

Planning and Optimization

G1. Heuristic Search: AO* & LAO* Part I

Gabriele Röger and Thomas Keller

Universität Basel

December 3, 2018

Planning and Optimization

December 3, 2018 — G1. Heuristic Search: AO* & LAO* Part I

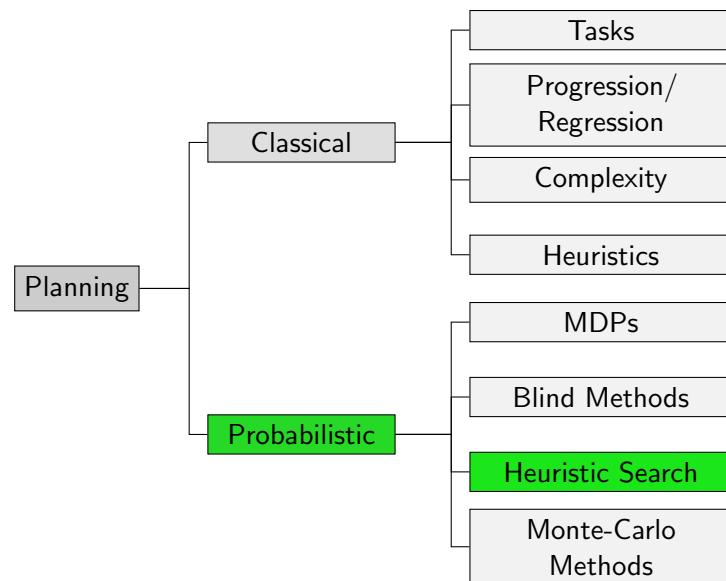
G1.1 Heuristic Search

G1.2 Motivation

G1.3 A* with Backward Induction

G1.4 Summary

Content of this Course



G1.1 Heuristic Search

Heuristic Search: Recap

Heuristic Search Algorithms

Heuristic search algorithms use heuristic functions to (partially or fully) determine the order of node expansion.

(From Lecture 15 of the AI course last semester)

Best-first Search: Recap

Best-first Search

A **best-first search** is a heuristic search algorithm that evaluates search nodes with an **evaluation function f** and always expands a node n with minimal $f(n)$ value.

(From Lecture 15 of the AI course last semester)

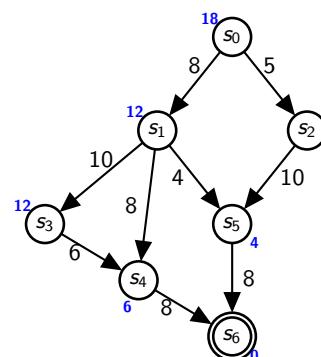
A*Search: Recap

A*Search

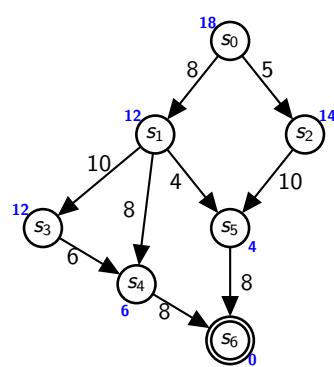
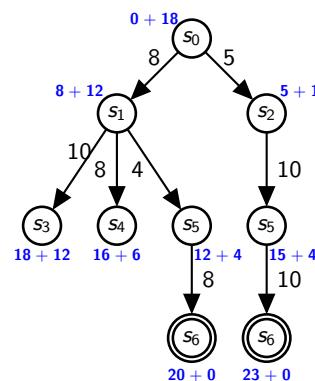
A* is the best-first search algorithm with evaluation function $f(n) = g(n) + h(n.state)$.

(From Lecture 15 of the AI course last semester)

A* Search (With Reopening): Example



A* Search (With Reopening): Example



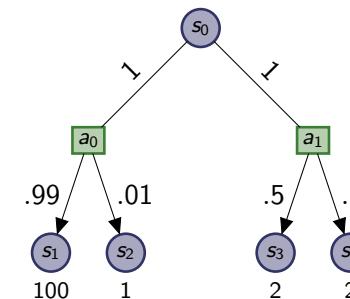
G1.2 Motivation

From A* to AO*

- Equivalent of A* in (acyclic) probabilistic planning is AO*
- Even though we know A* and foundations of probabilistic planning, the generalization is **far from straightforward**:
 - e.g., in A*, $g(n)$ is cost from root n_0 to n
 - equivalent in AO* is **expected cost** from n_0 to n

Expected Cost to Reach State

Consider the following expansion of state s_0 :



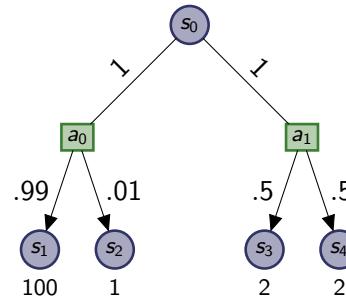
Expected cost to reach **any of the leaves** is **infinite** or undefined (neither is reached with probability 1).

From A* to AO*

- ▶ Equivalent of A* in (acyclic) probabilistic planning is AO*
- ▶ Even though we know A* and foundations of probabilistic planning, the generalization is **far from straightforward**:
 - ▶ e.g., in A*, $g(n)$ is cost from root n_0 to n
 - ▶ equivalent in AO* is **expected cost** from n_0 to n
 - ▶ alternative could be **expected cost** from n_0 to n **given n is reached**

The Best Looking Action

Consider the following expansion of state s_0 :

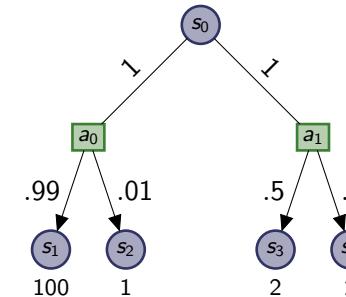


Conditional probability is **misleading**: s_2 would be expanded, which isn't part of the **best looking** option:

with **state-value estimate** $\hat{V}(s) := h(s)$, **greedy action** $a_{\hat{V}}(s) = a_1$

Expected Cost to Reach State Given It Is Reached

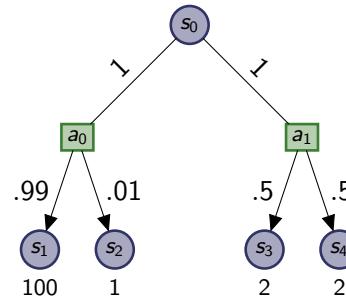
Consider the following expansion of state s_0 :



Conditional probability is **misleading**: s_2 would be expanded, which isn't part of the **best looking** option

The Best Looking Action

Consider the following expansion of state s_0 :



Conditional probability is **misleading**: s_2 would be expanded, which isn't part of the **best looking** option:

with **state-value estimate** $\hat{V}(s) := h(s)$, **greedy action** $a_{\hat{V}}(s) = a_1$

Expansion in Best Solution Graph

AO* uses different idea:

- ▶ AO* keeps track of **best solution graph**
- ▶ AO* expands a state that can be **reached from s_0** by only **applying greedy actions**
- ▶ \Rightarrow no g -value equivalent **required**

Expansion in Best Solution Graph

AO* uses different idea:

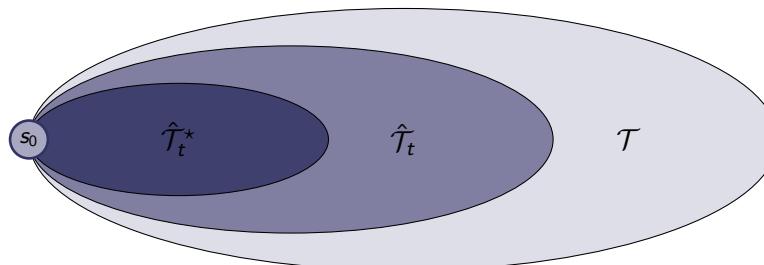
- ▶ AO* keeps track of **best solution graph**
- ▶ AO* expands a state that can be **reached from s_0** by only **applying greedy actions**
- ▶ \Rightarrow no g -value equivalent **required**
- ▶ Equivalent version of A* built on this idea can be derived
 \Rightarrow **A* with backward induction**
- ▶ Since change is non-trivial, we focus on A* variant now
- ▶ and generalize later to acyclic probabilistic tasks (AO*)
- ▶ and probabilistic tasks in general (LAO*)

G1.3 A* with Backward Induction

Transition Systems

A* with backward induction distinguishes **three** transition systems:

- ▶ The transition system $\mathcal{T} = \langle S, L, c, T, s_0, S^* \rangle$
 \Rightarrow given **implicitly**
- ▶ The **explicated graph** $\hat{\mathcal{T}}_t = \langle \hat{S}_t, L, c, \hat{T}_t, s_0, S^* \rangle$
 \Rightarrow the part of \mathcal{T} explicitly considered during search
- ▶ The **partial solution graph** $\hat{\mathcal{T}}_t^* = \langle \hat{S}_t^*, L, c, \hat{T}_t^*, s_0, S^* \rangle$
 \Rightarrow The part of $\hat{\mathcal{T}}_t$ that contains best solution



Explicated Graph

- ▶ **Expanding** a state s at time step t **explicates** all successors $s' \in \text{succ}(s)$ by adding them to **explicated graph**:

$$\hat{\mathcal{T}}_t = \langle \hat{S}_{t-1} \cup \text{succ}(s), L, c, \hat{T}_{t-1} \cup \{ \langle s, l, s' \rangle \in T \}, s_0, S^* \rangle$$

- ▶ Each explicated state is annotated with **state-value estimate** $\hat{V}_t(s)$ that describes **estimated cost to a goal** at time step t
- ▶ When state s' is explicated and $s' \notin \hat{S}_{t-1}$, its state-value estimate is **initialized** to $\hat{V}_t(s') := h(s')$
- ▶ We call **leaf states** of $\hat{\mathcal{T}}_t$ **fringe states**

Partial Solution Graph

- ▶ The **partial solution graph** \hat{T}_t^* is the subgraph of \hat{T}_t that is spanned by the **smallest set** of states \hat{S}_t^* that satisfies:
 - ▶ $s_0 \in \hat{S}_t^*$
 - ▶ if $s \in \hat{S}_t^*$, $s' \in \hat{S}_t$ and $\langle s, a_{\hat{V}_t(s)}(s), s' \rangle \in \hat{T}_t$, then s' in \hat{S}_t^*
- ▶ The partial solution graph forms a **sequence of states** $\langle s_0, \dots, s_n \rangle$, starting with the initial state s_0 and ending in the **greedy fringe state** s_n

A* with backward induction

```

A* with backward induction for classical planning task  $\mathcal{T}$ 
explicate  $s_0$ 
while greedy fringe state  $s \notin S_*$ :
  expand  $s$ 
  perform backward induction of states in  $\hat{T}_{t-1}^*$  in reverse order
return  $\hat{T}_t^*$ 

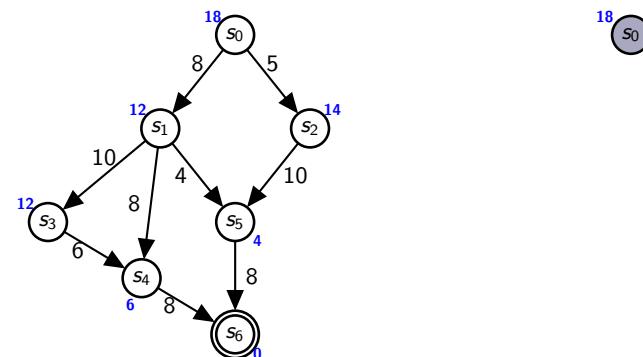
```

Backward Induction

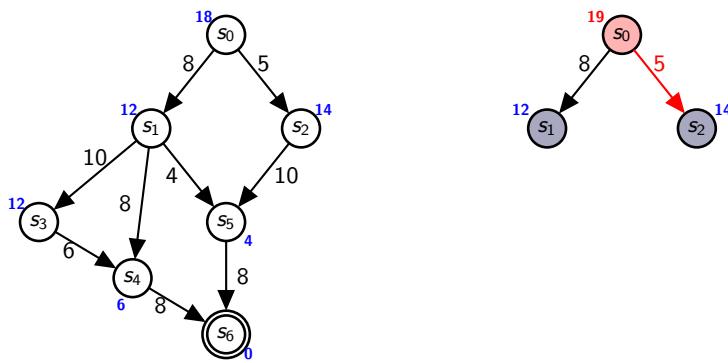
- ▶ A* with backward induction does not maintain **static open list**
- ▶ **State-value estimates** determine **partial solution graph**
- ▶ **Partial solution graph** determines which state is expanded
- ▶ (Some) state-value estimates are **updated** in time step t by **backward induction**:

$$\hat{V}_t(s) = \min_{\langle s, l, s' \rangle \in \hat{T}_t(s)} c(l) + \hat{V}_t(s')$$

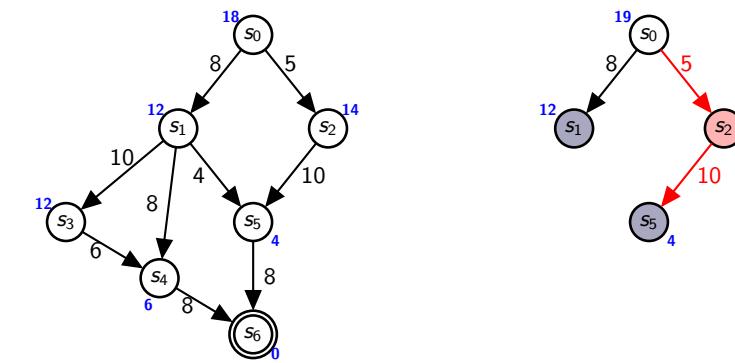
A* with backward induction



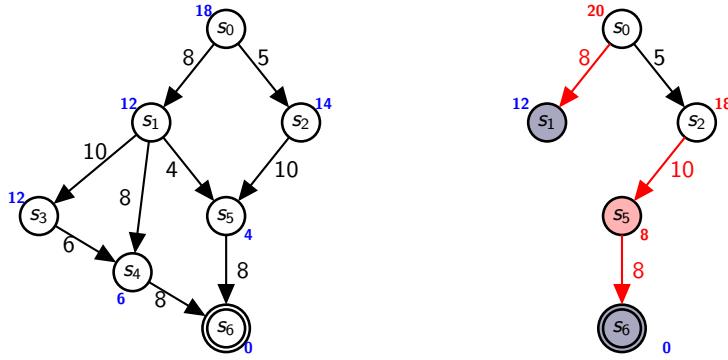
A* with backward induction



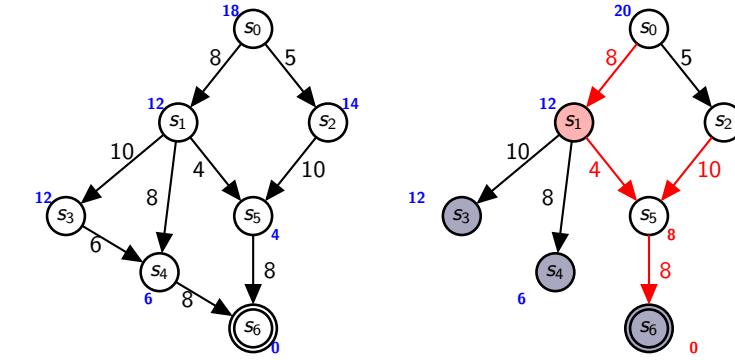
A* with backward induction



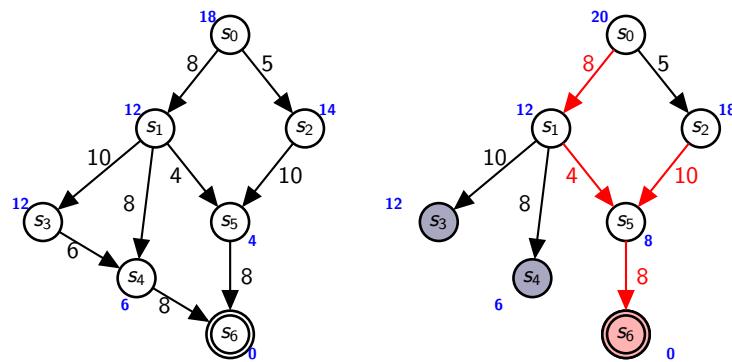
A* with backward induction



A* with backward induction



A* with backward induction



G1. Heuristic Search: AO* & LAO* Part I

Equivalence of A* and A* with Backward Induction

Theorem

A and A* with Backward Induction expand the same set of states if run with identical admissible heuristic h and identical tie-breaking criterion.*

Proof Sketch.

The proof shows that

- ▶ there is always a unique state s in greedy fringe of A* with backward induction
- ▶ $f(s) = g(s) + h(s)$ is minimal among all fringe states
- ▶ $g(s)$ of fringe node s encoded in greedy action choices
- ▶ $h(s)$ of fringe node equal to $\hat{V}_t(s)$

G1.4 Summary

Summary

- ▶ Non-trivial to **generalize** A* to probabilistic planning
- ▶ For better understanding of AO*, we **change** A* towards AO*
- ▶ Derived **A* with backward induction**, which is **similar** to AO*
- ▶ and expands **identical states** as A*