
Planning and Optimization
G6. Monte-Carlo Tree Search: Algorithms Part I

Gabriele Röger and Thomas Keller

Universität Basel

December 12, 2018

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 1 / 34

Planning and Optimization
December 12, 2018 — G6. Monte-Carlo Tree Search: Algorithms Part I

G6.1 Motivation

G6.2 Default Policy

G6.3 Asymptotic Optimality

G6.4 Multi-armed Bandit Problem

G6.5 Summary

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 2 / 34

Content of this Course

Planning

Classical

Tasks

Progression/
Regression

Complexity

Heuristics

Probabilistic

MDPs

Blind Methods

Heuristic Search

Monte-Carlo
Methods

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 3 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Motivation

G6.1 Motivation

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 4 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Motivation

Motivation

I Monte-Carlo Tree Search is a framework of algorithms
I Concrete MCTS algorithms are specified in terms of:

I tree policy
I default policy

I For most tasks, a well-suited MCTS configuration exists

I But: for each task, many MCTS configurations ill-suited

I And: every MCTS configuration that works well in one
problem performs poorly in another problem

⇒ no dominating MCTS configuration
⇒ we present and analyze different tree and default policies

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 5 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Motivation

Tree Policy: Recap

I Tree policy used to traverse
explicated tree, starting at root

I Assigns probability distribution
over actions to each decision node

I May access information from
current search tree

I Comparable to evaluation function
in best-first search

I Tree policy more general:
evaluation function determined
upon node generation, while tree
policy dynamic in each trial

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 6 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Motivation

Default Policy: Recap

I Default policy used to simulate
run, starting at recently added
decision node

I Assigns probability distribution
over actions to each state

I Independent from current search
tree

I Same role in MCTS as heuristic in
heuristic search

I Heuristic more general: default
policy is a specific kind of heuristic

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 7 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Default Policy

G6.2 Default Policy

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 8 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Default Policy

Default Policy

Default Policy for state s of SSP T
cost = 0
while s /∈ S?:

sample action a from default policy π(· | s)
cost := cost + c(a)
s :∼ succ(s, a)

return cost

I Default policy used to simulate run

I Role of default policy comparable to role of heuristic

I Heuristic value is accumulated cost of simulated run
under default policy

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 9 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Default Policy

Default Policy as Heuristic: Properties

Is a default policy

I goal-aware? ⇒ Yes

I safe? ⇒ Only for proper policy and dead end free SSP.
Otherwise, no guarantee for termination of computation

I admissible? ⇒ Possible for few SSPs (e.g., if optimal policy is
deterministic), but usually not.

I consistent? ⇒ Possible for few SSPs (e.g., if optimal policy is
deterministic), but usually not.

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 10 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Default Policy

Default Policy Realizations

I Early work on MCTS proposed random walk default policy:

π(a | s) =

{
1
|L(s)| if a ∈ L(s)

0 otherwise

I Random walks are proper

I Poor guidance, and due to high variance even misguidance
⇒ Variant: run multiple random walks and use average

I Computation expensive if probability to reach goal is low
⇒ Variant: apply heuristic after finite number of steps

I Predominant alternative: domain-dependent solutions
e.g., neural networks of AlphaGo variants

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 11 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Asymptotic Optimality

G6.3 Asymptotic Optimality

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 12 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Asymptotic Optimality

Optimal Search

I Optimal heuristic search algorithms AO∗ and RTDP use
greedy policy

I with admissible heuristic

I and full Bellman backups to guarantee optimality

I MCTS uses Monte-Carlo backups

I and default policy is not admissible

⇒ MCTS requires different way to guarantee optimality

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 13 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Asymptotic Optimality

Asymptotic Optimality

Asymptotic Optimality

An MCTS algorithm is asymptotically optimal if Q̂k(c) converges
to the optimal action-value Q?(s(c), a(c)) for all c ∈ succ(d0)
when the number of trials k approaches infinity (k →∞).

Note: this definition does not catch all MCTS configurations that
are asymptotically optimal
(e.g., if all Q̂k(c) converge to ` · Q?(s(c), a(c)) for some ` ∈ R+).

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 14 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Asymptotic Optimality

Asymptotically Optimal Tree Policy

An MCTS algorithm is asymptotically optimal if
1 its tree policy explores forever:

I the (infinite) sum of the probabilities that a decision node is
visited must diverge

I ⇒ every search node is explicated eventually and visited
infinitely often

2 its tree policy is greedy in the limit:
I probability that optimal action is selected converges to 1
I ⇒ in the limit, backups based on iterations where only

an optimal policy is followed dominate suboptimal backups

3 its default policy initializes decision nodes with finite values
I ⇒ require proper default policy and dead end free SSP

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 15 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Asymptotic Optimality

Example: Uniform Tree Policy

Example

Consider the random tree policy for decision node d where:

π(a | d) =

{
1

|L(s(d))| if a ∈ L(s(d))

0 otherwise

The random tree policy explores forever:
a decision node at depth h is visited with probability at least
(1
|L| · p)h, where p := min{s,a,s′|T (s,a,s′)>0} T (s, a, s ′) and hence

k∑
i=1

(
1

|L|
· p)h = k · (1

|L|
· p)h →∞ when k →∞

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 16 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Asymptotic Optimality

Example: Uniform Tree Policy

Example

Consider the random tree policy for decision node d where:

π(a | d) =

{
1

|L(s(d))| if a ∈ L(s(d))

0 otherwise

The random tree policy is not greedy in the limit:
the probability that an optimal action a is selected in node d is

1−
∑

{a′∈L(d(s))|a′ suboptimal}

1

|L(s(d))|
6→ 1 when k →∞.

 Random tree policy not asymptotically optimal

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 17 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Asymptotic Optimality

Example: Greedy Tree Policy

Example

Consider the greedy tree policy for decision node d where:

π(a | d) =

{
1

|Lk?(d)|
if a ∈ Lk?(d)

0 otherwise,

with Lk?(d) = {a(c) ∈ L(s(d)) | c ∈ arg minc ′∈children(d) Q̂
k(c ′)}.

I Greedy tree policy is greedy in the limit

I Greedy tree policy does not explore forever

 Greedy tree policy not asymptotically optimal

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 18 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Asymptotic Optimality

Tree Policy: Objective

To satisfy both requirements, MCTS tree policies have two
contradictory objectives:

I explore parts of the search space that have not been
investigated thoroughly

I exploit knowledge about good actions to focus search
on promising areas of the search space

central challenge: balance exploration and exploitation

⇒ borrow ideas from related multi-armed bandit problem

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 19 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Multi-armed Bandit Problem

G6.4 Multi-armed Bandit Problem

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 20 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Multi-armed Bandit Problem

Multi-armed Bandit Problem

I Most commonly used tree policies are inspired from research
on the multi-armed bandit problem (MAB)

I MAB is a learning scenario (model not revealed to agent)

I agent repeatedly faces the same decision:
to pull one of several arms of a slot machine

I pulling an arm yields stochastic reward
Note: In this section, we consider rewards rather than costs

I can be modeled as MDP

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 21 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Multi-armed Bandit Problem

Multi-armed Bandit Problem

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3 80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

I Compute Q?(a) for a ∈ {a1, a2, a3}
I Pull arm arg maxa∈{a1,a2,a3}Q?(a) = a3 forever

I Expected accumulated reward after k trials is 8 · k

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 22 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Multi-armed Bandit Problem

Multi-armed Bandit Problem: Planning Scenario

s0

a1 a2 a3
4

3

3 1

8

5.5 2

6

0

6

6 1

6

6 2

0

4 3

8

0

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

I Compute Q?(a) for a ∈ {a1, a2, a3}
I Pull arm arg maxa∈{a1,a2,a3}Q?(a) = a3 forever

I Expected accumulated reward after k trials is 8 · k

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 23 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3 80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

I Pull arms following policy to explore or exploit

I Update Q̂ and N based on observations

I

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 24 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6

0

6

6 1

6

6 2

0

4 3 8

0

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

I Pull arms following policy to explore or exploit

I Update Q̂ and N based on observations

I Accumulated reward after 1 trial is 3

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 25 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3 8

0

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

I Pull arms following policy to explore or exploit

I Update Q̂ and N based on observations

I Accumulated reward after 2 trials is 3 + 6 = 9

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 26 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3 80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

I Pull arms following policy to explore or exploit

I Update Q̂ and N based on observations

I Accumulated reward after 3 trials is 3 + 6 + 0 = 9

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 27 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3 80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

I Pull arms following policy to explore or exploit

I Update Q̂ and N based on observations

I Accumulated reward after 4 trials is 3 + 6 + 0 + 6 = 15

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 28 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3

80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

I Pull arms following policy to explore or exploit

I Update Q̂ and N based on observations

I Accumulated reward after 5 trials is 3 + 6 + 0 + 6 + 0 = 15

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 29 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2

6 0

6

6 1

6

6 2

0

4 3

80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

I Pull arms following policy to explore or exploit

I Update Q̂ and N based on observations

I Accumulated reward after 6 trials is 3 + 6 + 0 + 6 + 0 + 8 = 23

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 30 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Multi-armed Bandit Problem

Policy Quality

I Since model unknown to MAB agent, it cannot achieve
accumulated reward of k ·V? with V? := maxa Q?(a) in k trials

I Quality of MAB policy π measured in terms of regret, i.e., the
difference between k · V? and expected reward of π in k trials

I Regret cannot grow slower than logarithmic in number of trials

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 31 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Multi-armed Bandit Problem

Connection between MCTS Tree Policy and MAB

 Blackboard

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 32 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Summary

G6.5 Summary

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 33 / 34

G6. Monte-Carlo Tree Search: Algorithms Part I Summary

Summary

I Default policies simulate run under policy

I Default policy not admissible

I MCTS requires different idea to achieve optimality than
heuristic search:
tree policy must be greedy in the limit and explore forever

I Central challenge of tree policies:
balance exploration and exploitation

I Each decision of MCTS tree policy can be viewed as
multi-armed bandit problem

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 12, 2018 34 / 34

	Motivation
	Default Policy
	Asymptotic Optimality
	Multi-armed Bandit Problem
	Summary

