Planning and Optimization

G3. Heuristic Search: Real-Time Dynamic Programming

Gabriele Roger and Thomas Keller

Universitat Basel

December 5, 2018

Content of this Course

—{ Tasks ‘

Progression/

. Regression
Classical

~{ Complexity ‘

—{ Heuristics ‘

lning]— } ‘
MDPs

— Blind Methods |

Monte-Carlo
Methods

Motivation
®0

Motivation

Motivation

oe

Motivation

m AO* and LAO™ find optimal solution without considering all
states

m Value iteration has to repeatedly backup all states

m But VI computes complete policy, while AO* and
LAO* compute executable policy for a given initial state

m And AO* and LAO* require admissible heuristic for guidance

= Is this also possible for a VI-like algorithm if we provide it with
admissible heuristic and accept executable policy as result?

Asynchronous VI
[e]ele]e]

Asynchronous VI

Motivation Asynchronous VI TDP 3 D Summar

0@e000

Asynchronous Value lteration

Updating all states simultaneously is called
synchronous backup

m Asynchronous VI performs backups for individual states
m Different approaches lead to different backup orders

m Can significantly reduce computation
[

Guaranteed to converge if all states are selected repeatedly

= Optimal VI with asynchronous backups possible

Asynchronous VI
00000

Example: Asynchronous Value Iteration

5 >

4.49 2.0 1.0 0.0
A *

5.49 3.0 8.49 | 2.49
3

6.49 4.0 5.0 4.08
2

8.98 | 6.49 6.0 7.47

S0

1

8.49 | 7.49 7.0 9.49

1 2 3 4

V*

m cost of 1 for all actions except for moving away from (3,4)

where cost is 3

m get stuck when moving away from gray cells with prob. 0.6

Asynchronous VI

[e]e] le]e}

Example Asynchronous Value lteration

5 >

449 | 20 | 1.0 | 0.0
4 *

5.49 | 3.0 | 8.49 | 2.49
3

6.49 | 4.0 | 5.0 | 4.98
2

8.98 | 6.49 | 6.0 | 7.47

S0

1

8.49 | 7.49 | 7.0 | 9.49

1 2 3 4

V41 V*

Demo: Result for VI variant that performs backup on each state

with probability 0.5

Asynchronous VI

[e]e]e] e}

In-place Value Iteration

m Synchronous value iteration creates new copy of value
function (two are required simultaneously)

Vitl(s) = emLi(n)c(ﬁ) + E T(s,¢,s')- V(s
cL(s
s'eS

m In-place value iteration only requires a single copy of value
function

V(s) = Zele(r; c(?) +§5 s,0,s") - V(s)

m In-place VI is asynchronous because some backups are based
on “old” values, some on “new” values

Asynchronous VI
0000e

Example: In-place Value Iteration

5 >

4.49 2.0 1.0 0.0
A %

5.49 3.0 8.49 | 2.49
3

6.49 4.0 5.0 4.08
2

8.98 | 6.49 6.0 7.47

So

1

8.49 | 7.49 7.0 9.49

1 2 3 4

Demo: Result for in-place value iteration

\718 ~ V*

RTDP
©000000

Real-Time Dynamic Programming

Motivation Asynchronous VI RTDP LRTDP Summar

0O@00000

Motivation: Real-Time Dynamic Programming

m Asynchronous VI still requires to backup all states repeatedly
for optimality

m Real-Time Dynamic Programming (RTDP) uses admissible
heuristic

for optimal policy
that is executable in initial state
Proposed by Barto, Bradtke & Singh (1995)

RTDP

Motivation
(e]e] [e]e] le]e]ele)

Real-Time Dynamic Programming

RTDP updates only states relevant to the agent
Originally motivated from agent that acts in environment
by following greedy policy w.r.t. current state-value estimates.

Performs Bellman backup in each encountered state

Uses admissible heuristic for states not updated before

Motivation nous VI RTDP
0008000

Trial-based Real-Time Dynamic Programming

m We consider the offline version here
= interaction with environment is simulated in trials
m in real world, outcome of action application cannot be chosen

= in simulation, outcomes are sampled according to
probabilities

Motivation Asynchronous VI RTDP LRTDP Summary

00000 oo0OO®e0O0 = 00000C 000000

Real-Time Dynamic Programming

RTDP for SSP T
while more trials required:
si=5p
whiIeAs Z Sy A
V(s) := mingeps) c(£) + D ges T(s,4,8") - V(s')
s :~ succ(s,ay(s))

W

Note: If V(s') is used on the right hand side of line 4 or 5 but has
has not been assigned (by line 4) before, h(s) is used instead

RTDP
0000080

Example: RTDP

Sk
5 = =
30 | 20 | 10 | 00
*
4 1A
40 | 30 | 40 | 1.0
3 51_T0 40 | 30 | 20 Before 1st trial
2
GT.TO 50 | 40 | 3.0
@ s
)
70 | 6.0 | 50 | 4.0

Used heuristic: shortest path assuming agent never gets stuck

RTDP
0000080

Example: RTDP

Sk

5 = | =

3.0 2.0 1.0 0.0

*

4 0y

4.0 3.0 4.0 1.0
3 Step 1

51.TO 4.0 3.0 2.0 P
2

GT.TO 5.0 4.0 3.0

®

1 1

7.0 6.0 5.0 4.0

Used heuristic: shortest path assuming agent never gets stuck

Example: RTDP

[e]e]e]o]e] o)

Sk
5 = | =
30 | 20 | 10 | 00
*
4 1
40 | 30 | 40 | 1.0
3 51.T0 40 | 30 | 20
> %
66 | 5.0 | 40 | 3.0
S0
1
7% 60 | 5.0 | 40
1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

Step 2

[e]e]e]o]e] o)

Sk

4.0 3.0 4.0 1.0

Step 3
3 51.TO 4.0 3.0 2.0 ep
> '15
6.96 5.0 4.0 3.0
S0
1 1

7.0 6.0 5.0 4.0

Used heuristic: shortest path assuming agent never gets stuck

RTDP
0000080

Sk

4 41.TO 3.0 4.0 1.0
3 'TT Step 4

5.6 4.0 3.0 2.0

2
6.@6 50 | 40 | 3.0

7.0 6.0 5.0 4.0

Used heuristic: shortest path assuming agent never gets stuck

RTDP
0000080

Sk

4.6 3.0 4.0 1.0

Step 5
3 51.T6 40 | 30 | 20 °

2
6.@6 50 | 40 | 3.0

7.0 6.0 5.0 4.0

Used heuristic: shortest path assuming agent never gets stuck

Example: RTDP

[e]e]e]o]e] o)

Sk
5 | = | = | =
30 | 20 | 10 | 00
*
4 '15
496 | 3.0 | 40 | 1.0
3 0Ll | 40 | 30 | 20
2
DU .o [
S0
1
T 1 60 | 50 | 40
1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

Step 6

RTDP
0000080

(] Sk

Step 7
3 51.T6 4.0 3.0 2.0 P

2
6.@6 50 | 40 | 3.0

7.0 6.0 5.0 4.0

Used heuristic: shortest path assuming agent never gets stuck

[e]e]e]o]e] o)

(] Sk

t
3 51.T6 40 | 3.0 | 2.0 Step 8

2
6.@6 50 | 40 | 3.0

7.0 6.0 5.0 4.0

Used heuristic: shortest path assuming agent never gets stuck

RTDP
0000080

5 = | =
3.96 | 2.0 1.0 0.0
*
4 4.@6 3.0 4.0 1.0
3 i) Step 9

5.6 4.0 3.0 2.0

2
6.@6 50 | 40 | 3.0

7.0 6.0 5.0 4.0

Used heuristic: shortest path assuming agent never gets stuck

RTDP
0000080

.:> Sk

5 =
3.96 2.0 1.0 0.0
*
4 4.@6 3.0 4.0 1.0
3 1 Step 10

5.6 4.0 3.0 2.0

2
6.@6 50 | 40 | 3.0

7.0 6.0 5.0 4.0

Used heuristic: shortest path assuming agent never gets stuck

RTDP
0000080

® s

5 = | =
39 | 2.0 | 1.0 | 00
*

3 51.T6 20 | 30 I 20 End of 1st trial

2
6.@6 50 | 40 | 3.0

7.0 6.0 5.0 4.0

Used heuristic: shortest path assuming agent never gets stuck

RTDP
0000080

Example: RTDP

Sk
5 = | =
3.96 | 2.0 1.0 0.0
*
4 0
4.96 3.0 4.0 1.0
3 56 4TT0 30 | 20 Before 2nd trial
2
6.96 5/“0 4.0 3.0
®
1 = X
7.0 6.0 5.0 4.0

Used heuristic: shortest path assuming agent never gets stuck

RTDP
0000080

® s

5 = | =

3.96 | 2.0 1.0 0.0

*

4 0

4.96 3.0 4.0 1.0
3 56 4TT0 30 | 20 End of 2nd trial
2

6.96 5/“6 4.0 3.0

S0

1 = X0

7.0 6.0 5.0 4.0

Used heuristic: shortest path assuming agent never gets stuck

RTDP
0000080

Example: RTDP

5 o
3.96 2.0 1.0 0.0
*
4 1
4.96 3.0 4.0 1.0
N .
3 56 | a0 | 30 2T.T0 Before 3rd trial
2
6.96 5.6 4T.T0 3.0
S0
1|9 = 0
7.0 6.0 5.0 4.0

Used heuristic: shortest path assuming agent never gets stuck

RTDP
0000080

5 . Sy

3.96 | 2.0 1.0 0.0

*

4 {0

496 | 30 | 40 | 16

= .

3 56 | 40 | 30 QT,TG End of 3rd trial
2

696 | 56 | db | 30

S0

1 = = 0

70 | 6.0 | 50 | 4.0

Used heuristic: shortest path assuming agent never gets stuck

RTDP
0000080

Example: RTDP

® s
5 = =
396 | 20 | 1.0 | 0.0
*
4 1

496 | 3.0 | 7.92 | 2.48

3 los | b | 5o | amq | End of 13th trial

? f
832 | 6.49 | 6.0 | 5.32

1 = ﬁ
849 | 749 | 7.0 | 6.96

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

Motivation A ronous VI RTDP 3 Summar
¢ 000000® 00000 0o

RTDP: Theoretical Properties

Using an admissible heuristic, RTDP converges to an optimal
solution without (necessarily) computing state-value estimates for
all states.

Proof omitted.

LRTDP
©00000000000

Labeled Real-Time Dynamic
Programming

Motivation onous V LRTDP

O®@0000000000

Motivation

Issues of RTDP:
m states are updated after state-value estimate has converged
® no termination criterion = algorithm is underspecified

Most popular algorithm to overcome these shortcomings:
Labeled RTDP (Bonet & Geffner, 2003)

LRTDP
00®000000000

Labeled RTDP: Idea

The main idea of Labeled RDTP is to label states as solved

m Labeling procedure different for cycylic and acyclic SSPs
(following slides)

m Each trial terminates when solved state is encountered
= solved states no longer updated

m LRTDP terminates when the initial state is labeled as solved
= well-defined termination criterion

Motivation onous VI R LRTDP
5)00 000®00000000

Solved States in Acyclic SSPs

m In acyclic SSPs, a state s is solved if

m s is a goal state, or
m all successor states of the greedy action ay(s) are solved

m States are labeled as solved via backward induction

us VI : 2 LRTDP
0000000 0000@0000000

Labeled RTDP: Acyclic Example (Blackboard)

Motivation

h(s) = 0 for goal states, otherwise in blue above or below s

»us VI LRTDP
5 000008000000

Solved States in SSPs with Cycles

m States are solved if the difference of the state-value estimate
to the Q-value of the greedy action (the residual) is small

m In presence of cycles, all states in strongly connected
component must be solved simultaneously

m Labeled RTDP uses sub-algorithm CheckSolved to check if
all states in SCC are solved

LRTDP
000000800000

CheckSolved Procedure

m CheckSolved is called on all states that were encountered in
a trial in reverse order

m CheckSolved checks the residual of all states reachable under
the greedy policy and

m labels all those states as solved if the residual is smaller than
some ¢

m Otherwise, CheckSolved performs (additional) backup on
reachable states for faster convergence

LRTDP
000000000000

Labeled RTDP: Cyclic Example (e = 0.005)

3

visited: sg ‘

LRTDP
000000000000

Labeled RTDP: Cyclic Example (e = 0.005)

3
visited: sp, 51 @

LRTDP
000000000000

Labeled RTDP: Cyclic Example (e = 0.005)

visited: sp, s1, S

Motivation A ronous VI TDP LRTDP Summar
) 0000000 000000080000 [e]e)

Labeled RTDP: Cyclic Example (e = 0.005)

visited: s, s1, 52, S3

Motivation s ronous VI TDP LRTDP Summar
) 0000000 000000080000 00

Labeled RTDP: Cyclic Example (e = 0.005)

3
visited: sp, s1, S0, 53, 5> @

Motivation s ronous VI TDP LRTDP Summar
) 0000000 000000080000 00

Labeled RTDP: Cyclic Example (e = 0.005)

1.22 3
visited: sg, s1, S2, 53, S0, S @
0.9 0.1

@.c0 =] [[

Motivation nous VI LRTDP

Labeled RTDP: Cyclic Example

1.22 3
check_solved: sy, s1, S, S3, S2, S4 @
reachable: s,
0.9 0.1
@.c 5 [[

residual s4: 0

Motivation nous VI LRTDP

Labeled RTDP: Cyclic Example

1.22 3
check_solved: sy, s1, S, S3, S2, S4 @
reachable: s,
label: s4 0.9 0.1
@, =] [[
0

residual s4: 0

Motivation s ronous VI TDP LRTDP Summar
) 0000000 000000080000 00

Labeled RTDP: Cyclic Example (e = 0.005)

1.22 3
check_solved: sy, s1, 52, 53, 52, S4 @
reachable: sy, s3,(s4)
0.9 0.1
@, =] [[

residual sp: 0
residual s3: 0.02 e

Motivation nous VI LRTDP
) fole] 9 000000080000

Labeled RTDP: Cyclic Example (e = 0.005)

1.222 3
check_solved: sy, s1, 52, 53, 52, S4 @
reachable: sy, s3,(s4)
update: s3, 0.9 0.1
@ =] [[=]
0

2.22 2.2

) N 000000080000

Labeled RTDP: Cyclic Example (e = 0.005)

Motivation / onous V TDP LRTDP Summar

1.222 3
check_solved: sy, s1, 2, 53, 52, S4 @
reachable: s3, sy, (sa)
0.9 0.1
@, =] [[

residual sp: 0
residual s3: 0.002 e
2.22 2.2

Motivation nous VI LRTDP
) fole] 9 000000080000

Labeled RTDP: Cyclic Example (e = 0.005)

1.222 3
check_solved: sy, s1, 2, 53, 52, S4 @
reachable: s3, sy, (sa)
label: s, 53 0.9 0.1
@, =] [[
0

2.22 2.2

Motivation s ronous VI TDP LRTDP Summar
) 0000000 000000080000 00

Labeled RTDP: Cyclic Example (e = 0.005)

1.222 3
check_solved: sy, s1, 52, 53, 52, S4 @
reachable: (s)
0.9 0.1
@, =] [[

2.22 2.2

Motivation s ronous VI TDP LRTDP Summar
) 0000000 000000080000 00

Labeled RTDP: Cyclic Example (e = 0.005)

1.222 3
check_solved: sy, s1, S, 53, 52, S4 @
reachable: sy, sp, (s2)
0.9 0.1
@, =] [[

residual sp: 0.2

residual s;: 0.1998 @
2.22 2.2

Motivation nous VI LRTDP
) fole] 9 000000080000

Labeled RTDP: Cyclic Example (e = 0.005)

1.222 3.2
check_solved: sy, s1, S, 53, 52, S4
reachable: sy, sp, (s2)
update: sp, 51 0.9 0.1
@ B [[

2.22 2.4198

Motivation s ronous VI TDP LRTDP Summar
) 0000000 000000080000 00

Labeled RTDP: Cyclic Example (e = 0.005)

1.222 3.2
check_solved: sy, s1, 52, 53, 52, S4
reachable: s, s1, (s2)
0.9 0.1
@, =] [[

residual sy: 0.2198

residual s;: 0 e

2.22 2.4198

Motivation nous VI LRTDP
) fole] 9 000000080000

Labeled RTDP: Cyclic Example (e = 0.005)

1.222 3.4198
check_solved: sy, s1, 52, 53, 52, S4 @
reachable: s, s1, (s2)
update: s1, Sp 0.9 0.1
@, =] [[
0

2.22 2.4198

Motivation

,,,,, 0000000 000000008000

Labeled Real-Time Dynamic Programming

Labeled RTDP for SSP T

while sg is not solved:
visit(so)

Summary

| A

visit state s

if s is solved or s € S,:

_ return A
V(s) == mingeps) c(£) + D oges T(s,4,8") - V(s')
s’ i~ succ(s, ap(s))

visit(s')

check_solved(s)

N

Note: If V(s') is used on the right hand side of line 3 or 4 in
visit(s) but has has not been assigned before, h(s) is used instead

LRTDP
000000000800

Labeled RTDP: CheckSolved

check_solved for SSP T

set ret := true, open, closed := stack
if sp not labeled then push sO to open
while open is not empty:
pop s from open and insert into closed
if residual(s) > €
ret := false
else push all s’ € succ(s, ay (s)) to open
that are not labeled and not in open or closed
if ret then label all s in closed
else perform backup on all s in closed

Motivation A ronous V LRTDP Summar
) 000000000080 oo

Labeled RTDP: Theoretical Properties

Using an admissible heuristic, Labeled RTDP converges to an
optimal solution without (necessarily) computing state-value
estimates for all states.

Proof omitted.

Motivation Asynchronous VI

00000 0000000 00000000000 e

Further RTDP Variants

Summary

Many variants exists, among them some interesting ones:
m Bounded RTDP (McMahan, Likhachecv & Gordon, 2005)
m Focused RTDP (Smith & Simmons, 2006)
m Bayesian RTDP (Sanner et al., 2009)

[Je]

Summary

Motivation

Summary
oe

Summary

m Asynchronous variants of value iteration are optimal as long
as all states are selected repeatedly

m RTDP finds optimal solutions for SSPs
m and performs updates only on relevant states

m Labeled RTDP labels states as solved to stop updating
converged states

	Motivation
	Asynchronous VI
	Real-Time Dynamic Programming
	Labeled Real-Time Dynamic Programming
	Summary

