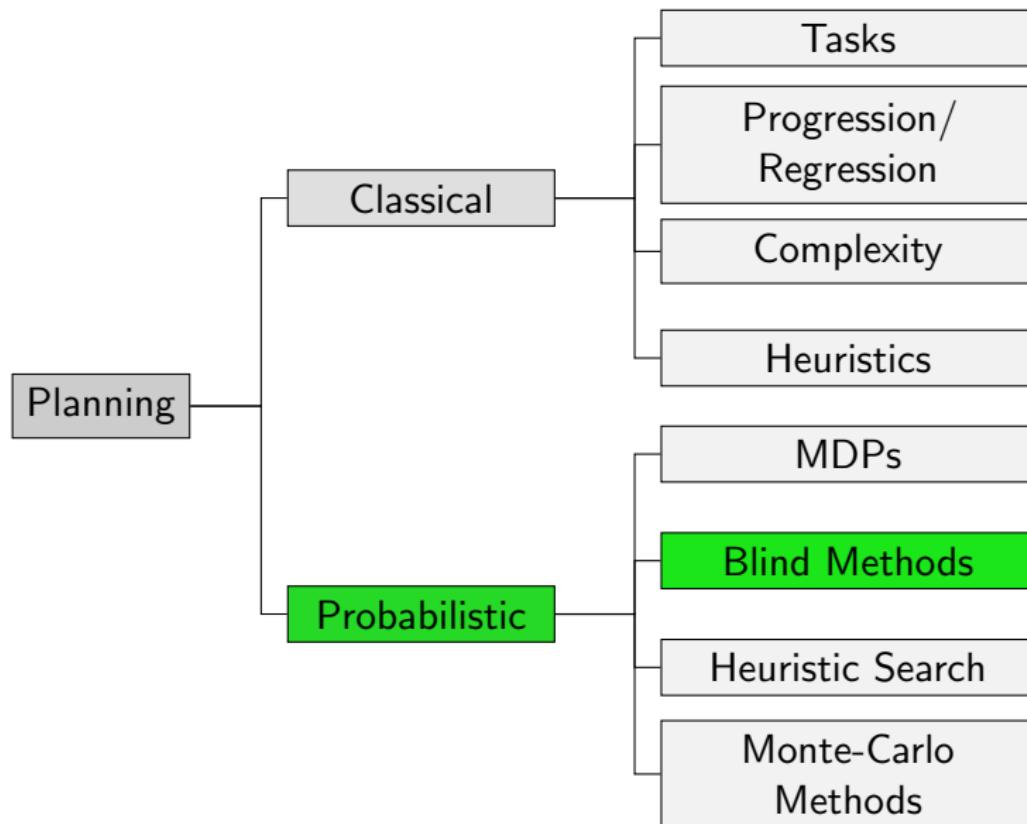


Planning and Optimization


F3. Blind Methods: Policy Iteration

Gabriele Röger and Thomas Keller

Universität Basel

November 26, 2018

Content of this Course

Policy Evaluation
●oooooooooooo

Policy Iteration
ooooooo

Summary
oo

Policy Evaluation

Expected Values under Uncertainty

Definition (Expected Value of a Random Variable)

Let V be a random variable with $n \in \mathbb{N}$ outcomes $d_1, \dots, d_n \in \mathbb{R}$, and let d_i for $i = 1, \dots, n$ occur with probability $p_i \in [0, 1]$ s.t. $\sum_{i=1}^n p_i = 1$.

The **expected value** of X is $\mathbb{E}[X] = \sum_{i=1}^n (p_i \cdot d_i)$.

Example: Expected Values under Uncertainty

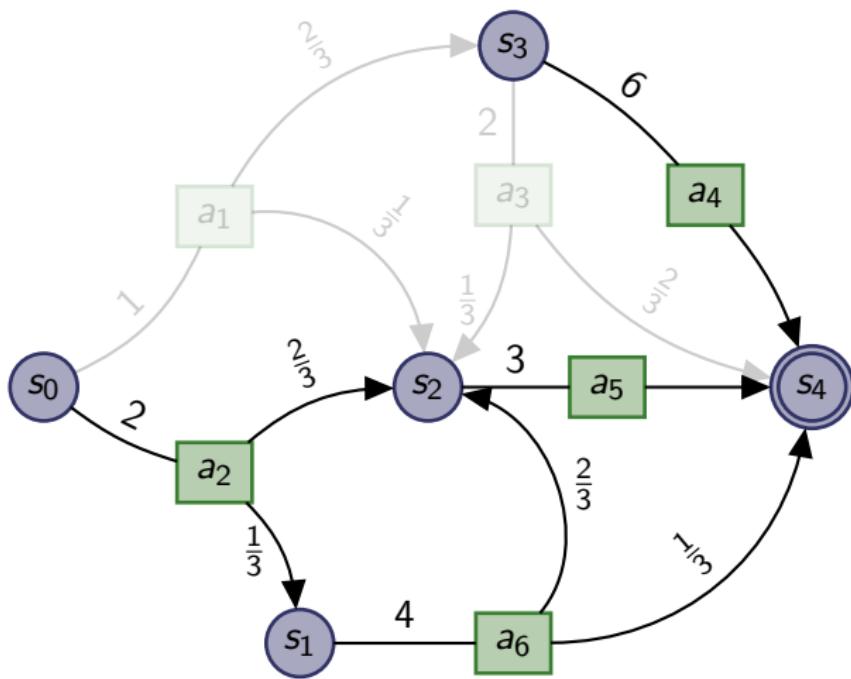
Example

The expected payoff of placing one bet in Swiss Lotto for a cost of 2.50 with (simplified) payout structure

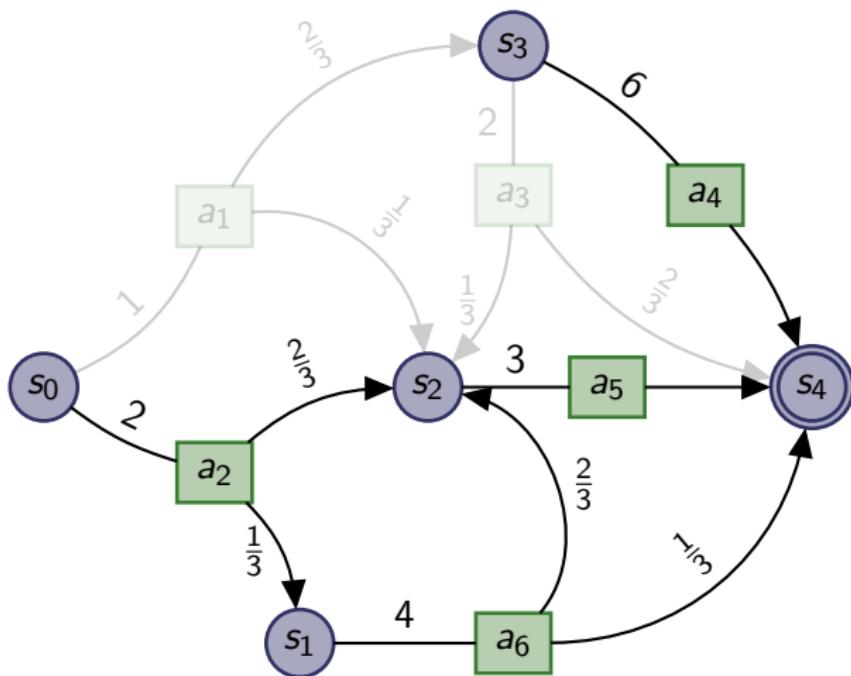
- $d_1 = 30.000.000$ with $p_1 = \frac{1}{31474716}$ (6+1)
- $d_2 = 1.000.000$ with $p_2 = \frac{1}{5245786}$ (6)
- $d_4 = 5.000$ with $p_4 = \frac{1}{850668}$ (5)
- $d_4 = 50$ with $p_4 = \frac{1}{111930}$ (4)
- $d_5 = 10$ with $p_5 = \frac{1}{11480}$ is (3)

$$\mathbb{E}[X] = \left(\frac{30000000}{31474716} + \frac{1000000}{5245786} + \frac{5000}{850668} + \frac{50}{111930} + \frac{10}{11480} \right) - 2.5 \approx -1.35.$$

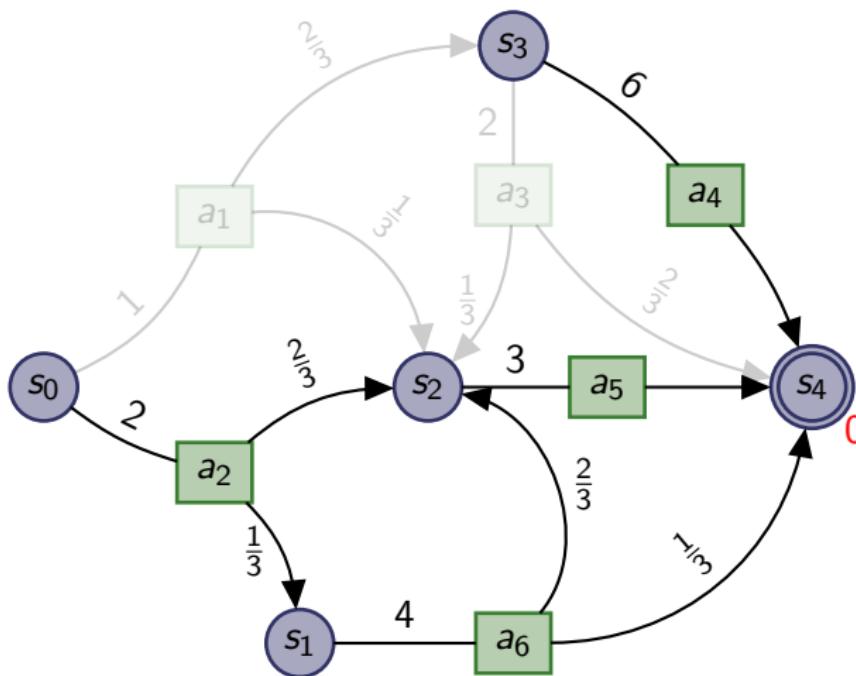
Proper SSP Policy

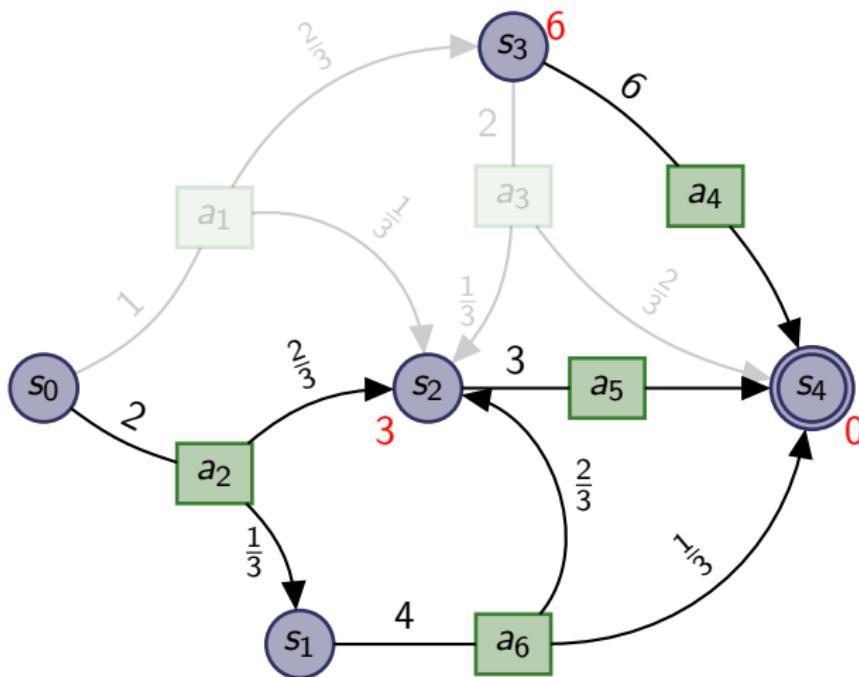

Definition (Proper SSP Policy)

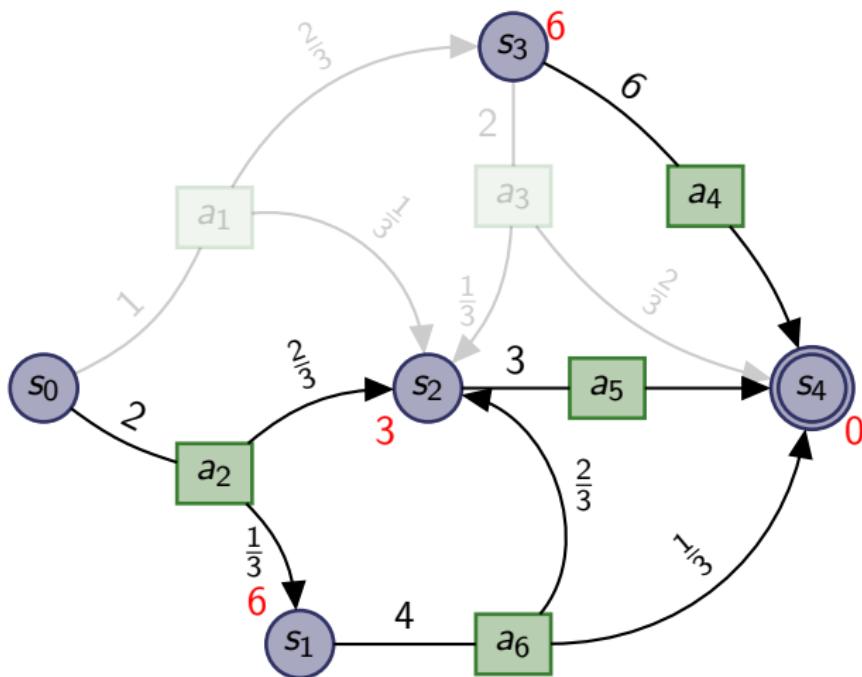
Let $\mathcal{T} = \langle S, L, c, T, s_0, S_\star \rangle$ be an SSP and π be a policy for \mathcal{T} . π is **proper** if it reaches a goal state from each state with probability 1, i.e. if

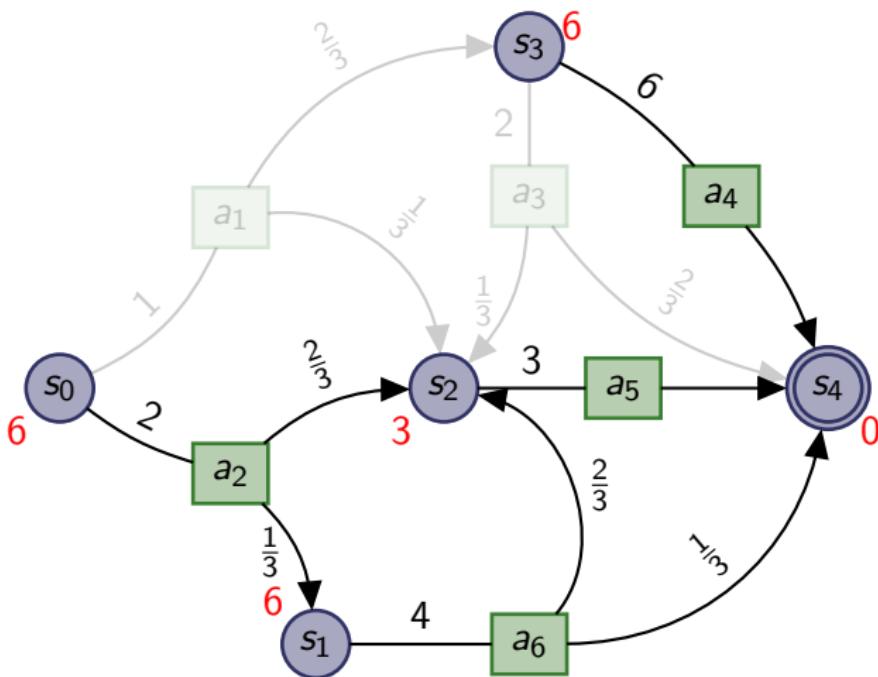

$$\sum_{s \xrightarrow{p_1:\ell_1} s', \dots, s'' \xrightarrow{p_n:\ell_n} s_\star} \prod_{i=1}^n p_i = 1$$

for all states $s \in S$.


Example: Policy Evaluation for Proper SSP Policy


Example: Policy Evaluation for Acyclic Proper SSP Policy


Example: Policy Evaluation for Acyclic Proper SSP Policy


Example: Policy Evaluation for Acyclic Proper SSP Policy

Example: Policy Evaluation for Acyclic Proper SSP Policy

Example: Policy Evaluation for Acyclic Proper SSP Policy

Policy Evaluation for Acyclic Proper SSP Policy

Acyclic Policy Evaluation for SSP \mathcal{T} and complete policy π

initialize $V_\pi(s) := \perp$ for all $s \in S$

while there is a $s \in S$ with $V_\pi(s) = \perp$:

 pick $s \in S$ with $V_\pi(s) = \perp$ and

$V_\pi(s') \neq \perp$ for all $s' \in \text{succ}(s, \pi(s))$

 set $V_\pi(s) := c(\pi(s)) + \sum_{s' \in \text{succ}(s, \pi(s))} T(s, \pi(s), s') \cdot V_\pi(s')$

return V_π

Note: can be generalized to **executable** policies

Iterative Policy Evaluation for SSPs

- impossible to compute state-values **in one sweep over the state space** in presence of **cycles**
- iterative refinement** of \hat{V}^{i-1} to \hat{V}^i possible:

$$\hat{V}_\pi^i(s) = c(\pi(s)) + \sum_{s' \in \text{succ}(s, \pi(s))} T(s, \pi(s), s') \cdot \hat{V}_\pi^{i-1}(s')$$

- iterative policy evaluation** converges to the **true state-values** of proper π , i.e., $\lim_{i \rightarrow \infty} \hat{V}_\pi^i = V_\pi$
- converges **regardless of** \hat{V}_π^0

Example: Iterative Policy Evaluation for SSPs

			s_*	
5	\Rightarrow 0.0	\Rightarrow 0.0	\Rightarrow 0.0	0.0
4	\Rightarrow 0.0	\uparrow 0.0	\uparrow 0.0	\uparrow 0.0
3	\Rightarrow 0.0	\uparrow 0.0	\Leftarrow 0.0	\Leftarrow 0.0
2	\uparrow 0.0	\uparrow 0.0	\uparrow 0.0	\Leftarrow 0.0
1	\Rightarrow s_0 0.0	\Rightarrow 0.0	\uparrow 0.0	\Leftarrow 0.0
	1	2	3	4

$$\hat{V}_\pi^0$$

- cost of 1 for all actions except for moving away from (3,4) where cost is 3
- get stuck when moving away from gray cells with prob. 0.6

Example: Iterative Policy Evaluation for SSPs

	1	2	3	4
5	\Rightarrow 1.0	\Rightarrow 1.0	\Rightarrow 1.0	s_* 0.0
4	\Rightarrow 1.0	\uparrow 1.0	\uparrow 3.0	\uparrow 1.0
3	\Rightarrow 1.0	\uparrow 1.0	\Leftarrow 1.0	\Leftarrow 1.0
2	\uparrow 1.0	\uparrow 1.0	\uparrow 1.0	\Leftarrow 1.0
1	\Rightarrow s_0 1.0	\Rightarrow 1.0	\uparrow 1.0	\Leftarrow 1.0

$$\hat{V}_\pi^1$$

- cost of 1 for all actions except for moving away from (3,4) where cost is 3
- get stuck when moving away from gray cells with prob. 0.6

Example: Iterative Policy Evaluation for SSPs

			s_*	
5	\Rightarrow 2.0	\Rightarrow 2.0	\Rightarrow 1.0	0.0
4	\Rightarrow 2.0	\uparrow 2.0	\uparrow 5.2	\uparrow 1.6
3	\Rightarrow 2.0	\uparrow 2.0	\Leftarrow 2.0	\Leftarrow 2.0
2	\uparrow 2.0	\uparrow 2.0	\uparrow 2.0	\Leftarrow 2.0
1	\Rightarrow s_0 2.0	\Rightarrow 2.0	\uparrow 2.0	\Leftarrow 2.0
	1	2	3	4

$$\hat{V}_\pi^2$$

- cost of 1 for all actions except for moving away from (3,4) where cost is 3
- get stuck when moving away from gray cells with prob. 0.6

Example: Iterative Policy Evaluation for SSPs

			s_*	
5	\Rightarrow 3.96	\Rightarrow 2.0	\Rightarrow 1.0	0.0
4	\Rightarrow 4.6	\uparrow 3.0	\uparrow 7.79	\uparrow 2.31
3	\Rightarrow 5.0	\uparrow 4.0	\Leftarrow 5.0	\Leftarrow 5.0
2	\uparrow 5.0	\uparrow 5.0	\uparrow 5.0	\Leftarrow 5.0
1	\Rightarrow s_0 5.0	\Rightarrow 5.0	\uparrow 5.0	\Leftarrow 5.0
	1	2	3	4

$$\hat{V}_\pi^5$$

- cost of 1 for all actions except for moving away from (3,4) where cost is 3
- get stuck when moving away from gray cells with prob. 0.6

Example: Iterative Policy Evaluation for SSPs

			s_*	
5	$\Rightarrow 4.46$	$\Rightarrow 2.0$	$\Rightarrow 1.0$	
4	$\Rightarrow 5.43$	$\uparrow 3.0$	$\uparrow 8.44$ ★	$\uparrow 2.49$
3	$\Rightarrow 6.39$	$\uparrow 4.0$	$\Leftarrow 5.0$	$\Leftarrow 7.31$
2	$\uparrow 8.31$	$\uparrow 6.39$	$\uparrow 6.0$	$\Leftarrow 8.18$
1	$\overset{s_0}{\Rightarrow} 9.0$	$\Rightarrow 8.0$	$\uparrow 7.0$	$\Leftarrow 8.96$

1 2 3 4

\hat{V}_π^{10}

- cost of 1 for all actions except for moving away from (3,4) where cost is 3
- get stuck when moving away from gray cells with prob. 0.6

Example: Iterative Policy Evaluation for SSPs

			s_*	
5	$\Rightarrow 4.49$	$\Rightarrow 2.0$	$\Rightarrow 1.0$	
4	$\Rightarrow 5.49$	$\uparrow 3.0$	$\uparrow 8.49$ ★	$\uparrow 2.49$
3	$\Rightarrow 6.49$	$\uparrow 4.0$	$\Leftarrow 5.0$	$\Leftarrow 7.49$
2	$\uparrow\downarrow 8.98$	$\uparrow\downarrow 6.49$	$\uparrow\downarrow 6.0$	$\Leftarrow 8.49$
1	$\overset{s_0}{\Rightarrow} 9.0$	$\Rightarrow 8.0$	$\uparrow 7.0$	$\Leftarrow 9.49$

1 2 3 4

\hat{V}_π^{18}

- cost of 1 for all actions except for moving away from (3,4) where cost is 3
- get stuck when moving away from gray cells with prob. 0.6

Iterative Policy Evaluation

Iterative Policy Evaluation for SSP \mathcal{T} , policy π and $\epsilon > 0$

initialize \hat{V}^0 arbitrarily

for $i = 1, 2, \dots$:

for all states $s \in S$:

$$\hat{V}_\pi^i(s) := c(\pi(s)) + \sum_{s' \in S} T(s, \pi(s), s') \cdot \hat{V}_\pi^{i-1}(s')$$

if $\max_{s \in S} |\hat{V}_\pi^i(s) - \hat{V}_\pi^{i-1}(s)| < \epsilon$:

return \hat{V}_π^i

Note: can be generalized to **executable** policies

Policy Evaluation: DR-MDPs

What about **policy evaluation** for DR-MDPs?

- DR-MDPs (with finite state set) are **always cyclic**
⇒ acyclic policy evaluation not applicable
- **But:** existence of goal state **not required** for iterative policy evaluation
- albeit traces are infinite, iterative policy evaluation **converges** due to **discount factor** in DR-MDPs

⇒ use **iterative policy evaluation**

Policy Evaluation: FH-MDPs

What about **policy evaluation** for FH-MDPs?

- The relevant state space for FH-MDPs consists of pairs of **states** and **steps-to-go**
- as each transition includes a **decrease** of the steps-to-go, the state space is **always acyclic**

⇒ use **acyclic policy evaluation**

Policy Iteration

Example: Greedy Action

			s_*	
5	\Rightarrow 4.49	\Rightarrow 2.0	\Rightarrow 1.0	0.0
4	\Rightarrow 5.49	\uparrow 3.0	$\uparrow\uparrow$ 8.49	\uparrow 2.49
3	\Rightarrow 6.49	\uparrow 4.0	\Leftarrow 5.0	\Leftarrow 7.49
2	\uparrow 8.98	\uparrow 6.49	\uparrow 6.0	\Leftarrow 8.49
1	\Rightarrow s_0 9.0	\Rightarrow 8.0	\uparrow 7.0	\Leftarrow 9.49

1 2 3 4

- Can we learn more from this than the state-values of a policy?

Example: Greedy Action

			s_*	
5	\Rightarrow 4.49	\Rightarrow 2.0	\Rightarrow 1.0	0.0
4	\Rightarrow 5.49	\uparrow 3.0	\uparrow 8.49 ★	\uparrow 2.49
3	\Rightarrow 6.49	\uparrow 4.0	\Leftarrow 5.0	\uparrow 7.49
2	\uparrow 8.98	\uparrow 6.49	\uparrow 6.0	\Leftarrow 8.49
1	\Rightarrow s_0 9.0	\uparrow 8.0	\uparrow 7.0	\Leftarrow 9.49

1 2 3 4

- Can we learn more from this than the state-values of a policy?
- Yes! By evaluating all **state-action pairs**
we can derive a **better policy**

Greedy actions and policies

Definition (Greedy Action)

Let s be a state of an SSP or DR-MDP \mathcal{T} and V be a state-value function for \mathcal{T} . The **greedy action** in s with respect to V is

$$a_V(s) := \arg \min_{\ell \in L(s)} c(\ell) + \sum_{s' \in \text{succ}(s, \ell)} T(s, \ell, s') \cdot V(s').$$

The **greedy policy** is the policy π_V with $\pi_V(s) = a_V(s)$.

Note: V is often derived as $V_{\pi'}$ from a policy π' , but we allow for arbitrary state-value functions that map each state to a real value.

Policy Iteration

- Policy Iteration (PI) was first proposed by Howard in 1960
- exploits observation that **greedy actions** in result of policy evaluation describe **better** policy
- starts with arbitrary **policy** π_0
- alternates **policy evaluation** and **policy improvement**
- until **convergence** to an **optimal policy**
(when policy doesn't change between two steps)

Example: Policy Iteration

	1	2	3	4
5	$\Rightarrow 4.49$	$\Rightarrow 2.0$	$\Rightarrow 1.0$	s_* 0.0
4	$\Rightarrow 5.49$	$\uparrow 3.0$	$\uparrow 8.49$ *	$\uparrow 2.49$
3	$\Rightarrow 6.49$	$\uparrow\downarrow 4.0$	$\Leftarrow 5.0$	$\Leftarrow 7.49$
2	$\uparrow 8.98$	$\uparrow 6.49$	$\uparrow 6.0$	$\Leftarrow 8.49$
1	$\Rightarrow s_0$ 9.0	$\Rightarrow 8.0$	$\uparrow 7.0$	$\Leftarrow 9.49$

 π_0

Example: Policy Iteration

	1	2	3	4
5	$\Rightarrow 4.49$	$\Rightarrow 2.0$	$\Rightarrow 1.0$	s_* 0.0
4	$\Rightarrow 5.49$	$\uparrow 3.0$	$\uparrow 8.49$ ★	$\uparrow 2.49$
3	$\Rightarrow 6.49$	$\uparrow\downarrow 4.0$	$\Leftarrow 5.0$	$\uparrow\downarrow 4.98$ π1
2	$\uparrow 8.98$	$\uparrow 6.49$	$\uparrow 6.0$	$\Leftarrow 8.49$
1	$\Rightarrow s_0$ 8.49	$\uparrow\downarrow 7.49$	$\uparrow 7.0$	$\Leftarrow 9.49$

Example: Policy Iteration

	1	2	3	4
5	$\Rightarrow 4.49$	$\Rightarrow 2.0$	$\Rightarrow 1.0$	s_* 0.0
4	$\Rightarrow 5.49$	$\uparrow 3.0$	$\uparrow 8.49$ ★	$\uparrow 2.49$
3	$\Rightarrow 6.49$	$\uparrow\downarrow 4.0$	$\Leftarrow 5.0$	$\uparrow 4.98$
2	$\uparrow 8.98$	$\uparrow 6.49$	$\uparrow 6.0$	$\uparrow 7.47$ ↑
1	$\Rightarrow s_0$ 8.49	$\uparrow\downarrow 7.49$	$\uparrow 7.0$	$\Leftarrow 9.49$

$\pi_2 = \pi_3$

Policy Iteration

Policy Iteration for SSP, FH-MDP or DR-MDP \mathcal{T}

initialize π_0 to any policy (for SSP: proper)

for $i = 1, 2, \dots$:

 compute V_{π_i}

 let π_{i+1} be the greedy policy w.r.t V_{π_i}

if $\pi_i = \pi_{i+1}$:

return π_i

Policy Evaluation
oooooooooooo

Policy Iteration
oooooo

Summary
●○

Summary

Summary

- Policy evaluation for **acyclic policy** is possible in **one sweep** over the state space.
- **Iterative policy evaluation** converges over multiple sweeps to true state-values.
- **Greedy actions** in evaluated policy allow to **improve policy**.
- Policy iteration alternates **policy evaluation** and **policy improvement**.
- Policy iteration results in **optimal policy**.