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Heuristic Search: Recap

Heuristic Search Algorithms

Heuristic search algorithms use heuristic functions
to (partially or fully) determine the order of node expansion.

(From Lecture 15 of the Al course last semester)
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Best-first Search: Recap

Best-first Search

A best-first search is a heuristic search algorithm

that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f(n) value.

(From Lecture 15 of the Al course last semester)
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A*Search: Recap

A* is the best-first search algorithm with evaluation function
f(n) = g(n) + h(n.state).

(From Lecture 15 of the Al course last semester)
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A* Search (With Reopening): Example
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A" Search (With Reopening): Example
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From A*to AO*

m Equivalent of A* in (acyclic) probabilistic planning is AO*
m Even though we know A* and foundations of probabilistic
planning, the generalization is far from straightforward:

m eg., in A, g(n) is cost from root ny to n
m equivalent in AO™ is expected cost from ng to n
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Expected Cost to Reach State

Consider the following expansion of state sp:

Expected cost to reach any of the leaves is infinite or undefined
(neither is reached with probability 1).
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From A*to AO*

m Equivalent of A* in (acyclic) probabilistic planning is AO*
m Even though we know A* and foundations of probabilistic
planning, the generalization is far from straightforward:

m eg., in A, g(n) is cost from root ny to n

m equivalent in AO™ is expected cost from ng to n

m alternative could be expected cost from ng to n given n is
reached
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Expected Cost to Reach State Given It Is Reached

Consider the following expansion of state sp:

Conditional probability is misleading: s, would be expanded, which
isn't part of the best looking option
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The Best Looking Action

Consider the following expansion of state sp:

Conditional probability is misleading: s, would be expanded, which
isn't part of the best looking option:
with state-value estimate V/(s) := h(s), greedy action ay(s) = a1
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Expansion in Best Solution Graph

AO* uses different idea:
m AO™ keeps track of best solution graph

m AO™ expands a state that can be reached from sy by only
applying greedy actions

B = no g-value equivalent required
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Expansion in Best Solution Graph

AQO* uses different idea:

m AO™ keeps track of best solution graph

m AO™ expands a state that can be reached from sy by only
applying greedy actions
= no g-value equivalent required
Equivalent version of A* built on this idea can be derived
= A" with backward induction
Since change is non-trivial, we focus on A* variant now
and generalize later to acyclic probabilistic tasks (AO™)
and probabilistic tasks in general (LAO*)
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A* with Backward Induction
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Transition Systems

A* with backward induction distinguishes three transition systems:
m The transition system 7 = (S, L,c, T, sp, S*)
= given implicitly
m The explicated graph 7; = <§t, L c, Ty, s, S*)
= the part of T explicitly considered during search
m The partial solution graph Tr=(5¢ L, c, Tt 5,5
= The part of 7; that contains best solution
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Explicated Graph

m Expanding a state s at time step t explicates all successors
s’ € succ(s) by adding them to explicated graph:

Ti = (S_1 Usucc(s), L,c, Te_1 U{(s,],s') € T}, s, 5}

m Each explicated state is annotated with state-value estimate
V;(s) that describes estimated cost to a goal at time step t

m When state s’ is explicated and s’ ¢ Si_1, its state-value
estimate is initialized to V4(s') := h(s’)

m We call leaf states of 7; fringe states



A™ with Backward Induction
00000000

Partial Solution Graph

m The partial solution graph 7A;* is the subgraph of 7: that is
spanned by the smallest set of states $* that satisfies:
m 5 E .§;: . A .
mifs€ 5/ s €S and (s ap,(s),s) € Te, then s" in 5¢
m The partial solution graph forms a sequence of states
(S0, .., Sn), starting with the initial state sp and ending in the
greedy fringe state s,
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Backward Induction

m A" with backward induction does not maintain static open list
m State-value estimates determine partial solution graph
m Partial solution graph determines which state is expanded

m (Some) state-value estimates are updated in time step t by
backward induction:

Vi(s) = min_ c(/) + Vi(s")
(s,1,s"YET(s)
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A* with backward induction

A* with backward induction for classical planning task T

explicate sp
while greedy fringe state s ¢ S,

expand s

perform backward induction of states in 7/\;*_1 in reverse order
return 7
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Equivalence of A* and A* with Backward Induction

A* and A* with Backward Induction expand the same set of states
if run with identical admissible heuristic h and identical
tie-breaking criterion.

Proof Sketch.
The proof shows that

m there is always a unique state s in greedy fringe of A* with
backward induction

m f(s) = g(s) + h(s) is minimal among all fringe states

m g(s) of fringe node s encoded in greedy action choices

m h(s) of fringe node equal to V;(s)
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Summary

Non-trivial to generalize A* to probabilistic planning
For better understanding of AO*, we change A* towards AO*
Derived A* with backward induction, which is similar to AO*

and expands identical states as A*
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