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G1.1 Heuristic Search
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Heuristic Search: Recap

Heuristic Search Algorithms

Heuristic search algorithms use heuristic functions
to (partially or fully) determine the order of node expansion.

(From Lecture 15 of the AI course last semester)
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Best-first Search: Recap

Best-first Search
A best-first search is a heuristic search algorithm
that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f (n) value.

(From Lecture 15 of the AI course last semester)
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A∗Search: Recap

A∗Search

A∗ is the best-first search algorithm with evaluation function
f (n) = g(n) + h(n.state).

(From Lecture 15 of the AI course last semester)
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A∗ Search (With Reopening): Example
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G1.2 Motivation
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G1. Heuristic Search: AO∗ & LAO∗ Part I Motivation

From A∗to AO∗

I Equivalent of A∗ in (acyclic) probabilistic planning is AO∗

I Even though we know A∗ and foundations of probabilistic
planning, the generalization is far from straightforward:

I e.g., in A∗, g(n) is cost from root n0 to n
I equivalent in AO∗ is expected cost from n0 to n

I alternative could be expected cost from n0 to n given n is
reached
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Expected Cost to Reach State

Consider the following expansion of state s0:
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Expected cost to reach any of the leaves is infinite or undefined
(neither is reached with probability 1).

assuming state-value estimate V (s) := h(s), a1 is greedy action
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G1. Heuristic Search: AO∗ & LAO∗ Part I Motivation

Expected Cost to Reach State Given It Is Reached

Consider the following expansion of state s0:
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Conditional probability is misleading: s2 would be expanded, which
isn’t part of the best looking option

:
with state-value estimate V̂ (s) := h(s), greedy action aV̂ (s) = a1
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The Best Looking Action

Consider the following expansion of state s0:
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Conditional probability is misleading: s2 would be expanded, which
isn’t part of the best looking option:
with state-value estimate V̂ (s) := h(s), greedy action aV̂ (s) = a1
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Expansion in Best Solution Graph

AO∗ uses different idea:

I AO∗ keeps track of best solution graph

I AO∗ expands a state that can be reached from s0 by only
applying greedy actions

I ⇒ no g -value equivalent required

I Equivalent version of A∗ built on this idea can be derived
⇒ A∗ with backward induction

I Since change is non-trivial, we focus on A∗ variant now

I and generalize later to acyclic probabilistic tasks (AO∗)

I and probabilistic tasks in general (LAO∗)
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G1. Heuristic Search: AO∗ & LAO∗ Part I A∗ with Backward Induction

G1.3 A∗ with Backward Induction
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G1. Heuristic Search: AO∗ & LAO∗ Part I A∗ with Backward Induction

Transition Systems

A∗ with backward induction distinguishes three transition systems:

I The transition system T = 〈S , L, c ,T , s0,S
?〉

⇒ given implicitly

I The explicated graph T̂t = 〈Ŝt , L, c , T̂t , s0, S
?〉

⇒ the part of T explicitly considered during search

I The partial solution graph T̂ ?
t = 〈Ŝ?

t , L, c , T̂
?
t , s0, S

?〉
⇒ The part of T̂t that contains best solution

s0 TT̂tT̂ ?
t
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Explicated Graph

I Expanding a state s at time step t explicates all successors
s ′ ∈ succ(s) by adding them to explicated graph:

T̂t = 〈Ŝt−1 ∪ succ(s), L, c, T̂t−1 ∪ {〈s, l , s ′〉 ∈ T}, s0, S?}

I Each explicated state is annotated with state-value estimate
V̂t(s) that describes estimated cost to a goal at time step t

I When state s ′ is explicated and s ′ /∈ Ŝt−1, its state-value
estimate is initialized to V̂t(s

′) := h(s ′)

I We call leaf states of T̂t fringe states
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Partial Solution Graph

I The partial solution graph T̂ ?
t is the subgraph of T̂t that is

spanned by the smallest set of states Ŝ?
t that satisfies:

I s0 ∈ Ŝ?
t

I if s ∈ Ŝ?
t , s ′ ∈ Ŝt and 〈s, aV̂t(s)

(s), s ′〉 ∈ T̂t , then s ′ in Ŝ?
t

I The partial solution graph forms a sequence of states
〈s0, . . . , sn〉, starting with the initial state s0 and ending in the
greedy fringe state sn
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Backward Induction

I A∗ with backward induction does not maintain static open list

I State-value estimates determine partial solution graph

I Partial solution graph determines which state is expanded

I (Some) state-value estimates are updated in time step t by
backward induction:

V̂t(s) = min
〈s,l ,s′〉∈T̂t(s)

c(l) + V̂t(s
′)
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A∗ with backward induction

A∗ with backward induction for classical planning task T
explicate s0
while greedy fringe state s /∈ S?:

expand s
perform backward induction of states in T̂ ?

t−1 in reverse order

return T̂ ?
t
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A∗ with backward induction
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A∗ with backward induction
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A∗ with backward induction
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A∗ with backward induction
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A∗ with backward induction
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A∗ with backward induction
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Equivalence of A∗ and A∗ with Backward Induction

Theorem

A∗ and A∗ with Backward Induction expand the same set of states
if run with identical admissible heuristic h and identical
tie-breaking criterion.

Proof Sketch.
The proof shows that

I there is always a unique state s in greedy fringe of A∗ with
backward induction

I f (s) = g(s) + h(s) is minimal among all fringe states

I g(s) of fringe node s encoded in greedy action choices

I h(s) of fringe node equal to V̂t(s)
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G1.4 Summary
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Summary

I Non-trivial to generalize A∗ to probabilistic planning

I For better understanding of AO∗, we change A∗ towards AO∗

I Derived A∗ with backward induction, which is similar to AO∗

I and expands identical states as A∗

G. Röger, T. Keller (Universität Basel) Planning and Optimization December 3, 2018 32 / 32


	Heuristic Search
	Motivation
	A* with Backward Induction
	Summary

