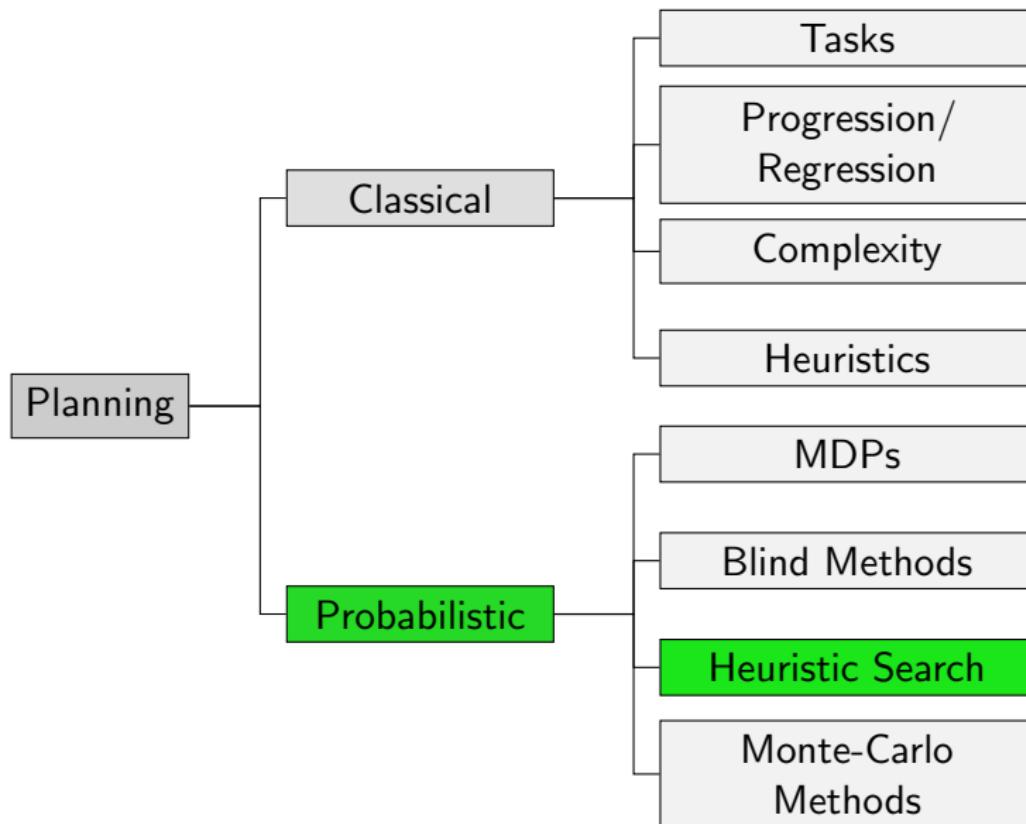


Planning and Optimization


G3. Heuristic Search: Real-Time Dynamic Programming

Gabriele Röger and Thomas Keller

Universität Basel

December 5, 2018

Content of this Course

Motivation

Motivation

- AO* and LAO* find **optimal** solution without considering all states
- Value iteration has to repeatedly backup all states
- But VI computes **complete policy**, while AO* and LAO* compute **executable policy** for a given initial state
- And AO* and LAO* require **admissible heuristic** for guidance

⇒ Is this also possible for a VI-like algorithm if we provide it with admissible heuristic and accept executable policy as result?

Motivation
oo

Asynchronous VI
●oooo

RTDP
oooooooo

LRTDP
oooooooooooo

Summary
oo

Asynchronous VI

Asynchronous Value Iteration

- Updating all states simultaneously is called **synchronous backup**
- Asynchronous VI performs backups for individual states
- Different approaches lead to **different backup orders**
- Can significantly **reduce computation**
- **Guaranteed** to converge if all states are **selected repeatedly**

⇒ Optimal VI with **asynchronous backups** possible

Example: Asynchronous Value Iteration

			s_*
5	4.49	2.0	1.0
4	5.49	3.0	8.49 ★
3	6.49	4.0	5.0
2	8.98	6.49	6.0
1	s_0 8.49	7.49	7.0
	1	2	3

V^*

- cost of 1 for all actions except for moving away from (3,4) where cost is 3
- get stuck when moving away from gray cells with prob. 0.6

Example: Asynchronous Value Iteration

				s_*
5	4.49	2.0	1.0	0.0
4	5.49	3.0	8.49	2.49
3	6.49	4.0	5.0	4.98
2	8.98	6.49	6.0	7.47
1	s_0			
	8.49	7.49	7.0	9.49
	1	2	3	4

$\hat{V}^{41} \approx V^*$

Demo: Result for VI variant that performs backup on each state with probability 0.5

In-place Value Iteration

- Synchronous value iteration creates new copy of value function (two are required simultaneously)

$$\hat{V}^{i+1}(s) := \min_{\ell \in L(s)} c(\ell) + \sum_{s' \in S} T(s, \ell, s') \cdot \hat{V}^i(s')$$

- In-place value iteration only requires a single copy of value function

$$\hat{V}(s) := \min_{\ell \in L(s)} c(\ell) + \sum_{s' \in S} T(s, \ell, s') \cdot \hat{V}(s')$$

- In-place VI is asynchronous because some backups are based on “old” values, some on “new” values

Example: In-place Value Iteration

			s_*
5	4.49	2.0	1.0
4	5.49	3.0	8.49
3	6.49	4.0	5.0
2	8.98	6.49	6.0
1	s_0 8.49	7.49	7.0
			9.49

1 2 3 4

$\hat{V}^{18} \approx V^*$

Demo: Result for in-place value iteration

Motivation
oo

Asynchronous VI
ooooo

RTDP
●oooooooo

LRTDP
oooooooooooo

Summary
oo

Real-Time Dynamic Programming

Motivation: Real-Time Dynamic Programming

- Asynchronous VI still requires to backup all states repeatedly for optimality
- Real-Time Dynamic Programming (RTDP) uses **admissible heuristic**
- for **optimal policy**
- that is **executable** in initial state
- Proposed by Barto, Bradtke & Singh (1995)

Real-Time Dynamic Programming

- RTDP updates only states **relevant** to the agent
- Originally motivated from agent that **acts** in environment
- by following **greedy policy** w.r.t. current state-value estimates.
- Performs **Bellman backup** in each encountered state
- Uses **admissible heuristic** for states not updated before

Trial-based Real-Time Dynamic Programming

- We consider the **offline** version here
⇒ interaction with environment is **simulated** in **trials**
- in real world, outcome of action application cannot be **chosen**
⇒ in simulation, outcomes are **sampling** according to probabilities

Real-Time Dynamic Programming

RTDP for SSP \mathcal{T}

while more trials required:

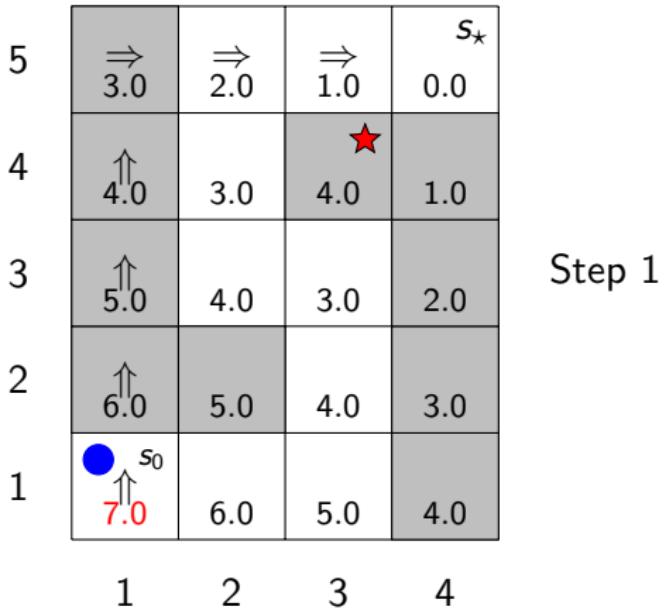
$s := s_0$

while $s \notin S_*$:

$\hat{V}(s) := \min_{\ell \in L(s)} c(\ell) + \sum_{s' \in S} T(s, \ell, s') \cdot \hat{V}(s')$

$s := \text{succ}(s, a_{\hat{V}}(s))$

Note: If $\hat{V}(s')$ is used on the right hand side of line 4 or 5 but has not been assigned (by line 4) before, $h(s)$ is used instead


Example: RTDP

			s_*
5	\Rightarrow 3.0	\Rightarrow 2.0	\Rightarrow 1.0
4	\uparrow 4.0	3.0	4.0 \star
3	\uparrow 5.0	4.0	3.0
2	\uparrow 6.0	5.0	4.0
1	s_0 \uparrow 7.0	6.0	5.0
	1	2	3

Before 1st trial

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

				s_*
5	\Rightarrow 3.0	\Rightarrow 2.0	\Rightarrow 1.0	0.0
4	\uparrow 4.0	3.0	4.0	1.0
3	\uparrow 5.0	4.0	3.0	2.0
2	\uparrow 6.6	5.0	4.0	3.0
1	\uparrow s_0 7.0	6.0	5.0	4.0
	1	2	3	4

Step 2

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

				s_*
5	\Rightarrow 3.0	\Rightarrow 2.0	\Rightarrow 1.0	0.0
4	\uparrow 4.0	3.0	4.0	1.0
3	\uparrow 5.0	4.0	3.0	2.0
2	\bullet \uparrow 6.96	5.0	4.0	3.0
1	\uparrow s_0 7.0	6.0	5.0	4.0
	1	2	3	4

Step 3

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

				s_*
5	\Rightarrow 3.0	\Rightarrow 2.0	\Rightarrow 1.0	0.0
4	\uparrow 4.0	3.0	4.0	1.0
3	\uparrow 5.6	4.0	3.0	2.0
2	\uparrow 6.96	5.0	4.0	3.0
1	\uparrow s_0 7.0	6.0	5.0	4.0
	1	2	3	4

Step 4

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

				s_*
5	\Rightarrow 3.0	\Rightarrow 2.0	\Rightarrow 1.0	0.0
4	\uparrow 4.6	3.0	4.0	1.0
3	\uparrow 5.6	4.0	3.0	2.0
2	\uparrow 6.96	5.0	4.0	3.0
1	\uparrow s_0 7.0	6.0	5.0	4.0
	1	2	3	4

Step 5

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

				s_*
5	\Rightarrow 3.0	\Rightarrow 2.0	\Rightarrow 1.0	0.0
4	\uparrow 4.96	3.0	4.0	1.0
3	\uparrow 5.6	4.0	3.0	2.0
2	\uparrow 6.96	5.0	4.0	3.0
1	\uparrow s_0 7.0	6.0	5.0	4.0
	1	2	3	4

Step 6

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

			s_*
5	3.6	2.0	1.0
4	4.96	3.0	4.0
3	5.6	4.0	3.0
2	6.96	5.0	4.0
1	s_0 7.0	6.0	5.0
	1	2	3

Step 7

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

			s_*	
5	\Rightarrow 3.96	\Rightarrow 2.0	\Rightarrow 1.0	0.0
4	\uparrow 4.96	3.0	4.0	
3	\uparrow 5.6	4.0	3.0	2.0
2	\uparrow 6.96	5.0	4.0	3.0
1	\uparrow s_0 7.0	6.0	5.0	4.0
	1	2	3	4

Step 8

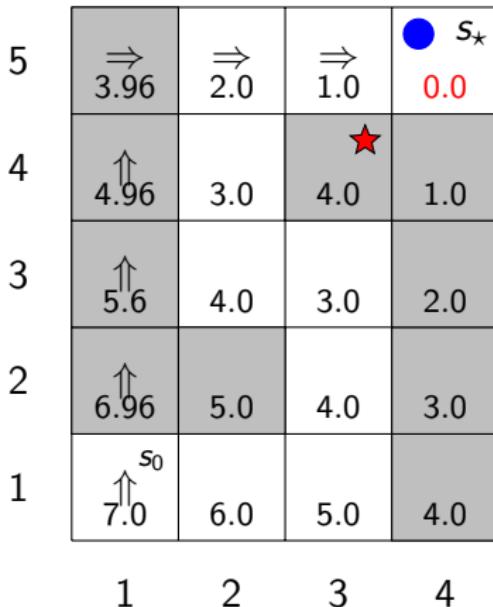
Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

				s_*
5	\Rightarrow 3.96	\Rightarrow 2.0	\Rightarrow 1.0	0.0
4	\uparrow 4.96	3.0	4.0	1.0
3	\uparrow 5.6	4.0	3.0	2.0
2	\uparrow 6.96	5.0	4.0	3.0
1	\uparrow s_0 7.0	6.0	5.0	4.0
	1	2	3	4

Step 9

Used heuristic: shortest path assuming agent **never gets stuck**


Example: RTDP

	1	2	3	4
1	$\uparrow s_0$ 7.0	6.0	5.0	4.0
2	\uparrow 6.96	5.0	4.0	3.0
3	\uparrow 5.6	4.0	3.0	2.0
4	\uparrow 4.96	3.0	4.0	1.0
5	\Rightarrow 3.96	2.0	● \Rightarrow 1.0	s_* 0.0

Step 10

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

End of 1st trial

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

			s_*
5	3.96	\Rightarrow 2.0	\Rightarrow 1.0
4	4.96	\uparrow 3.0	\star 4.0
3	5.6	\uparrow 4.0	3.0
2	6.96	\uparrow 5.0	4.0
1	s_0 \Rightarrow 7.0	\uparrow 6.0	5.0
	1	2	3
			4

Before 2nd trial

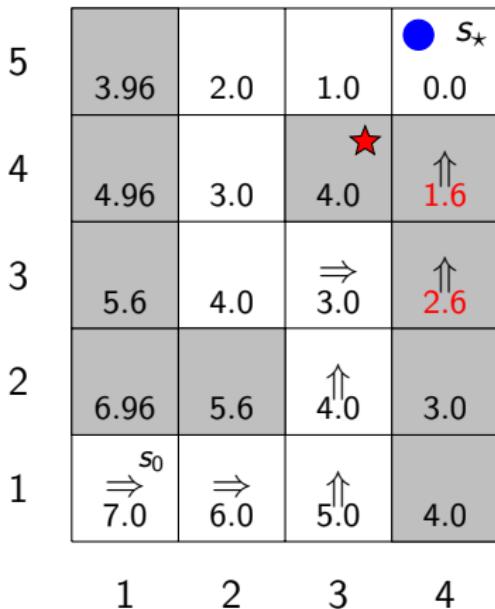
Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

				s_*
5	3.96	\Rightarrow 2.0	\Rightarrow 1.0	0.0
4	4.96	\uparrow 3.0	4.0	1.0
3	5.6	\uparrow 4.0	3.0	2.0
2	6.96	\uparrow 5.6	4.0	3.0
1	s_0 \Rightarrow 7.0	\uparrow 6.0	5.0	4.0
	1	2	3	4

End of 2nd trial

Used heuristic: shortest path assuming agent **never gets stuck**


Example: RTDP

			s_*
5	3.96	2.0	1.0
4	4.96	3.0	4.0
3	5.6	4.0	\Rightarrow 3.0
2	6.96	5.6	\uparrow 4.0
1	7.0	\Rightarrow 6.0	\uparrow 5.0
			4.0

Before 3rd trial

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

End of 3rd trial

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

				s_*
5	3.96	\Rightarrow 2.0	\Rightarrow 1.0	0.0
4	4.96	\uparrow 3.0	7.92	2.48
3	6.18	\uparrow 4.0	5.0	4.71
2	8.32	\uparrow 6.49	6.0	5.32
1	$\stackrel{s_0}{\Rightarrow}$ 8.49	\uparrow 7.49	7.0	6.96
	1	2	3	4

End of 13th trial

Used heuristic: shortest path assuming agent **never gets stuck**

RTDP: Theoretical Properties

Theorem

Using an admissible heuristic, RTDP converges to an optimal solution without (necessarily) computing state-value estimates for all states.

Proof omitted.

Labeled Real-Time Dynamic Programming

Motivation

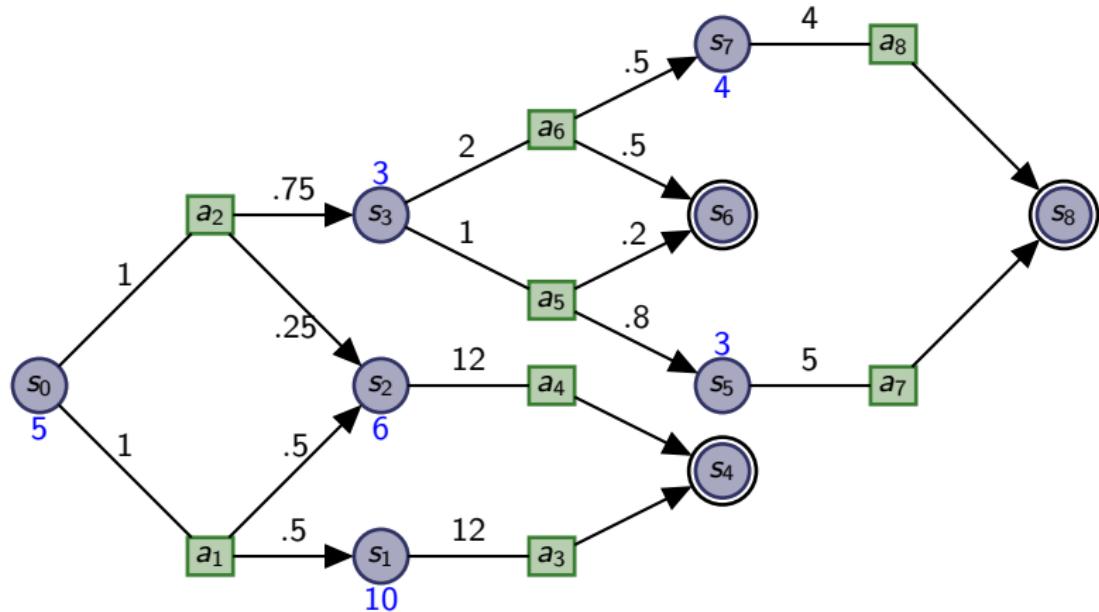
Issues of RTDP:

- states are updated after **state-value estimate** has **converged**
- no **termination criterion** \Rightarrow algorithm is underspecified

Most popular algorithm to overcome these shortcomings:

Labeled RTDP (Bonet & Geffner, 2003)

Labeled RTDP: Idea


The main idea of Labeled RTDP is to label states as **solved**

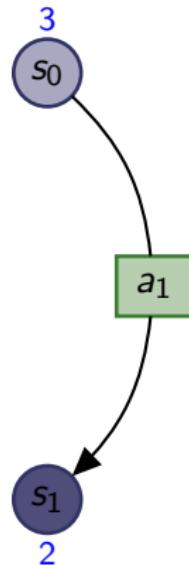
- Labeling procedure different for cyclyc and acyclic SSPs (following slides)
- Each **trial terminates** when solved state is encountered
⇒ solved states no longer updated
- **LRTDP terminates** when the initial state is labeled as solved
⇒ well-defined termination criterion

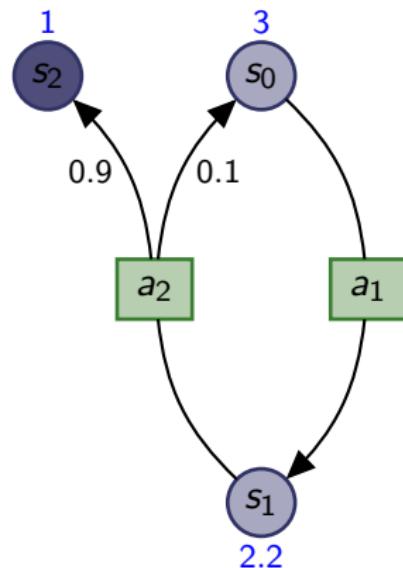
Solved States in Acyclic SSPs

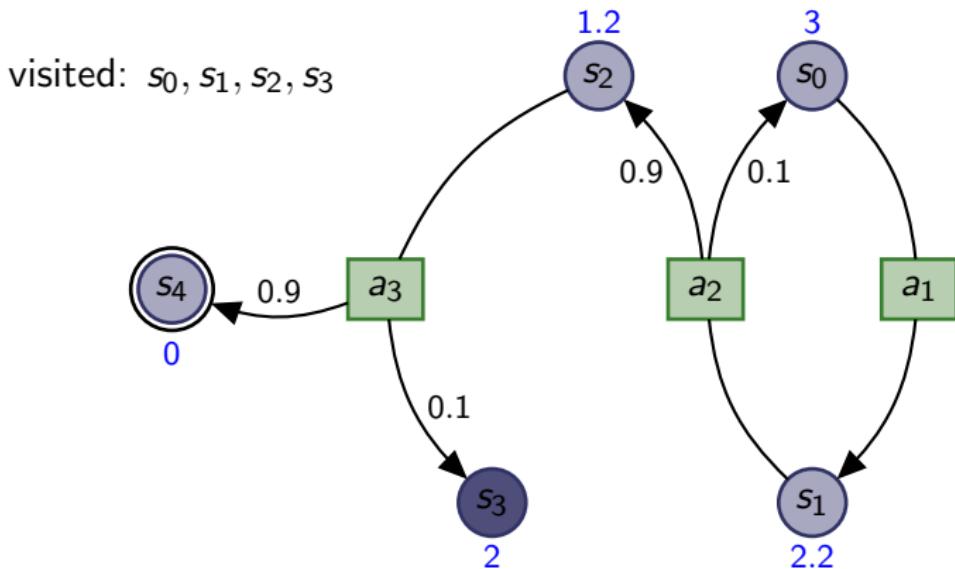
- In **acyclic** SSPs, a state s is solved if
 - s is a **goal state**, or
 - all successor states of the **greedy action** $a_{\hat{V}}(s)$ are solved
- States are labeled as solved via **backward induction**

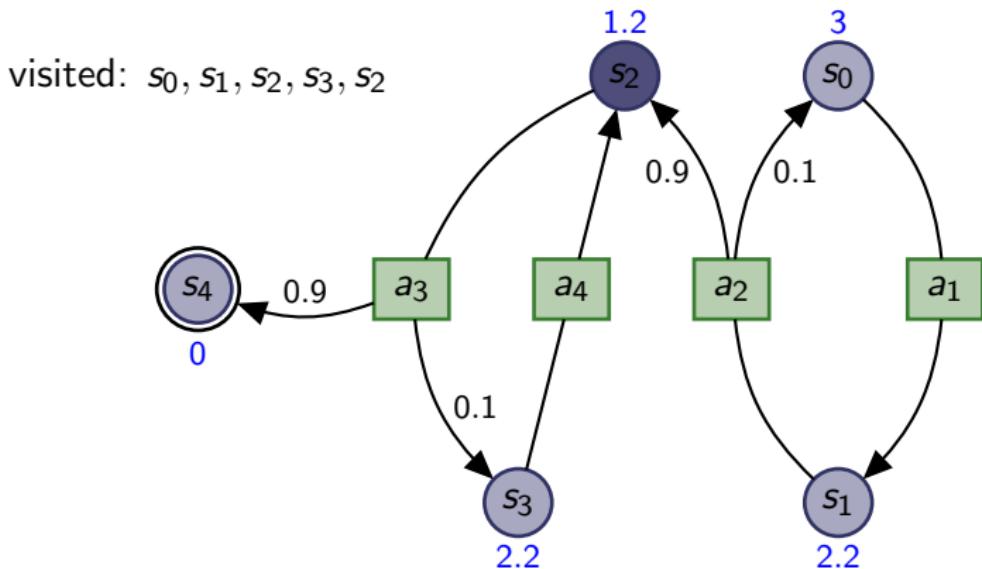
Labeled RTDP: Acyclic Example (Blackboard)

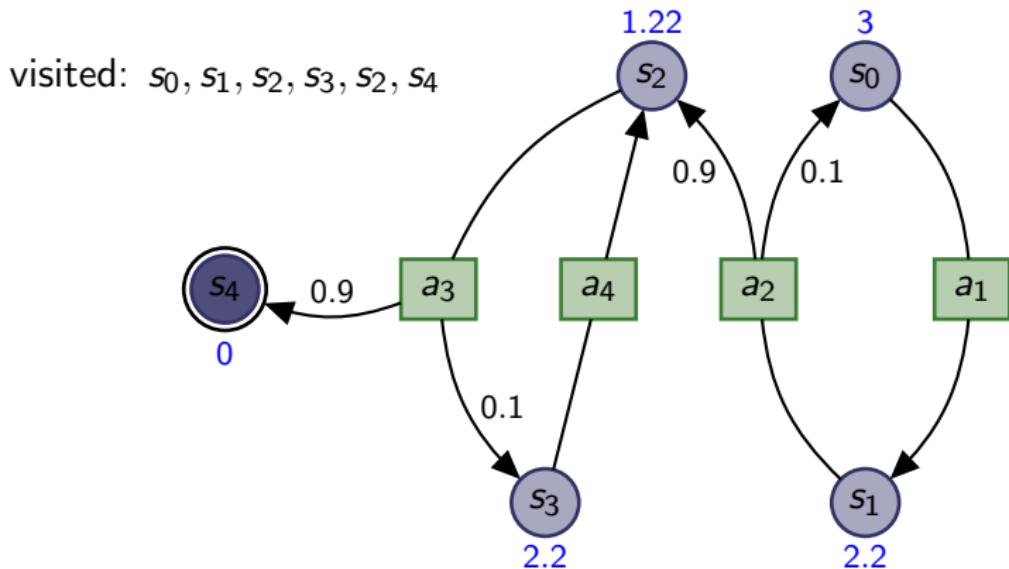
$h(s) = 0$ for goal states, otherwise in blue above or below s

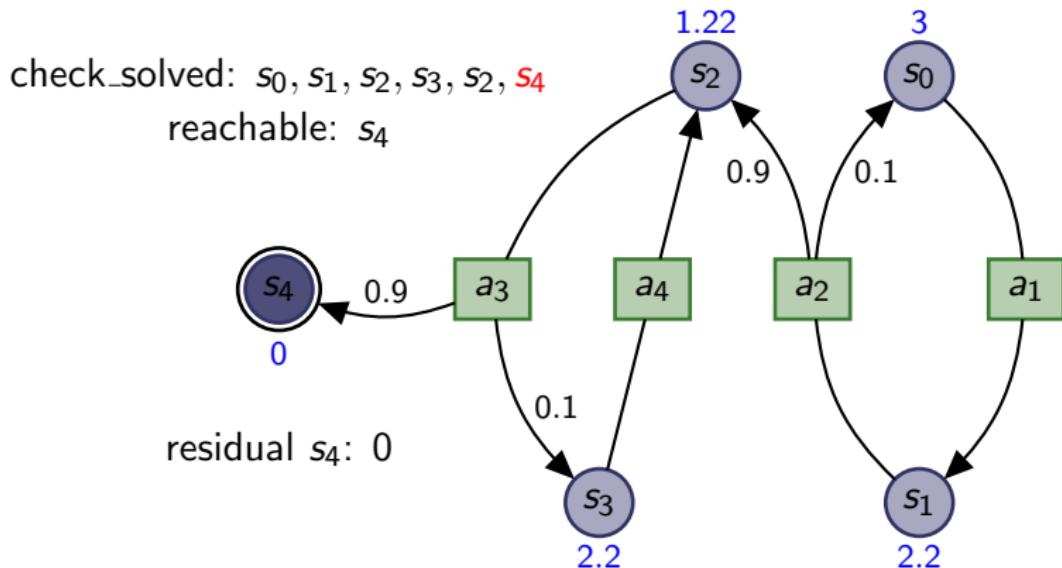

Solved States in SSPs with Cycles

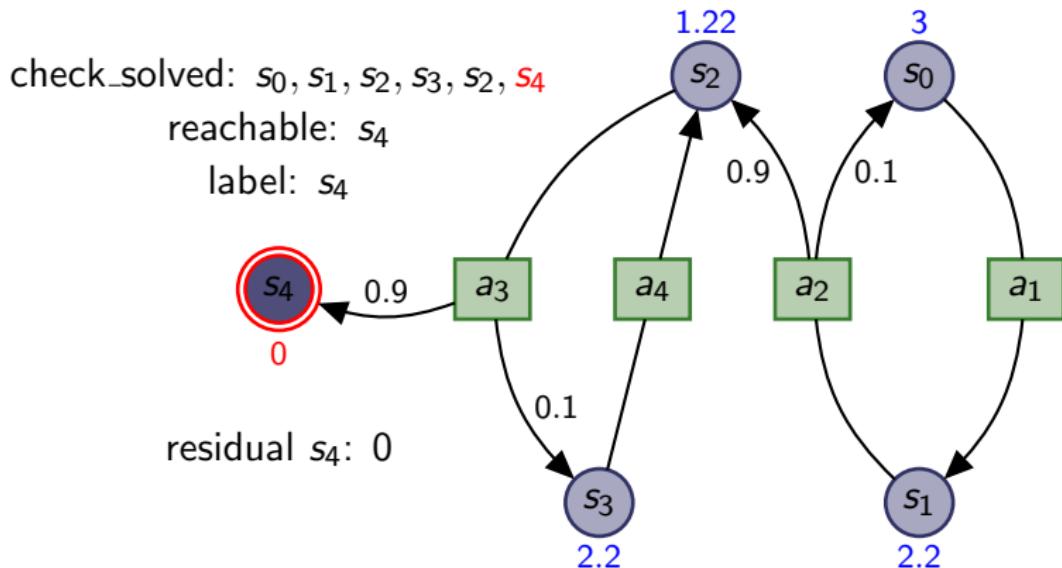

- States are solved if the difference of the state-value estimate to the Q-value of the greedy action (the **residual**) is small
- In presence of cycles, all states in **strongly connected component** must be solved simultaneously
- Labeled RTDP uses sub-algorithm **CheckSolved** to check if all states in SCC are solved

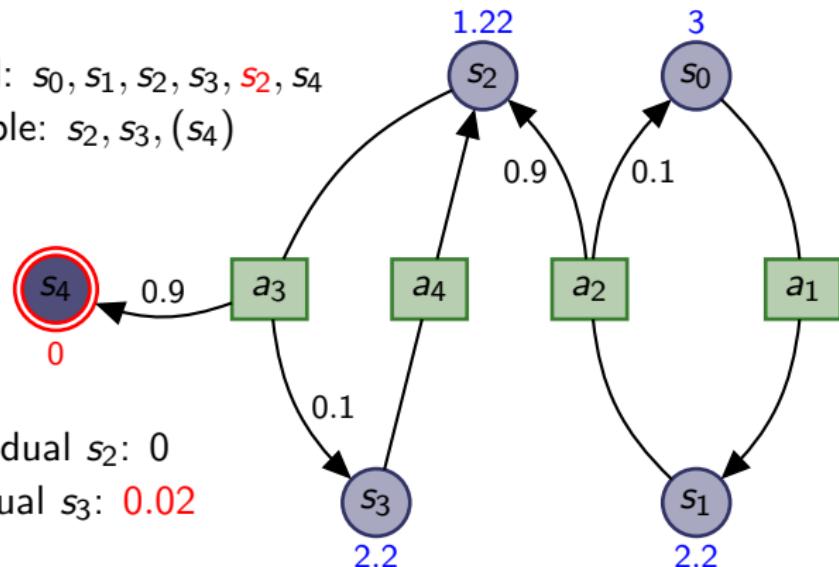

CheckSolved Procedure

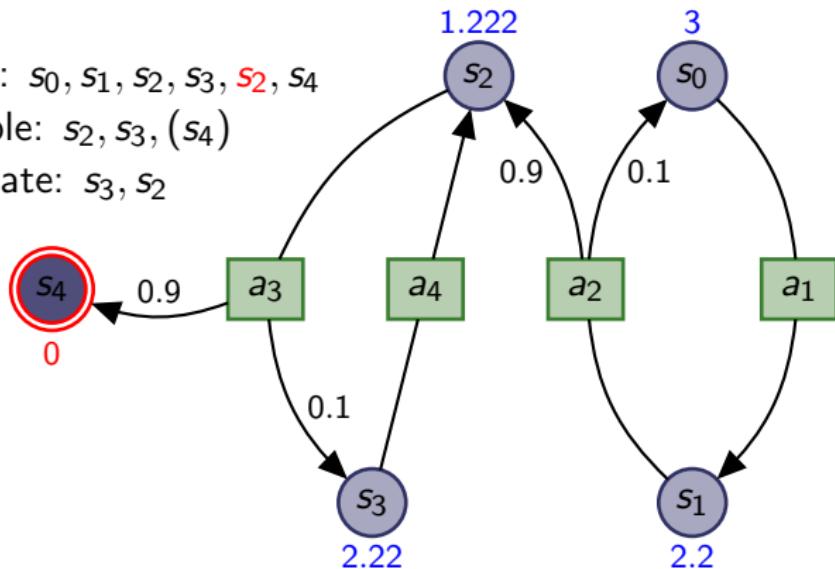

- CheckSolved is called on all states that were encountered in a trial in **reverse order**
- CheckSolved checks the residual of all states reachable under the greedy policy and
- labels all those states as solved if the residual is smaller than some ϵ
- Otherwise, CheckSolved performs (additional) backup on reachable states for **faster convergence**

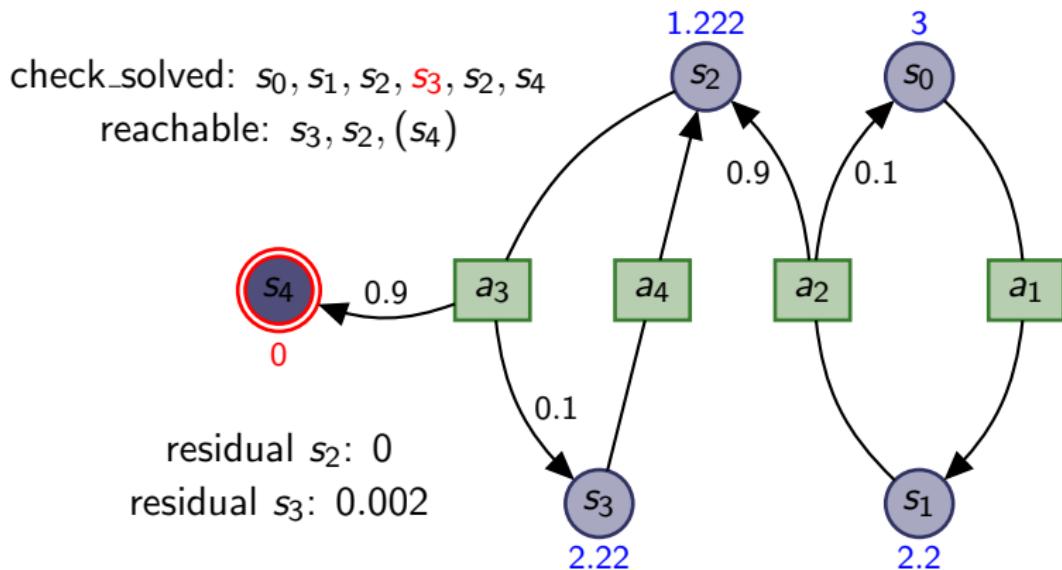

Labeled RTDP: Cyclic Example ($\epsilon = 0.005$)visited: s_0

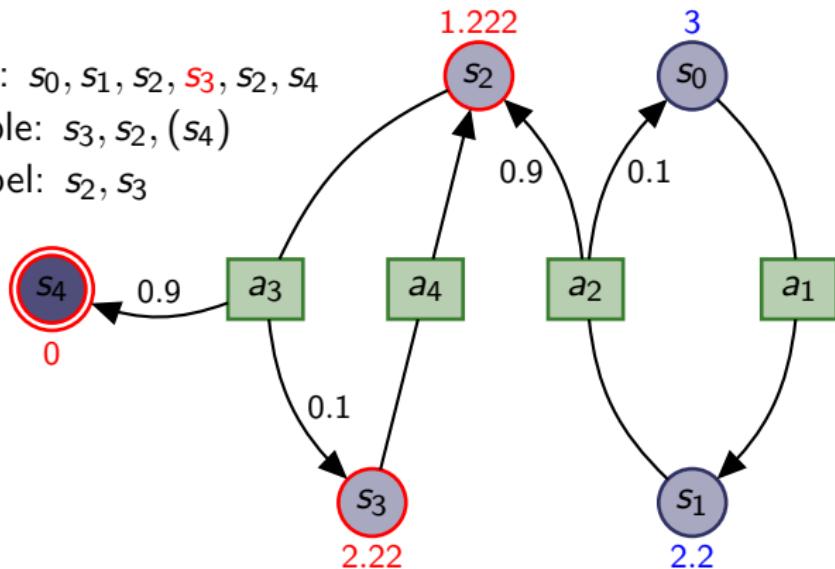

Labeled RTDP: Cyclic Example ($\epsilon = 0.005$)visited: s_0, s_1

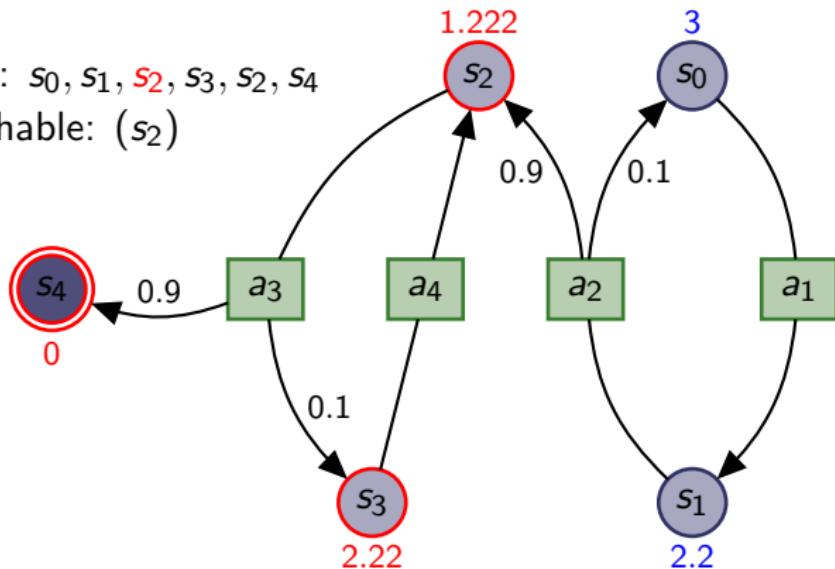

Labeled RTDP: Cyclic Example ($\epsilon = 0.005$)visited: s_0, s_1, s_2

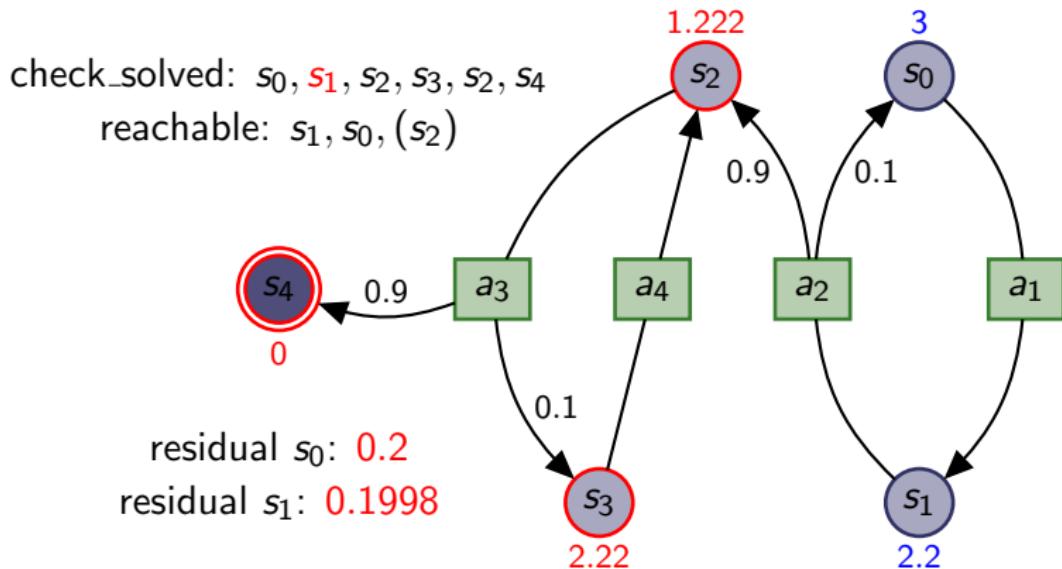

Labeled RTDP: Cyclic Example ($\epsilon = 0.005$)

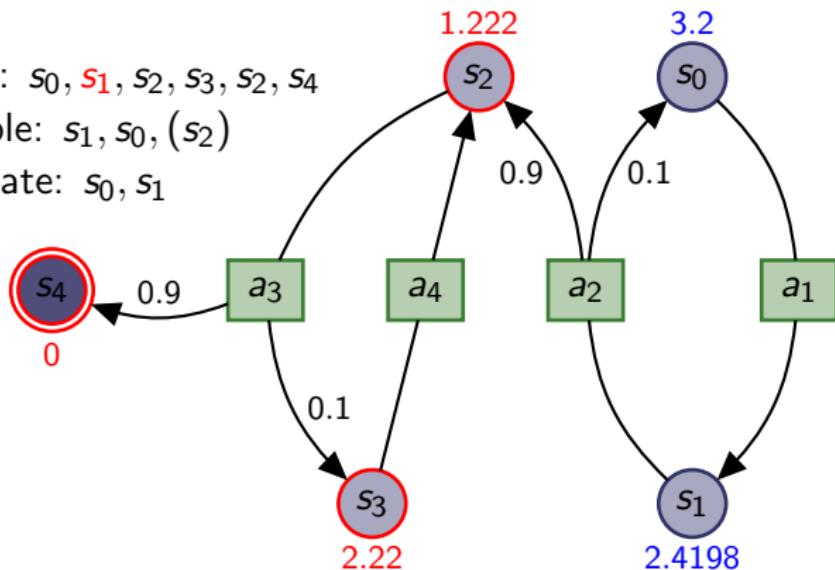

Labeled RTDP: Cyclic Example ($\epsilon = 0.005$)

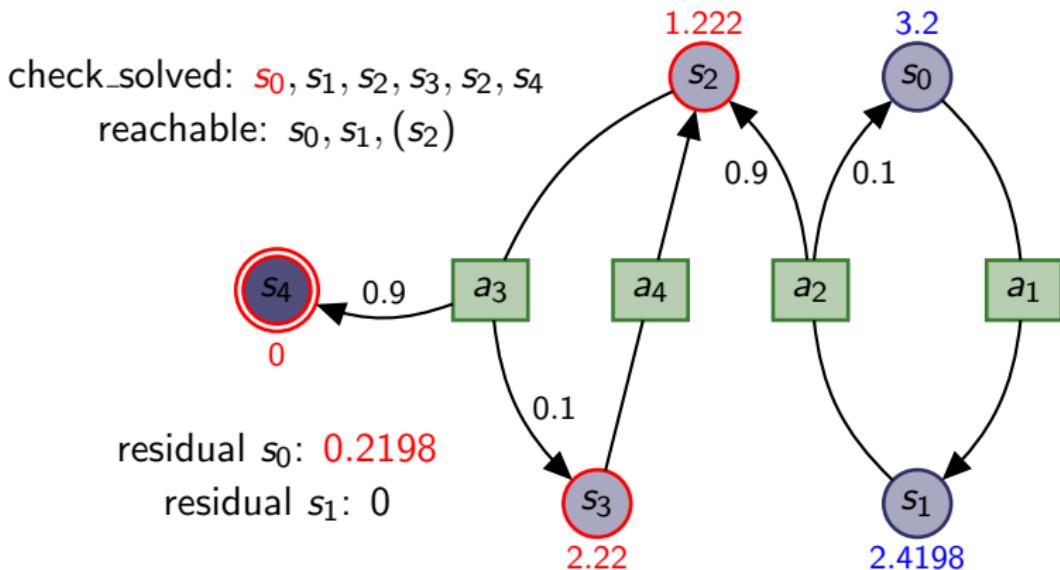

Labeled RTDP: Cyclic Example ($\epsilon = 0.005$)

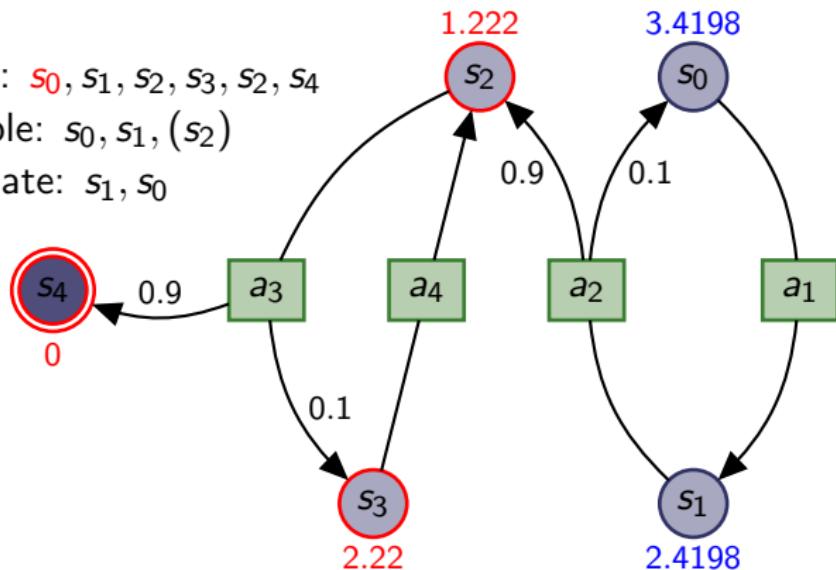

Labeled RTDP: Cyclic Example ($\epsilon = 0.005$)


Labeled RTDP: Cyclic Example ($\epsilon = 0.005$)


Labeled RTDP: Cyclic Example ($\epsilon = 0.005$)check_solved: s_0, s_1, s_2, s_3, s_4 reachable: $s_2, s_3, (s_4)$ residual $s_2: 1.22$ residual $s_3: 2.2$


Labeled RTDP: Cyclic Example ($\epsilon = 0.005$)check_solved: s_0, s_1, s_2, s_3, s_4 reachable: $s_2, s_3, (s_4)$ update: s_3, s_2


Labeled RTDP: Cyclic Example ($\epsilon = 0.005$)


Labeled RTDP: Cyclic Example ($\epsilon = 0.005$)check_solved: $s_0, s_1, s_2, s_3, s_2, s_4$ reachable: $s_3, s_2, (s_4)$ label: s_2, s_3

Labeled RTDP: Cyclic Example ($\epsilon = 0.005$)check_solved: $s_0, s_1, s_2, s_3, s_2, s_4$ reachable: (s_2)

Labeled RTDP: Cyclic Example ($\epsilon = 0.005$)

Labeled RTDP: Cyclic Example ($\epsilon = 0.005$)check_solved: $s_0, s_1, s_2, s_3, s_2, s_4$ reachable: $s_1, s_0, (s_2)$ update: s_0, s_1

Labeled RTDP: Cyclic Example ($\epsilon = 0.005$)

Labeled RTDP: Cyclic Example ($\epsilon = 0.005$)check_solved: $s_0, s_1, s_2, s_3, s_2, s_4$ reachable: $s_0, s_1, (s_2)$ update: s_1, s_0

Labeled Real-Time Dynamic Programming

Labeled RTDP for SSP \mathcal{T}

while s_0 is not solved:
 visit(s_0)

visit state s

if s is solved or $s \in S_*$:

return

$$\hat{V}(s) := \min_{\ell \in L(s)} c(\ell) + \sum_{s' \in S} T(s, \ell, s') \cdot \hat{V}(s')$$

$$s' : \sim \text{succ}(s, a_{\hat{V}}(s))$$

visit(s')

check_solved(s)

Note: If $\hat{V}(s')$ is used on the right hand side of line 3 or 4 in visit(s) but has not been assigned before, $h(s)$ is used instead

Labeled RTDP: CheckSolved

check_solved for SSP \mathcal{T}

```
set ret := true, open, closed := stack
if  $s_0$  not labeled then push  $s_0$  to open
while open is not empty:
    pop  $s$  from open and insert into closed
    if residual( $s$ )  $> \epsilon$ 
        ret := false
    else push all  $s' \in \text{succ}(s, a_{\hat{V}}(s))$  to open
        that are not labeled and not in open or closed
    if ret then label all  $s$  in closed
    else perform backup on all  $s$  in closed
```

Labeled RTDP: Theoretical Properties

Theorem

Using an admissible heuristic, Labeled RTDP converges to an optimal solution without (necessarily) computing state-value estimates for all states.

Proof omitted.

Further RTDP Variants

Many variants exists, among them some interesting ones:

- Bounded RTDP (McMahan, Likhachecv & Gordon, 2005)
- Focused RTDP (Smith & Simmons, 2006)
- Bayesian RTDP (Sanner et al., 2009)

Motivation
oo

Asynchronous VI
ooooo

RTDP
oooooooo

LRTDP
oooooooooooo

Summary
●○

Summary

Summary

- **Asynchronous variants** of value iteration are optimal as long as all states are selected repeatedly
- **RTDP** finds optimal solutions for SSPs
- and performs updates only on **relevant states**
- **Labeled RTDP** labels states as **solved** to stop updating converged states