Planning and Optimization
G2. Heuristic Search: AO* & LAO* Part Il

Gabriele Roger and Thomas Keller

Universitat Basel

December 3, 2018

Content of this Course

—{ Tasks ‘

Progression/

. Regression
Classical

~{ Complexity ‘

—{ Heuristics ‘

lning]— } ‘
MDPs

— Blind Methods |

Monte-Carlo
Methods

AO*
900000000

AO*

AO* LAC
000000000 o]

From A* with Backward Induction to AO*

m A" with backward induction already very similar to AO*
m Support for uncertain outcomes missing
m We focus on SSPs in these slides

m Adaption to FH-MDPs simple
Careful: admissible heuristic in reward setting must not
underestimate true reward

m Still two steps ahead:

m restrict to acyclic probabilistic tasks = AQO*
m allow general probabilistic tasks = LAO*

AO*
[e]e] lelelelelele]

Transition Systems

AO* distinguishes three transition systems:
m The acyclic SSP T = (S,L, ¢, T, s, S*)
= given implicitly
m The explicated graph 7; = <§t, L c, Ty, s, S*)
= the part of T explicitly considered during search
m The partial solution graph Tr=(5fL,c, Tt 5,5
= The part of 7; that contains best solution

Yo

000@00000

Explicated Graph

m Expanding a state s at time step t explicates all outcomes
s’ € succ(s,) for all £ € L(s) by adding them to explicated
graph:

Te = (5,1 Usucc(s), L, ¢, Ty, s0, S*},

where T; = T;_1 except that T(s,(,s') = T(s,¢,s)
for all £ € L(s) and s’ € succ(s, ¥)

m Explicated states are annotated with state-value estimate
Vi(s) that describes estimated expected cost to goal at step t

m When state s’ is explicated and s’ ¢ S, 1, its state-value
estimate is initialized to V;(s') := h(s')

m We call leaf states of T; fringe states

AO™* 0 Summary

0000@0000

Partial Solution Graph

m The partial solution graph 7A;* is the subgraph of 7+ that is
spanned by the smallest set of states $* that satisfies:
m S € §ti .) .
mifs€S;, s" €5 and Ti(s,ap (s),s’) >0, then 5" in S
m The partial solution graph forms a partial acyclic policy
defined in the initial state sp and all non-leaf states that can
be reached by its execution

m Leaf states that can be reached by the policy described by the
partial solution graph are the states in the greedy fringe

Yo

00000e000

Bellman backups

m AO* does not maintain static open list
m State-value estimates determine partial solution graph

m Partial solution graph determines which state is a candidate
for expansion
Different strategies to select among candidates exist

m (Some) state-value estimates are updated in time step t by
Bellman backups:

Vi(s) = mmc)+ Z Te(s,1,s") - Vi(s")
s Est

AO™* 0 Summary

0O00000e00

AO*

AO* for acyclic SSP T

explicate sp
while there is a greedy fringe state not in S;:

select a greedy fringe state s ¢ S,

expand s

perform Bellman backups of states in 7A;*_1 in reverse order
return 7

AO*
000000080

h(s) = 0 for goal states, otherwise in blue above or below s

AO* Summar

0O0000000e

Theoretical properties

Using an admissible heuristic, AO* converges to an optimal
solution without (necessarily) explicating all states.

Proof omitted.

LAO*
000000

LAO™

LAO* Summar

0@0000

m A" with backward induction finds sequential solutions (a plan)
in classical planning tasks

m AO* finds acyclic solutions with branches (an acyclic policy)
in acyclic SSPs

m LAO™ is the generalization of AO™ to cyclic solutions in cyclic
SSPs

LAO*
000000

AC

LAO*

m From plans to acyclic policies, we only changed backup
procedure from backward induction to Bellman backups

m When solutions may be cyclic, we cannot perform updates in
reverse order

LAO*
000000

LAO*

m From plans to acyclic policies, we only changed backup
procedure from backward induction to Bellman backups

m When solutions may be cyclic, we cannot perform updates in
reverse order

m Bellman backups are essentially acyclic version of value
iteration

LAO*
000000

From plans to acyclic policies, we only changed backup
procedure from backward induction to Bellman backups

When solutions may be cyclic, we cannot perform updates in
reverse order

Bellman backups are essentially acyclic version of value
iteration

replacing Bellman backups with value iteration is LAO* variant

the original algorithm of Hansen & Zilberstein (1998) uses
policy iteration instead

LAO* Summary

000e00

LAO* for SSP T

explicate sp

while there is a greedy fringe state not in S;:
select a greedy fringe state s ¢ S,
expand s
perform policy iteration in T+

return 7;*)

LAO*

00 00000 [e]e]e]e] Je]

AQO*: Optimizations

Several optimizations for LAO* have been proposed:

m Use value iteration instead of policy iteration

m Terminate VI when the partial solution graph changes
m Expand all states in greedy fringe before backup
|

Order states (arbitrarily within cycles) and use backward
induction for updates

= last two combine to famous variant iLAO*

LAO* Summar
000000 0o

Theoretical properties

Using an admissible heuristic, LAO* converges to an optimal
solution without (necessarily) explicating all states.

Proof omitted.

[Je]

Summary

Summary

oe

Summary

m AO* finds optimal solutions for acyclic SSPs

m LAO* finds optimal solutions for SSPs

m Both algorithms differ from A* with backward induction in
way backups are performed

m Unlike previous optimal algorithms, both are able to find
optimal solution without explicating all states

	AO*
	LAO*
	Summary

