Planning and Optimization
G1. Heuristic Search: AO* & LAO* Part |

Gabriele Roger and Thomas Keller

Universitat Basel

December 3, 2018

Content of this Course

—{ Tasks ‘

Progression/

. Regression
Classical

~{ Complexity ‘

—{ Heuristics ‘

lning]— } ‘
MDPs

— Blind Methods |

Monte-Carlo
Methods

Heuristic Search

Heuristic Search
00000

Heuristic Search: Recap

Heuristic Search Algorithms

Heuristic search algorithms use heuristic functions
to (partially or fully) determine the order of node expansion.

(From Lecture 15 of the Al course last semester)

Heuristic Search ard Induction

[e]e] le]e}

Best-first Search: Recap

Best-first Search

A best-first search is a heuristic search algorithm

that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f(n) value.

(From Lecture 15 of the Al course last semester)

Heuristic Search
0000

A*Search: Recap

A* is the best-first search algorithm with evaluation function
f(n) = g(n) + h(n.state).

(From Lecture 15 of the Al course last semester)

Heuristic Search Motivation
0000e 00000C

A* Search (With Reopening): Example

Heuristic Search Motivation
0000e 000000

A" Search (With Reopening): Example

2040 23+0

Motivation
©00000

Motivation

Motivation ard Induction

O@0000

From A*to AO*

m Equivalent of A* in (acyclic) probabilistic planning is AO*
m Even though we know A* and foundations of probabilistic
planning, the generalization is far from straightforward:

m eg., in A, g(n) is cost from root ny to n
m equivalent in AO™ is expected cost from ng to n

Heuristic Search Motivation A h Backward Induction Summar

0000« 008000

Expected Cost to Reach State

Consider the following expansion of state sp:

Expected cost to reach any of the leaves is infinite or undefined
(neither is reached with probability 1).

Motivation / ard Induction
000800 5

From A*to AO*

m Equivalent of A* in (acyclic) probabilistic planning is AO*
m Even though we know A* and foundations of probabilistic
planning, the generalization is far from straightforward:

m eg., in A, g(n) is cost from root ny to n

m equivalent in AO™ is expected cost from ng to n

m alternative could be expected cost from ng to n given n is
reached

Motivation / h Backward Induction Summar
000000 ofe

Expected Cost to Reach State Given It Is Reached

Consider the following expansion of state sp:

Conditional probability is misleading: s, would be expanded, which
isn't part of the best looking option

Heuristic Search Motivation A h Backward Induction Summar

0000« 000000

The Best Looking Action

Consider the following expansion of state sp:

Conditional probability is misleading: s, would be expanded, which
isn't part of the best looking option:
with state-value estimate V/(s) := h(s), greedy action ay(s) = a1

Motivation
00000e

Expansion in Best Solution Graph

AO* uses different idea:
m AO™ keeps track of best solution graph

m AO™ expands a state that can be reached from sy by only
applying greedy actions

B = no g-value equivalent required

Heuristic Search Motivation / 3 vard Induction

0000« 000000

Expansion in Best Solution Graph

AQO* uses different idea:

m AO™ keeps track of best solution graph

m AO™ expands a state that can be reached from sy by only
applying greedy actions
= no g-value equivalent required
Equivalent version of A* built on this idea can be derived
= A" with backward induction
Since change is non-trivial, we focus on A* variant now
and generalize later to acyclic probabilistic tasks (AO™)
and probabilistic tasks in general (LAO*)

A* with Backward Induction

00000000

A* with Backward Induction

A* with Backward Induction
0®000000

Transition Systems

A* with backward induction distinguishes three transition systems:
m The transition system 7 = (S, L,c, T, sp, S*)
= given implicitly
m The explicated graph 7; = <§t, L c, Ty, s, S*)
= the part of T explicitly considered during search
m The partial solution graph Tr=(5¢ L, c, Tt 5,5
= The part of 7; that contains best solution

Search o A™ with Backward Induction
G 00000000

Explicated Graph

m Expanding a state s at time step t explicates all successors
s’ € succ(s) by adding them to explicated graph:

Ti = (S_1 Usucc(s), L,c, Te_1 U{(s,],s') € T}, s, 5}

m Each explicated state is annotated with state-value estimate
V;(s) that describes estimated cost to a goal at time step t

m When state s’ is explicated and s’ ¢ Si_1, its state-value
estimate is initialized to V4(s') := h(s’)

m We call leaf states of 7; fringe states

A™ with Backward Induction
00000000

Partial Solution Graph

m The partial solution graph 7A;* is the subgraph of 7: that is
spanned by the smallest set of states $* that satisfies:
m 5 E .§;: . A .
mifs€ 5/ s €S and (s ap,(s),s) € Te, then s" in 5¢
m The partial solution graph forms a sequence of states
(S0, .., Sn), starting with the initial state sp and ending in the
greedy fringe state s,

Search y o A™ with Backward Induction

[o]e]e]e] lelele]

Backward Induction

m A" with backward induction does not maintain static open list
m State-value estimates determine partial solution graph
m Partial solution graph determines which state is expanded

m (Some) state-value estimates are updated in time step t by
backward induction:

Vi(s) = min_ c(/) + Vi(s")
(s,1,s"YET(s)

A™ with Backward Induction

00000e00

A* with backward induction

A* with backward induction for classical planning task T

explicate sp
while greedy fringe state s ¢ S,

expand s

perform backward induction of states in 7/\;*_1 in reverse order
return 7

A™ with Backward Induction

00000080

A™ with Backward Induction

00000080

A™ with Backward Induction

00000080

A™ with Backward Induction

00000080

A™ with Backward Induction

00000080

A™ with Backward Induction

00000080

Vlotivation A* with Backward Induction Summary
ole)OO0 0000000e ole

Equivalence of A* and A* with Backward Induction

A* and A* with Backward Induction expand the same set of states
if run with identical admissible heuristic h and identical
tie-breaking criterion.

Proof Sketch.
The proof shows that

m there is always a unique state s in greedy fringe of A* with
backward induction

m f(s) = g(s) + h(s) is minimal among all fringe states

m g(s) of fringe node s encoded in greedy action choices

m h(s) of fringe node equal to V;(s)

[Je]

Summary

ard Induction Summary

oe

Summary

Non-trivial to generalize A* to probabilistic planning
For better understanding of AO*, we change A* towards AO*
Derived A* with backward induction, which is similar to AO*

and expands identical states as A*

	Heuristic Search
	Motivation
	A* with Backward Induction
	Summary

