0 otherwise

The random tree policy is not greedy in the limit:
the probability that an optimal action a is selected in node d is

1
1-— Z mﬁlwhenk—)oo.

{a’eL(d(s))|a’ suboptimal}

~~ Random tree policy not asymptotically optimal

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 17 / 34

G6. Monte-Carlo Tree Search: Algorithms Part | Asymptotic Optimality

Example: Greedy Tree Policy

Example
Consider the greedy tree policy for decision node d where:

1 . k
n(a | d) = {)] ifacLid)
0 otherwise,

with LX(d) = {a(c) € L(s(d)) | ¢ € arg mincepierents) Q“(c')}-
> Greedy tree policy is greedy in the limit
> Greedy tree policy does not explore forever

~ Greedy tree policy not asymptotically optimal

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 18 / 34

G6. Monte-Carlo Tree Search: Algorithms Part | Asymptotic Optimality

Tree Policy: Objective

To satisfy both requirements, MCTS tree policies have two
contradictory objectives:

> explore parts of the search space that have not been
investigated thoroughly

» exploit knowledge about good actions to focus search
on promising areas of the search space

central challenge: balance exploration and exploitation

= borrow ideas from related multi-armed bandit problem

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 19 / 34

G6. Monte-Carlo Tree Search: Algorithms Part | Multi-armed Bandit Problem

G6.4 Multi-armed Bandit Problem

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 20 / 34

G6. Monte-Carlo Tree Search: Algorithms Part | Multi-armed Bandit Problem

Multi-armed Bandit Problem

> Most commonly used tree policies are inspired from research
on the multi-armed bandit problem (MAB)
» MAB is a learning scenario (model not revealed to agent)

> agent repeatedly faces the same decision:
to pull one of several arms of a slot machine

» pulling an arm yields stochastic reward
Note: In this section, we consider rewards rather than costs

» can be modeled as MDP

December 12, 2018 21 / 34

G. Roger, T. Keller (Universitat Basel) Planning and Optimization

G6. Monte-Carlo Tree Search: Algorithms Part |

Multi-armed Bandit Problem

December 12, 2018

G. Roger, T. Keller (Universitat Basel) Planning and Optimization

Multi-armed Bandit Problem

22 / 34

G6. Monte-Carlo Tree Search: Algorithms Part | Multi-armed Bandit Problem

Multi-armed Bandit Problem: Planning Scenario

2 .8 @%6
OO

» Compute Q.(a) for a € {a1, a2, a3}
> Pull arm arg max,e,, 4, 2, Qx(a) = a3 forever
» Expected accumulated reward after k trials is 8 - k

December 12, 2018 23 / 34

G. Roger, T. Keller (Universitat Basel) Planning and Optimization

G6. Monte-Carlo Tree Search: Algorithms Part |

Multi-armed Bandit Problem: Learning Scenario

> Pull arms following policy to explore or exploit
» Update Q and N based on observations

>

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018

Multi-armed Bandit Problem

24 / 34

G6. Monte-Carlo Tree Search: Algorithms Part | Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

» Pull arms following policy to explore or exploit
» Update Q and N based on observations

» Accumulated reward after 1 trial is 3

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 25 / 34

G6. Monte-Carlo Tree Search: Algorithms Part | Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

> Pull arms following policy to explore or exploit
» Update @ and N based on observations
» Accumulated reward after 2 trials is 34+6 =9

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 26 / 34

G6. Monte-Carlo Tree Search: Algorithms Part | Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

> Pull arms following policy to explore or exploit
» Update @ and N based on observations
» Accumulated reward after 3 trials is3+6+0=9

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 27 / 34

G6. Monte-Carlo Tree Search: Algorithms Part | Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

> Pull arms following policy to explore or exploit
» Update @ and N based on observations
» Accumulated reward after 4 trialsis 3+6+0+6 =15

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018 28 / 34

G6. Monte-Carlo Tree Search: Algorithms Part |

Multi-armed Bandit Problem: Learning Scenario

> Pull arms following policy to explore or exploit
» Update Q and N based on observations

» Accumulated reward after 5 trialsis3+6+0+6-+0=15

G. Roger, T. Keller (Universitat Basel) Planning and Optimization

December 12, 2018 29 /

Multi-armed Bandit Problem

34

G6. Monte-Carlo Tree Search: Algorithms Part |

Multi-armed Bandit Problem: Learning Scenario

> Pull arms following policy to explore or exploit
» Update @ and N based on observations

» Accumulated reward after 6 trialsis 3+6+0+6-+0+8 =23

G. Roger, T. Keller (Universitat Basel) Planning and Optimization

December 12, 2018 30 /

Multi-armed Bandit Problem

34

G6. Monte-Carlo Tree Search: Algorithms Part |

Policy Quality

» Since model unknown to MAB agent, it cannot achieve
accumulated reward of k- V, with V, := max, Q,(a) in k trials

» Quality of MAB policy m measured in terms of regret, i.e., the
difference between k - V, and expected reward of 7 in k trials

> Regret cannot grow slower than logarithmic in number of trials

G. Roger, T. Keller (Universitat Basel) Planning and Optimization

December 12, 2018 31/

Multi-armed Bandit Problem

G6. Monte-Carlo Tree Search: Algorithms Part |

Connection between MCTS Tree Policy and MAB

~~ Blackboard

G. Roger, T. Keller (Universitat Basel) Planning and Optimization

December 12, 2018 32/

Multi-armed Bandit Problem

G6. Monte-Carlo Tree Search: Algorithms Part |

G6.5 Summary

G. Roger, T. Keller (Universitat Basel)

Planning and Optimization

December 12, 2018

Summary

33/

G6. Monte-Carlo Tree Search: Algorithms Part |

Summary

» Default policies simulate run under policy
» Default policy not admissible

» MCTS requires different idea to achieve optimality than
heuristic search:
tree policy must be greedy in the limit and explore forever

> Central challenge of tree policies:
balance exploration and exploitation

» Each decision of MCTS tree policy can be viewed as
multi-armed bandit problem

G. Roger, T. Keller (Universitat Basel) Planning and Optimization December 12, 2018

Summary

34 / 34

	Motivation
	Default Policy
	Asymptotic Optimality
	Multi-armed Bandit Problem
	Summary

