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From A∗ with Backward Induction to AO∗

A∗ with backward induction already very similar to AO∗

Support for uncertain outcomes missing

We focus on SSPs in these slides

Adaption to FH-MDPs simple
Careful: admissible heuristic in reward setting must not
underestimate true reward

Still two steps ahead:

restrict to acyclic probabilistic tasks ⇒ AO∗

allow general probabilistic tasks ⇒ LAO∗
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Transition Systems

AO∗ distinguishes three transition systems:

The acyclic SSP T = 〈S , L, c ,T , s0,S
?〉

⇒ given implicitly

The explicated graph T̂t = 〈Ŝt , L, c , T̂t , s0, S
?〉

⇒ the part of T explicitly considered during search

The partial solution graph T̂ ?
t = 〈Ŝ?

t , L, c , T̂
?
t , s0, S

?〉
⇒ The part of T̂t that contains best solution

s0 TT̂tT̂ ?
t
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Explicated Graph

Expanding a state s at time step t explicates all outcomes
s ′ ∈ succ(s, `) for all ` ∈ L(s) by adding them to explicated
graph:

T̂t = 〈Ŝt−1 ∪ succ(s), L, c , T̂t , s0, S
?},

where T̂t = T̂t−1 except that T̂t(s, `, s
′) = T (s, `, s ′)

for all ` ∈ L(s) and s ′ ∈ succ(s, `)

Explicated states are annotated with state-value estimate
V̂t(s) that describes estimated expected cost to goal at step t

When state s ′ is explicated and s ′ /∈ Ŝt−1, its state-value
estimate is initialized to V̂t(s

′) := h(s ′)

We call leaf states of T̂t fringe states
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Partial Solution Graph

The partial solution graph T̂ ?
t is the subgraph of T̂t that is

spanned by the smallest set of states Ŝ?
t that satisfies:

s0 ∈ Ŝ?
t

if s ∈ Ŝ?
t , s ′ ∈ Ŝt and T̂t(s, aV̂t

(s), s ′) > 0, then s ′ in Ŝ?
t

The partial solution graph forms a partial acyclic policy
defined in the initial state s0 and all non-leaf states that can
be reached by its execution

Leaf states that can be reached by the policy described by the
partial solution graph are the states in the greedy fringe
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Bellman backups

AO∗ does not maintain static open list

State-value estimates determine partial solution graph

Partial solution graph determines which state is a candidate
for expansion
Different strategies to select among candidates exist

(Some) state-value estimates are updated in time step t by
Bellman backups:

V̂t(s) = min
l∈L

c(l) +
∑
s′∈Ŝt

T̂t(s, l , s
′) · V̂t(s

′)
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AO∗

AO∗ for acyclic SSP T
explicate s0
while there is a greedy fringe state not in S?:

select a greedy fringe state s /∈ S?
expand s
perform Bellman backups of states in T̂ ?

t−1 in reverse order

return T̂ ?
t
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AO∗: Example (Blackboard)
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h(s) = 0 for goal states, otherwise in blue above or below s
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Theoretical properties

Theorem

Using an admissible heuristic, AO∗ converges to an optimal
solution without (necessarily) explicating all states.

Proof omitted.
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LAO∗

A∗ with backward induction finds sequential solutions (a plan)
in classical planning tasks

AO∗ finds acyclic solutions with branches (an acyclic policy)
in acyclic SSPs

LAO∗ is the generalization of AO∗ to cyclic solutions in cyclic
SSPs
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LAO∗

From plans to acyclic policies, we only changed backup
procedure from backward induction to Bellman backups

When solutions may be cyclic, we cannot perform updates in
reverse order

Bellman backups are essentially acyclic version of value
iteration

replacing Bellman backups with value iteration is LAO∗ variant

the original algorithm of Hansen & Zilberstein (1998) uses
policy iteration instead
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LAO∗

From plans to acyclic policies, we only changed backup
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iteration

replacing Bellman backups with value iteration is LAO∗ variant

the original algorithm of Hansen & Zilberstein (1998) uses
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LAO∗

LAO∗ for SSP T
explicate s0
while there is a greedy fringe state not in S?:

select a greedy fringe state s /∈ S?
expand s
perform policy iteration in T̂t

return T̂ ?
t
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LAO∗: Optimizations

Several optimizations for LAO∗ have been proposed:

Use value iteration instead of policy iteration

Terminate VI when the partial solution graph changes

Expand all states in greedy fringe before backup

Order states (arbitrarily within cycles) and use backward
induction for updates

⇒ last two combine to famous variant iLAO∗
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Theoretical properties

Theorem

Using an admissible heuristic, LAO∗ converges to an optimal
solution without (necessarily) explicating all states.

Proof omitted.
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Summary

AO∗ finds optimal solutions for acyclic SSPs

LAO∗ finds optimal solutions for SSPs

Both algorithms differ from A∗ with backward induction in
way backups are performed

Unlike previous optimal algorithms, both are able to find
optimal solution without explicating all states
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