
Planning and Optimization
G1. Heuristic Search: AO∗ & LAO∗ Part I

Gabriele Röger and Thomas Keller

Universität Basel

December 3, 2018



Heuristic Search Motivation A∗ with Backward Induction Summary

Content of this Course

Planning

Classical

Tasks

Progression/
Regression

Complexity

Heuristics

Probabilistic

MDPs

Blind Methods

Heuristic Search

Monte-Carlo
Methods



Heuristic Search Motivation A∗ with Backward Induction Summary

Heuristic Search



Heuristic Search Motivation A∗ with Backward Induction Summary

Heuristic Search: Recap

Heuristic Search Algorithms

Heuristic search algorithms use heuristic functions
to (partially or fully) determine the order of node expansion.

(From Lecture 15 of the AI course last semester)



Heuristic Search Motivation A∗ with Backward Induction Summary

Best-first Search: Recap

Best-first Search

A best-first search is a heuristic search algorithm
that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f (n) value.

(From Lecture 15 of the AI course last semester)



Heuristic Search Motivation A∗ with Backward Induction Summary

A∗Search: Recap

A∗Search

A∗ is the best-first search algorithm with evaluation function
f (n) = g(n) + h(n.state).

(From Lecture 15 of the AI course last semester)



Heuristic Search Motivation A∗ with Backward Induction Summary

A∗ Search (With Reopening): Example

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0
0 + 18

s1
8 + 12

s2
5 + 14

s5
15 + 4

s6

23 + 0

s3
18 + 12

s4
16 + 6

s5
12 + 4

s6

20 + 0

8 5

10
8 4 10

108



Heuristic Search Motivation A∗ with Backward Induction Summary

A∗ Search (With Reopening): Example

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0
0 + 18

s1
8 + 12

s2
5 + 14

s5
15 + 4

s6

23 + 0

s3
18 + 12

s4
16 + 6

s5
12 + 4

s6

20 + 0

8 5

10
8 4 10

108



Heuristic Search Motivation A∗ with Backward Induction Summary

Motivation



Heuristic Search Motivation A∗ with Backward Induction Summary

From A∗to AO∗

Equivalent of A∗ in (acyclic) probabilistic planning is AO∗

Even though we know A∗ and foundations of probabilistic
planning, the generalization is far from straightforward:

e.g., in A∗, g(n) is cost from root n0 to n
equivalent in AO∗ is expected cost from n0 to n

alternative could be expected cost from n0 to n given n is
reached



Heuristic Search Motivation A∗ with Backward Induction Summary

Expected Cost to Reach State

Consider the following expansion of state s0:

s0

a0 a1

s1

100

s2

1

s3

2

s4

2

1 1
.99 .01 .5 .5

Expected cost to reach any of the leaves is infinite or undefined
(neither is reached with probability 1).

assuming state-value estimate V (s) := h(s), a1 is greedy action



Heuristic Search Motivation A∗ with Backward Induction Summary

From A∗to AO∗

Equivalent of A∗ in (acyclic) probabilistic planning is AO∗

Even though we know A∗ and foundations of probabilistic
planning, the generalization is far from straightforward:

e.g., in A∗, g(n) is cost from root n0 to n
equivalent in AO∗ is expected cost from n0 to n
alternative could be expected cost from n0 to n given n is
reached



Heuristic Search Motivation A∗ with Backward Induction Summary

Expected Cost to Reach State Given It Is Reached

Consider the following expansion of state s0:

s0

a0 a1

s1

100

s2

1

s3

2

s4

2

1 1
.99 .01 .5 .5

Conditional probability is misleading: s2 would be expanded, which
isn’t part of the best looking option

:
with state-value estimate V̂ (s) := h(s), greedy action aV̂ (s) = a1



Heuristic Search Motivation A∗ with Backward Induction Summary

The Best Looking Action

Consider the following expansion of state s0:

s0

a0 a1

s1

100

s2

1

s3

2

s4

2

1 1
.99 .01 .5 .5

Conditional probability is misleading: s2 would be expanded, which
isn’t part of the best looking option:
with state-value estimate V̂ (s) := h(s), greedy action aV̂ (s) = a1



Heuristic Search Motivation A∗ with Backward Induction Summary

Expansion in Best Solution Graph

AO∗ uses different idea:

AO∗ keeps track of best solution graph

AO∗ expands a state that can be reached from s0 by only
applying greedy actions

⇒ no g -value equivalent required

Equivalent version of A∗ built on this idea can be derived
⇒ A∗ with backward induction

Since change is non-trivial, we focus on A∗ variant now

and generalize later to acyclic probabilistic tasks (AO∗)

and probabilistic tasks in general (LAO∗)



Heuristic Search Motivation A∗ with Backward Induction Summary

Expansion in Best Solution Graph

AO∗ uses different idea:

AO∗ keeps track of best solution graph

AO∗ expands a state that can be reached from s0 by only
applying greedy actions

⇒ no g -value equivalent required

Equivalent version of A∗ built on this idea can be derived
⇒ A∗ with backward induction

Since change is non-trivial, we focus on A∗ variant now

and generalize later to acyclic probabilistic tasks (AO∗)

and probabilistic tasks in general (LAO∗)



Heuristic Search Motivation A∗ with Backward Induction Summary

A∗ with Backward Induction



Heuristic Search Motivation A∗ with Backward Induction Summary

Transition Systems

A∗ with backward induction distinguishes three transition systems:

The transition system T = 〈S , L, c ,T , s0,S
?〉

⇒ given implicitly

The explicated graph T̂t = 〈Ŝt , L, c , T̂t , s0, S
?〉

⇒ the part of T explicitly considered during search

The partial solution graph T̂ ?
t = 〈Ŝ?

t , L, c , T̂
?
t , s0, S

?〉
⇒ The part of T̂t that contains best solution

s0 TT̂tT̂ ?
t



Heuristic Search Motivation A∗ with Backward Induction Summary

Explicated Graph

Expanding a state s at time step t explicates all successors
s ′ ∈ succ(s) by adding them to explicated graph:

T̂t = 〈Ŝt−1 ∪ succ(s), L, c , T̂t−1 ∪ {〈s, l , s ′〉 ∈ T}, s0, S?}

Each explicated state is annotated with state-value estimate
V̂t(s) that describes estimated cost to a goal at time step t

When state s ′ is explicated and s ′ /∈ Ŝt−1, its state-value
estimate is initialized to V̂t(s

′) := h(s ′)

We call leaf states of T̂t fringe states



Heuristic Search Motivation A∗ with Backward Induction Summary

Partial Solution Graph

The partial solution graph T̂ ?
t is the subgraph of T̂t that is

spanned by the smallest set of states Ŝ?
t that satisfies:

s0 ∈ Ŝ?
t

if s ∈ Ŝ?
t , s ′ ∈ Ŝt and 〈s, aV̂t(s)

(s), s ′〉 ∈ T̂t , then s ′ in Ŝ?
t

The partial solution graph forms a sequence of states
〈s0, . . . , sn〉, starting with the initial state s0 and ending in the
greedy fringe state sn



Heuristic Search Motivation A∗ with Backward Induction Summary

Backward Induction

A∗ with backward induction does not maintain static open list

State-value estimates determine partial solution graph

Partial solution graph determines which state is expanded

(Some) state-value estimates are updated in time step t by
backward induction:

V̂t(s) = min
〈s,l ,s′〉∈T̂t(s)

c(l) + V̂t(s
′)



Heuristic Search Motivation A∗ with Backward Induction Summary

A∗ with backward induction

A∗ with backward induction for classical planning task T
explicate s0
while greedy fringe state s /∈ S?:

expand s
perform backward induction of states in T̂ ?

t−1 in reverse order

return T̂ ?
t



Heuristic Search Motivation A∗ with Backward Induction Summary

A∗ with backward induction

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0

s0

18

s1
12

s2
141818

s3
12

s4
6

s5
88

s6
00

88 55

10

8
4 10

8



Heuristic Search Motivation A∗ with Backward Induction Summary

A∗ with backward induction

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0

s0

19

s1

s1

12
s2

s2

14

1818

s3
12

s4
6

s5
88

s6
00

8

8

5

5

10

8
4 10

8



Heuristic Search Motivation A∗ with Backward Induction Summary

A∗ with backward induction

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0
19

s1

s1

12
s2

s2

14

1818

s3
12

s4
6

s5

s5

4

88

s6
00

8

8

5

5

10

8
4

10

8



Heuristic Search Motivation A∗ with Backward Induction Summary

A∗ with backward induction

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0
20

s1

s1

12
s2

14

18

18

s3
12

s4
6

s5

s5

8

88

s6
0

00

8

8

5

5

10

8
4

10

8



Heuristic Search Motivation A∗ with Backward Induction Summary

A∗ with backward induction

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0
20

s1

s1

12
s2

1418

18

s3
12

s4
6

s5
8

8

s6
0

0

8

8

5

5

10

8
4 10

8



Heuristic Search Motivation A∗ with Backward Induction Summary

A∗ with backward induction

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0
20

s1
12

s2

1418

18

s3
12

s4
6

s5

8

8

s6s6

0

0

8

8

5

5

10

8
4 10

8



Heuristic Search Motivation A∗ with Backward Induction Summary

Equivalence of A∗ and A∗ with Backward Induction

Theorem

A∗ and A∗ with Backward Induction expand the same set of states
if run with identical admissible heuristic h and identical
tie-breaking criterion.

Proof Sketch.

The proof shows that

there is always a unique state s in greedy fringe of A∗ with
backward induction

f (s) = g(s) + h(s) is minimal among all fringe states

g(s) of fringe node s encoded in greedy action choices

h(s) of fringe node equal to V̂t(s)



Heuristic Search Motivation A∗ with Backward Induction Summary

Summary



Heuristic Search Motivation A∗ with Backward Induction Summary

Summary

Non-trivial to generalize A∗ to probabilistic planning

For better understanding of AO∗, we change A∗ towards AO∗

Derived A∗ with backward induction, which is similar to AO∗

and expands identical states as A∗


	Heuristic Search
	Motivation
	A* with Backward Induction
	Summary

