



| Planning and Optim<br>November 28, 2018 — F5. De | ization<br>terminization  |                   |        |
|--------------------------------------------------|---------------------------|-------------------|--------|
| F5.1 Suboptimal Probabilistic Planning           |                           |                   |        |
| F5.2 Estimated Policy Evaluation                 |                           |                   |        |
| F5.3 Determinization                             |                           |                   |        |
| F5.4 Summary                                     |                           |                   |        |
|                                                  |                           |                   |        |
| G. Röger, T. Keller (Universität Basel)          | Planning and Optimization | November 28, 2018 | 2 / 30 |



G. Röger, T. Keller (Universität Basel)

F5. Determinization

Planning and Optimization

Suboptimal Probabilistic Planning



### Interleaved Planning & Execution in Practice

- + avoid loss of precision that often comes with compact description of executable policy
- + do not waste time with planning for states that are never reached during execution
- poor decisions can be avoided by spending more time with deliberation before execution
- in SSPs, this can even mean that computed policy is not proper and execution never reaches the goal

Planning and Optimization

G. Röger, T. Keller (Universität Basel)

November 28, 2018

F5. Determinization



# F5.2 Estimated Policy Evaluation

### Estimated Policy Evaluation

F5. Determinization

F5. Determinization

- Estimate quality of policy  $\pi$
- Execute  $\pi$  for  $n \in \mathbb{N}$  times
- Let ρ<sup>i</sup><sub>π</sub> denote the accumulated cost (SSP) or reward (FH-MDP) of the *i*-th run (execution) of π. Then use

$$ilde{V}_{\pi} := rac{1}{n} \cdot \sum_{i=1}^n 
ho^i_{\pi}$$

as quality estimate.

With strong law of large numbers we have

$$ilde{V}_{\pi} o V_{\pi}( extsf{s}_0)$$
 for  $extsf{n} o \infty$ 

► Good approximation if *n* sufficiently large

9 / 30

Estimated Policy Evaluation

Planning and Optimization

Estimated Policy Evaluation

Estimated Policy Evaluation





















# F5. Determinization Determinization: Weaknesses Important parts of the MDP can become unreachable $t = \frac{1}{2} + \frac{1}{2} +$







F5. Determinization Determinizations: Weaknesses Example Consider the operator  $o = \langle \top, (p_{11} : v_1 | p_{12} : \neg v_1) \land \cdots \land (p_{n1} : v_n | p_{n2} : \neg v_n), 1 \rangle$ of a planning task with set of variables  $V = \{v_1, \dots, v_n\}$ . All states in the set of states S over V are possible outcomes of o, and the number of deterministic operators in the all-outcomes determinization is hence 2<sup>n</sup>. P5. Determinizations: Weaknesses
Single-outcome determinizations: important parts of state space can become unreachable \$\Rightarrow\$ poor policy or unsolvable
All-outcomes determinization: utterly optimistic
All-outcomes determinization: number of outcomes can be exponential in the number of parallel probabilistic effects Note: Unlike the previous, this is a problem on the syntactic level

## Determinizations in Practice

F5. Determinization

Despite the inherent weaknesses, determinizations have been used successfully in practice. Consider the winners of all probabilistic tracks of the International Planning Competition:

- 2004: FF-Replan (Yoon, Fern & Givan) interleaves planning & execution of plan in determinization
- 2006: FPG (Buffet & Aberdeen) learns a policy utilizing FF-Replan
- 2008: RFF (Teichteil-Königsbuch, Infantes & Kuter) extends determinization-based plan to policy
- 2011 and 2014: PROST-2011 (Keller & Eyerich) and PROST-2014 (Keller & Geißer) use determinization-based lookahead heuristic
- 2018: PROST-DD (Geißer & Speck) use BDD representation of determinization as heuristic

G. Röger, T. Keller (Universität Basel)

Determinization

