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Expected Values under Uncertainty

Definition (Expected Value of a Random Variable)

Let V be a random variable with n € N outcomes di, ..., d, € R,
and let d; for i = 1,..., n occur with probability p; € [0,1] s.t.

Yt pi=1
The expected value of X is E[X] = >"7_;(pi - dj).
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Example: Expected Values under Uncertainty

The expected payoff of placing one bet in Swiss Lotto for a cost of
2.50 with (simplified) payout structure

m d; = 30.000.000 with p; = 3720 (6+1)
m d> = 1.000.000 with pr = g2 (6)

m dy = 5.000 with ps = g5 (5)

®m dy = 50 with ps = 117555 (4)

m ds = 10 with ps = 17355 is (3)
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Proper SSP Policy

Definition (Proper SSP Policy)

Let 7 =(S,L,c, T,sp,S«) be an SSP and 7 be a policy for 7. «
is proper if it reaches a goal state from each state with probability

1,ie. if
> e
i=1

p1:41 Pniln
s—>s/,..., s/ —>s,

for all states s € S.
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Example: Policy Evaluation for Acyclic Proper SSP Policy
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Example: Policy Evaluation for Acycllc Proper SSP Pollcy
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Example: Policy Evaluation for Acycllc Proper SSP Pollcy
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Policy Evaluation for Acyclic Proper SSP Policy

Acyclic Policy Evaluation for SSP 7 and complete policy 7
initialize V(s) .= L forallse S
while there is a s € S with V,(s) = L:
pick s € S with V;(s) = L and
Vi (s') # L for all s € succ(s, 7 (s))

set Vr(s) := c(m(s)) + Xsesucc(s,n(s)) T(5:m(5),8') - Vx(s')
return V,

Note: can be generalized to executable policies
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Iterative Policy Evaluation for SSPs

impossible to compute state-values in one sweep over the
state space in presence of cycles

iterative refinment of V=1 to V' possible:

Vi) =c(m(s) + Y T(sm(s),s) Vi i(s)

s'esucc(s,n(s))
iterative policy evaluation converges to the true state-values
of proper 7, i.e., limjio V. = V;

converges regardless of V/?
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m cost of 1 for all actions except for moving away from (3,4)
where cost is 3
m get stuck when moving away from gray cells with prob. 0.6
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Example: Iterative Policy Evaluation for SSPs

S.
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m cost of 1 for all actions except for moving away from (3,4)
where cost is 3
m get stuck when moving away from gray cells with prob. 0.6
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m cost of 1 for all actions except for moving away from (3,4)
where cost is 3
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Iterative Policy Evaluation

initialize V/° arbitarily
for i=1,2,...:
for all states s € S:
Vi(s) := c(n(s)) + Xares T(s,m(s),s') - ViTX(s)
if maxees |Vi(s) — Vi~1(s)| < e
return \A/T’r

Note: can be generalized to executable policies
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Policy Evaluation: DR-MDPs

What about policy evaluation for DR-MDPs?

m DR-MDPs (with finite state set) are always cyclic
= acyclic policy evaluation not applicable

m But: existence of goal state not required for iterative policy
evaluation

m albeit traces are infinite, iterative policy evaluation converges
due to discount factor in DR-MDPs

= use iterative policy evaluation
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Policy Evaluation: FH-MDPs

What about policy evaluation for FH-MDPs?

m The relevant state space for FH-MDPs consists of pairs of
states and steps-to-go

m as each transition includes a decrease of the steps-to-go, the
state space is always acyclic

= use acyclic policy evaluation
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m Can we learn more from this than the state-values of a policy?
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m Can we learn more from this than the state-values of a policy?
m Yes! By evaluating all state-action pairs
we can derive a better policy
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Greedy actions and policies

Definition (Greedy Action)

Let s be a state of an SSP or DR-MDP 7 and V be a state-value
function for 7. The greedy action in s with respect to V is

SRt AP I S

The greedy policy is the policy 7y with my(s) = ay(s).

Note: V is often derived as V. from a policy 7, but we allow for
arbitrary state-value functions that map each state to a real value.
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Policy Iteration

m Policy Iteration (PI) was first proposed by Howard in 1960

m exploits observation that greedy actions in result of
policy evaluation describe better policy

m starts with arbitrary policy mg
m alternates policy evaluation and policy improvement

m until convergence to an optimal policy
(when policy doesn’t change between two steps)
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Policy Iteration

Policy Iteration for SSP, FH-MDP or DR-MDP T

initialize 7y to any policy (for SSP: proper)
for i=1,2,...:
compute V.,
let 7j1 be the greedy policy w.r.t V,
if T, = Ti4+1:
return 7;
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Summary

m Policy evaluation for acyclic policy is possible in one sweep
over the state space.

m [terative policy evaluation converges over multiple sweeps to
true state-values.

m Greedy actions in evaluated policy allow to improve policy.

m Policy iteration alternates policy evaluation and policy
improvement.

m Policy iteration results in optimal policy.



	Policy Evaluation
	Policy Iteration
	Summary

