

Planning and Optimization

G4. Asymptotically Suboptimal Monte-Carlo Methods

Gabriele Röger and Thomas Keller

Universität Basel

December 5, 2018

Planning and Optimization

December 5, 2018 — G4. Asymptotically Suboptimal Monte-Carlo Methods

G4.1 Motivation

G4.2 Monte-Carlo Methods

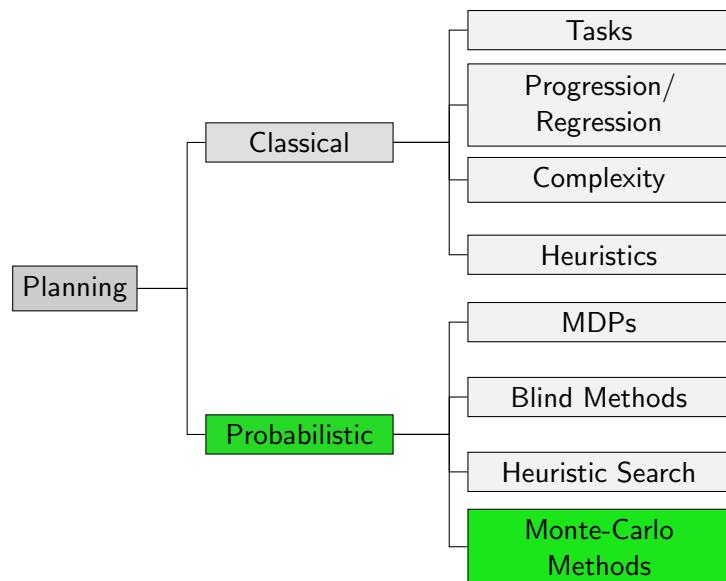
G4.3 Hindsight Optimization

G4.4 Policy Simulation

G4.5 Sparse Sampling

G4.6 Summary

Content of this Course



G4.1 Motivation

Monte-Carlo Methods: Brief History

- ▶ 1930s: first researchers experiment with Monte-Carlo methods
- ▶ 1998: Ginsberg's GIB player competes with Bridge experts
- ▶ 2002: Kearns et al. propose Sparse Sampling
- ▶ 2002: Auer et al. present UCB1 action selection for multi-armed bandits
- ▶ 2006: Coulom coins term Monte-Carlo Tree Search (MCTS)
- ▶ 2006: Kocsis and Szepesvári combine UCB1 and MCTS to the famous MCTS variant, UCT
- ▶ 2007–2016: Constant progress of MCTS in Go culminates in AlphaGo's historical defeat of dan 9 player Lee Sedol

G4.2 Monte-Carlo Methods

Monte-Carlo Methods: Idea

- ▶ Summarize a broad family of algorithms
- ▶ Decisions are based on random samples (Monte-Carlo sampling)
- ▶ Results of samples are aggregated by computing the average (Monte-Carlo backups)
- ▶ Apart from that, algorithms can differ significantly

Careful: Many different definitions of MC methods in the literature

Monte-Carlo Backups

- ▶ Algorithms presented so far used full Bellman backups to update state-value estimates:

$$\hat{V}^{i+1}(s) := \min_{\ell \in L(s)} c(\ell) + \sum_{s' \in S} T(s, \ell, s') \cdot \hat{V}^i(s')$$

- ▶ Monte-Carlo methods use Monte-Carlo backups instead:

$$\hat{V}^i(s) := \frac{1}{N(s)} \cdot \sum_{k=1}^i C_k(s), \text{ where}$$

- ▶ $N(s) \leq k$ is a counter for the number of state-value estimates for state s in first k algorithm iterations and
- ▶ $C_k(s)$ is cost of k -th iteration for state s (assume $C_i(s) = 0$ for iterations without estimate for s)

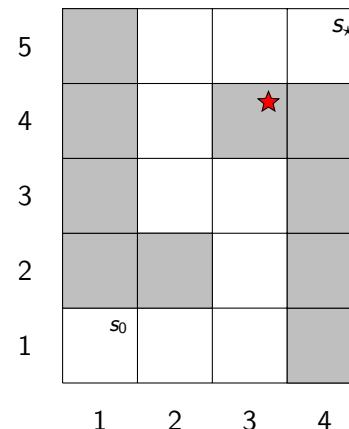
Advantage: no need to know SSP model, a simulator that samples successor states and reward is sufficient

G4.3 Hindsight Optimization

Hindsight Optimization: Idea

- ▶ Perform **samples** as long as **resources** (deliberation time, memory) allow
- ▶ **Sample** outcomes of all actions
⇒ deterministic (classical) planning problem
- ▶ For each applicable action $\ell \in L(s_0)$, compute **plan** in the sample that starts with ℓ
- ▶ Execute the action with the **lowest average plan cost**

Hindsight Optimization: Example



- ▶ cost of 1 for all actions except for moving away from (3,4) where cost is 3
- ▶ get stuck when moving away from gray cells with prob. 0.6

Hindsight Optimization: Example

5	3	1	1	0
4	2	1	6	5
3	1	1	1	4
2	1	2	1	1
1	1	1	1	1

1 2 3 4

1st sample

- ▶ Samples can be described by **number of times** agent is **stuck**
- ▶ Multiplication with cost to move away from cell gives **cost of leaving cell in sample**

Hindsight Optimization: Example

5	2	1	s_*
5	3	7	5
5	4	5	9
6	6	6	7
s_0	7	7	8
1	2	3	4

 $C_1(s)$

- Samples can be described by **number of times** agent is **stuck**
- Multiplication with cost to move away from cell gives **cost of leaving cell in sample**

Hindsight Optimization: Example

5	1	1	s_*
6	1	6	1
5	1	1	5
3	4	1	1
s_0	1	1	1
1	2	3	4

2nd sample

- Samples can be described by **number of times** agent is **stuck**
- Multiplication with cost to move away from cell gives **cost of leaving cell in sample**

Hindsight Optimization: Example

5	\Rightarrow	\Rightarrow	s_*
5	\uparrow	7	5
\Rightarrow	\uparrow	5	9
\uparrow	6	6	7
\uparrow	7	7	8
1	2	3	4

 $\hat{V}^1(s)$

- Samples can be described by **number of times** agent is **stuck**
- Multiplication with cost to move away from cell gives **cost of leaving cell in sample**

Hindsight Optimization: Example

5	2	1	s_*
9	3	7	1
9	4	5	6
11	8	6	7
s_0	9	8	7
1	2	3	4

Hindsight Optimization: Example

5	2	1	s_*
9	3	7	1
9	4	5	6
11	8	6	7
s_0	9	8	7
1	2	3	4

 $C_2(s)$

- Samples can be described by **number of times** agent is **stuck**
- Multiplication with cost to move away from cell gives **cost of leaving cell in sample**

Hindsight Optimization: Example

5	4	\Rightarrow 2	\Rightarrow 1	s_* 0
4	7	\uparrow 3	7	\star 3
3	7	\uparrow 4	5	7.5
2	8.5	\uparrow 7	6	7
1	\Rightarrow 8	\uparrow 7.5	7	8
	1	2	3	4

 $\hat{V}^2(s)$

- Samples can be described by **number of times** agent is **stuck**
- Multiplication with cost to move away from cell gives **cost of leaving cell in sample**

Hindsight Optimization: Example

5	4.55	\Rightarrow 2.0	\Rightarrow 1.0	s_* 0
4	5.43	\uparrow 3.0	8.50	2.40
3	6.57	\uparrow 4.0	\Leftarrow 4.51	4.99
2	8.22	6.69	\uparrow 5.51	7.16
1	\Rightarrow 7.69	\Rightarrow 6.89	\uparrow 6.51	8.48
	1	2	3	4

 $\hat{V}^{100}(s)$

- Samples can be described by **number of times** agent is **stuck**
- Multiplication with cost to move away from cell gives **cost of leaving cell in sample**

Hindsight Optimization: Example

5	4.0	\Rightarrow 2.0	\Rightarrow 1.0	s_* 0
4	6.3	\uparrow 3.0	8.8	1.8
3	6.5	\uparrow 4.0	4.3	4.7
2	7.0	\uparrow 5.6	5.3	7.2
1	\Rightarrow 7.2	\uparrow 6.3	6.3	8.3
	1	2	3	4

 $\hat{V}^{10}(s)$

- Samples can be described by **number of times** agent is **stuck**
- Multiplication with cost to move away from cell gives **cost of leaving cell in sample**

Hindsight Optimization: Example

5	4.55	\Rightarrow 2.0	\Rightarrow 1.0	s_* 0
4	5.43	\uparrow 3.0	8.50	2.40
3	6.57	\uparrow 4.0	\Leftarrow 4.51	4.99
2	8.22	6.69	\uparrow 5.51	7.16
1	\Rightarrow 7.69	\Rightarrow 6.89	\uparrow 6.51	8.48
	1	2	3	4

 $\hat{V}^{100}(s)$

- Samples can be described by **number of times** agent is **stuck**
- Multiplication with cost to move away from cell gives **cost of leaving cell in sample**

Hindsight Optimization: Example

5	4.58	\Rightarrow 2.0	\Rightarrow 1.0	s_* 0
4	5.56	\uparrow 3.0	8.33	2.44
3	6.54	\uparrow 4.0	4.49	4.84
2	7.88	\uparrow 6.48	5.49	6.80
1	\Rightarrow 7.60	\uparrow 6.75	6.49	8.44
	1	2	3	4

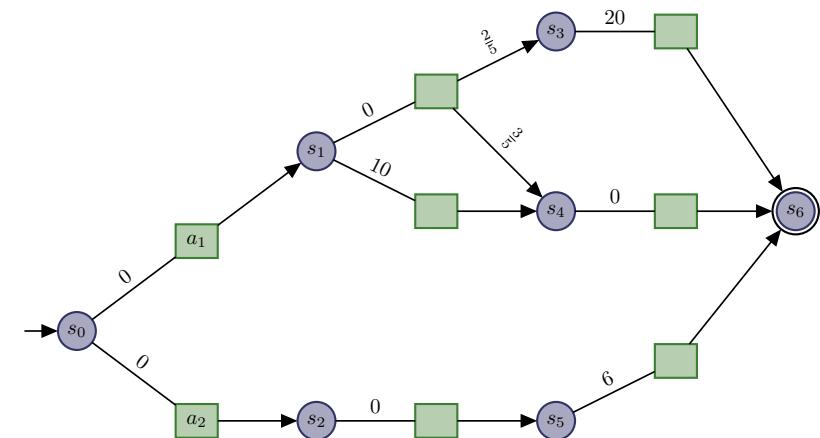
 $\hat{V}^{1000}(s)$

- Samples can be described by **number of times** agent is **stuck**
- Multiplication with cost to move away from cell gives **cost of leaving cell in sample**

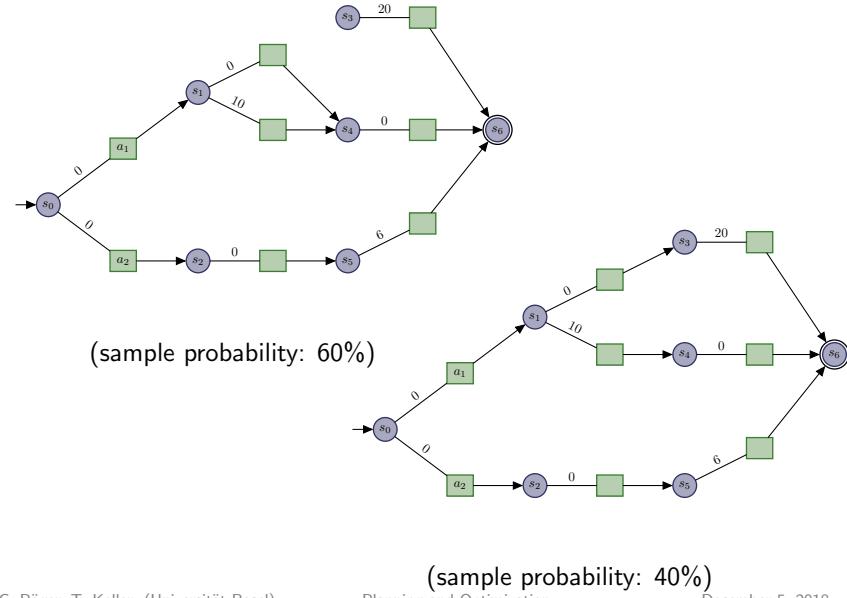
Hindsight Optimization: Evaluation

- ▶ HOP **well-suited** for some problems
- ▶ must be possible to **solve** sampled MDP **efficiently**:
 - ▶ domain-dependent knowledge (e.g., games like Bridge, Skat)
 - ▶ classical planner (FF-Hindsight, Yoon et. al, 2008)
- ▶ What about optimality **in the limit**?

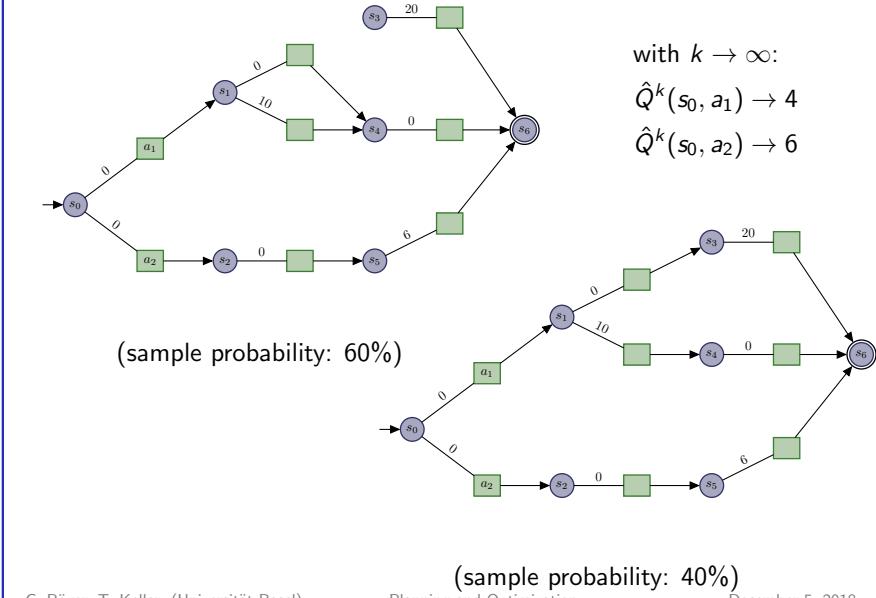
Hindsight Optimization: Optimality in the Limit



Hindsight Optimization: Optimality in the Limit



Hindsight Optimization: Optimality in the Limit



Hindsight Optimization: Evaluation

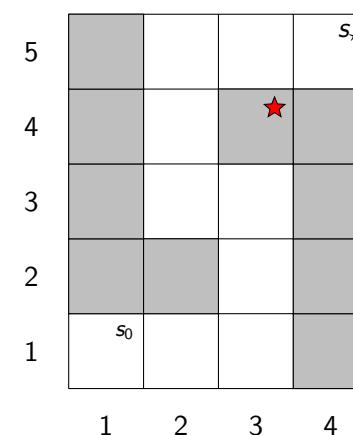
- ▶ HOP well-suited for some problems
- ▶ must be possible to solve sampled MDP efficiently:
 - ▶ domain-dependent knowledge (e.g., games like Bridge, Skat)
 - ▶ classical planner (FF-Hindsight, Yoon et. al, 2008)
- ▶ What about optimality in the limit?
⇒ in general not optimal due to assumption of clairvoyance

G4.4 Policy Simulation

Policy Simulation: Ideas

- ▶ Avoid clairvoyance by **separation** of **computation** of policy and its **evaluation**:
- ▶ Perform **samples** as long as **resources** (deliberation time, memory) allow:
 - ▶ **Sample** outcomes of all actions
⇒ deterministic (classical) planning problem
 - ▶ **Compute policy** by solving the sample
 - ▶ **Simulate** the policy
- ▶ Execute the action with the **lowest average simulation cost**

Policy Simulation: Example



Policy Simulation: Example

	3	1	1	s_*
5				
4	2	1	6	5
3	1	1	1	4
2	1	2	1	1
1	s_0	1	1	1
	1	2	3	4

1st sample

Policy Simulation: Example

	3	2	1	s_*
5				
4	6	3	13	3
3	5	4	5	8
2	7	7	6	9
1	s_0	9	6	11
	1	2	3	4

 $C_1(s)$

Policy Simulation: Example

	\Rightarrow 2	\Rightarrow 1	s_*	
5				
4	6	\uparrow 3	13	3
3	5	\uparrow 4	5	8
2	7	\uparrow 7	6	9
1	\Rightarrow 9	\uparrow 6	7	11
	1	2	3	4

 $\hat{V}^1(s)$

Policy Simulation: Example

	\Rightarrow 2.0	\Rightarrow 1.0	s_*	
5				
4	5.5	\uparrow 3.0	8.2	2.2
3	7.6	\uparrow 4.0	5.0	5.4
2	9.0	\uparrow 6.8	6.0	8.8
1	\Rightarrow 9.3	\uparrow 6.9	7.0	11.4
	1	2	3	4

 $\hat{V}^{10}(s)$

Policy Simulation: Example

	5	4	3	2	1	s_*
5	4.55	\Rightarrow 2.0	\Rightarrow 1.0			0
4	5.54	\uparrow 3.0	8.42			2.37
3	6.52	\uparrow 4.0	5.0	5.13		
2	9.2	\uparrow 6.69	6.0	8.43		
1	\Rightarrow 10.06	\uparrow 7.63	7.0	10.66		

 $\hat{V}^{100}(s)$

1 2 3 4

Policy Simulation: Example

	5	4	3	2	1	s_*
5	4.53	\Rightarrow 2.0	\Rightarrow 1.0			0
4	5.46	\uparrow 3.0	8.24			2.53
3	6.52	\uparrow 4.0	5.0	5.11		
2	8.99	\uparrow 6.42	6.0	8.56		
1	\Rightarrow 10.11	\uparrow 7.78	7.0	11.09		

 $\hat{V}^{1000}(s)$

1 2 3 4

Policy Simulation: Evaluation

- Base policy is **static**
- No mechanism to **overcome** weaknesses of base policy (if there are no weaknesses, we don't need policy simulation)
- Suboptimal decisions** in simulation affect policy quality
- What about optimality **in the limit**?
⇒ in general not optimal

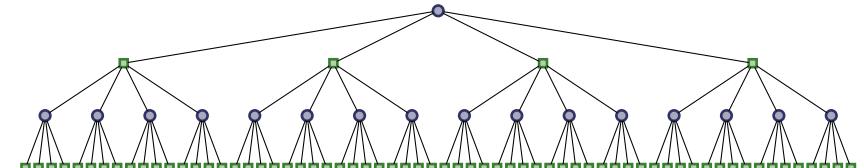
G4.5 Sparse Sampling

Sparse Sampling: Idea

- ▶ Proposed by Kearns et al. (2002)
- ▶ Creates **search tree** up to a given **lookahead horizon**
- ▶ A constant number of outcomes is **sampling** for each state-action pair
- ▶ Outcomes that were not sampled are **ignored**
- ▶ **Near-optimal**: expected cost of resulting policy close to expected cost of optimal policy
- ▶ Runtime **independent** from the number of states

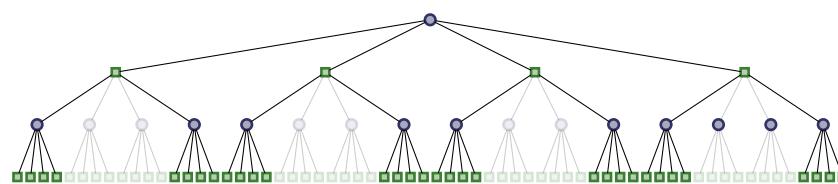
Sparse Sampling: Search Tree

Without Sparse Sampling



Sparse Sampling: Search Tree

With Sparse Sampling



Sparse Sampling: Problems

- ▶ Independent from number of states, but still **exponential in lookahead horizon**
- ▶ Constants that give number of outcomes and lookahead horizon **large** for good bounds on **near-optimality**
- ▶ Search time difficult to predict
- ▶ Search tree is **symmetric**
⇒ resources are **wasted** in non-promising parts of the tree

G4.6 Summary

Summary

- ▶ Monte-Carlo methods have a long history, but no successful applications until 1990s
- ▶ Monte-Carlo methods use **sampling** and **backups** that average over sample results
- ▶ **Hindsight optimization** uses plan cost in (deterministic) samples
- ▶ **Policy simulation** simulates the execution of a policy
- ▶ **Sparse sampling** considers only a fixed amount of outcomes
- ▶ All three methods are **not optimal** in the limit