Planning and Optimization F3. Blind Methods: Policy Iteration

Gabriele Röger and Thomas Keller

Universität Basel

November 26, 2018

G. Röger, T. Keller (Universität Basel)

G. Röger, T. Keller (Universität Basel)

Content of this Course

Planning and Optimization

November 26, 2018

mber 26, 2018 1 / 35

Planning and Optimization

November 26, 2018 — F3. Blind Methods: Policy Iteration

F3.1 Policy Evaluation

F3.2 Policy Iteration

F3.3 Summary

G. Röger, T. Keller (Universität Basel)

Planning and Optimization

November 26, 2018 2

F3. Blind Methods: Policy Iteration

Policy Evaluation

Progression/ Regression Complexity Heuristics MDPs Blind Methods Probabilistic Heuristic Search Monte-Carlo

Planning and Optimization

Methods

November 26, 2018

F3.1 Policy Evaluation

G. Röger, T. Keller (Universität Basel)

Planning and Optimization

Policy Evaluation

Expected Values under Uncertainty

Definition (Expected Value of a Random Variable)

Let V be a random variable with $n \in \mathbb{N}$ outcomes $d_1, \ldots, d_n \in \mathbb{R}$, and let d_i for $i = 1, \ldots, n$ occur with probability $p_i \in [0, 1]$ s.t. $\sum_{i=1}^n p_i = 1$.

The expected value of X is $\mathbb{E}[X] = \sum_{i=1}^{n} (p_i \cdot d_i)$.

G. Röger, T. Keller (Universität Basel)

Planning and Optimization

November 26, 2018

5 / 35

on F3. Blind Methods: Policy Iteration

Example: Expected Values under Uncertainty

Example

The expected payoff of placing one bet in Swiss Lotto for a cost of 2.50 with (simplified) payout structure

- $ightharpoonup d_1 = 30.000.000 \text{ with } p_1 = \frac{1}{31474716} (6+1)$
- $d_2 = 1.000.000$ with $p_2 = \frac{1}{5245786}$ (6)
- $d_4 = 5.000$ with $p_4 = \frac{1}{850668}$ (5)
- $ightharpoonup d_4 = 50$ with $p_4 = \frac{1}{111930}$ (4)
- ► $d_5 = 10$ with $p_5 = \frac{1}{11480}$ is (3)

$$\mathbb{E}[X] = \left(\frac{30000000}{31474716} + \frac{1000000}{5245786} + \frac{5000}{850668} + \frac{50}{111930} + \frac{10}{11480}\right) - 2.5 \approx -1.35.$$

G. Röger, T. Keller (Universität Basel)

Planning and Optimizatior

November 26, 2018

F3. Blind Methods: Policy Iteration

Policy Evaluation

Proper SSP Policy

Definition (Proper SSP Policy)

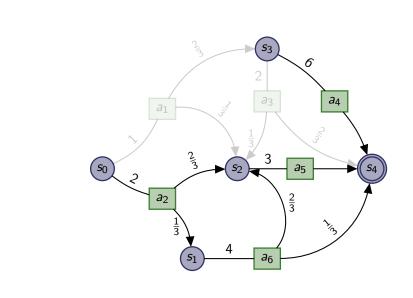
Let $\mathcal{T}=\langle S,L,c,\mathcal{T},s_0,S_\star\rangle$ be an SSP and π be a policy for $\mathcal{T}.$ π is proper if it reaches a goal state from each state with probability 1, i.e. if

$$\sum_{\substack{s \xrightarrow{p_1:\ell_1} s', \dots, s'' \xrightarrow{p_n:\ell_n} s_*}} \prod_{i=1}^n p_i = 1$$

for all states $s \in S$.

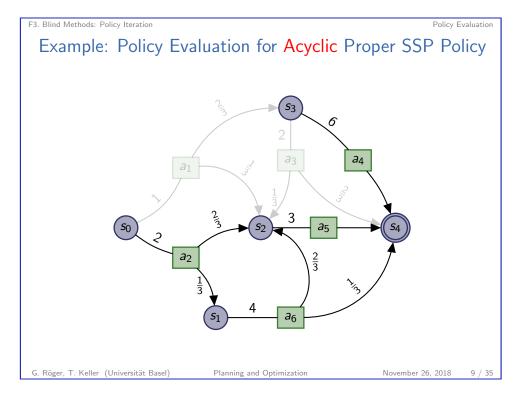
F3. Blind Methods: Policy Iteration

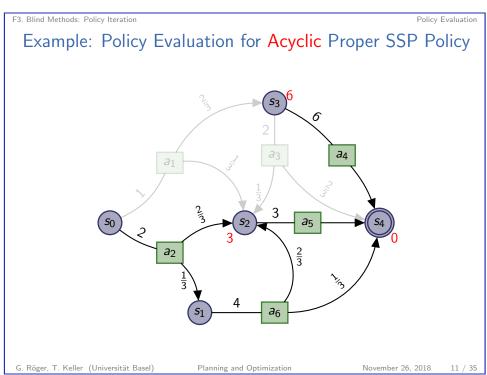
Example: Policy Evaluation for Proper SSP Policy

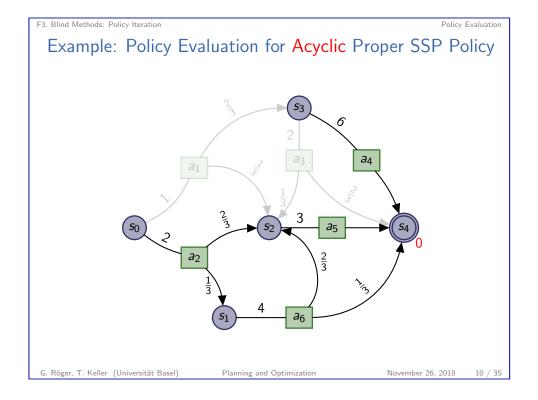


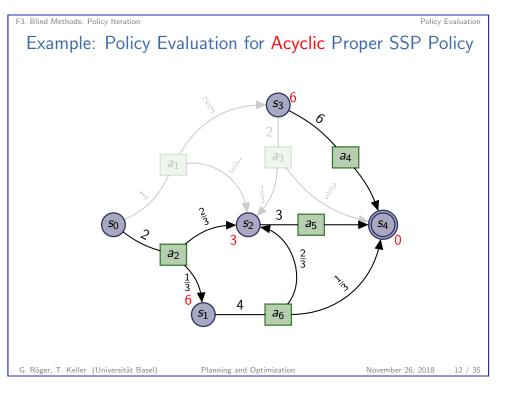
G. Röger, T. Keller (Universität Basel)

Planning and Optimization

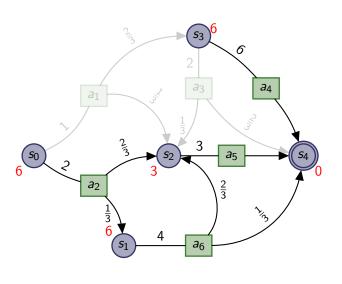








Example: Policy Evaluation for Acyclic Proper SSP Policy



G. Röger, T. Keller (Universität Basel)

Planning and Optimization

November 26, 2018

November 26, 2018

13 / 35

F3. Blind Methods: Policy Iteration

Iterative Policy Evaluation for SSPs

- ► impossible to compute state-values in one sweep over the state space in presence of cycles
- iterative refinment of \hat{V}^{i-1} to \hat{V}^i possible:

$$\hat{V}^i_\pi(s) = c(\pi(s)) + \sum_{s' \in \mathsf{succ}(s,\pi(s))} \mathcal{T}(s,\pi(s),s') \cdot \hat{V}^{i-1}_\pi(s')$$

- iterative policy evaluation converges to the true state-values of proper π , i.e., $\lim_{i\to\infty}\hat{V}^i_\pi=V_\pi$
- converges regardless of \hat{V}_{π}^{0}

Policy Evaluation for Acyclic Proper SSP Policy

Acyclic Policy Evaluation for SSP \mathcal{T} and complete policy π initialize $V_{\pi}(s) := \bot$ for all $s \in S$ while there is a $s \in S$ with $V_{\pi}(s) = \bot$: pick $s \in S$ with $V_{\pi}(s) = \bot$ and $V_{\pi}(s') \neq \bot$ for all $s' \in \operatorname{succ}(s, \pi(s))$ set $V_{\pi}(s) := c(\pi(s)) + \sum_{s' \in \operatorname{succ}(s, \pi(s))} T(s, \pi(s), s') \cdot V_{\pi}(s')$ return V_{π}

Note: can be generalized to executable policies

G. Röger, T. Keller (Universität Basel)

Planning and Optimization

November 26, 2018

14 / 3

F3. Blind Methods: Policy Iteration

Policy Evaluation

Example: Iterative Policy Evaluation for SSPs

5	⇒ 0.0	⇒ 0.0	⇒ 0.0	<i>s</i> _⋆ 0.0	
4	⇒ 0.0	0.0	0.0	0.0	
3	⇒ 0.0	0.0	≑ 0.0	∉ 0.0	\hat{V}_{π}^{0}
2	0.0	↑ 0.0	↑ 0.0	⇐ 0.0	
1	\Rightarrow 0.0	⇒ 0.0	↑ 0.0	(≡ 0.0	
	1	2	3	4	•

- ► cost of 1 for all actions except for moving away from (3,4) where cost is 3
- ▶ get stuck when moving away from gray cells with prob. 0.6

G. Röger, T. Keller (Universität Basel)

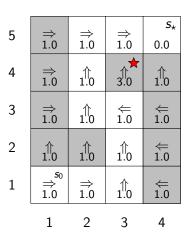
Planning and Optimization

November 26, 2018

16 / 3!

Policy Evaluation

Example: Iterative Policy Evaluation for SSPs



 \hat{V}_{π}^{1}

- cost of 1 for all actions except for moving away from (3,4) where cost is 3
- ▶ get stuck when moving away from gray cells with prob. 0.6

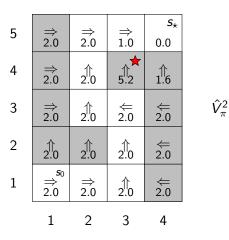
G. Röger, T. Keller (Universität Basel)

Planning and Optimization

F3. Blind Methods: Policy Iteration

Policy Evaluation

Example: Iterative Policy Evaluation for SSPs

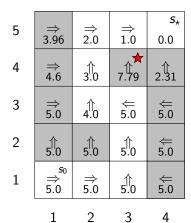


- cost of 1 for all actions except for moving away from (3,4) where cost is 3
- get stuck when moving away from gray cells with prob. 0.6

F3. Blind Methods: Policy Iteration

Policy Evaluation

Example: Iterative Policy Evaluation for SSPs



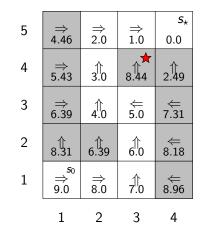
 \hat{V}_{π}^{5}

- cost of 1 for all actions except for moving away from (3,4) where cost is 3
- ▶ get stuck when moving away from gray cells with prob. 0.6

F3. Blind Methods: Policy Iteration

Policy Evaluation

Example: Iterative Policy Evaluation for SSPs



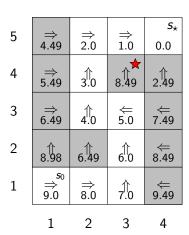
 \hat{V}_{π}^{10}

- cost of 1 for all actions except for moving away from (3,4) where cost is 3
- get stuck when moving away from gray cells with prob. 0.6

G. Röger, T. Keller (Universität Basel)

Policy Evaluation

Example: Iterative Policy Evaluation for SSPs



 \hat{V}_{-}^{18}

- cost of 1 for all actions except for moving away from (3,4) where cost is 3
- ▶ get stuck when moving away from gray cells with prob. 0.6

G. Röger, T. Keller (Universität Basel)

Planning and Optimization

November 26, 2018

F3. Blind Methods: Policy Iteration

Policy Evaluation

Iterative Policy Evaluation

Iterative Policy Evaluation for SSP \mathcal{T} , policy π and $\epsilon > 0$ initialize \hat{V}^0 arbitarily for i = 1, 2, ...: **for all** states $s \in S$: $\hat{V}^i_\pi(s) := c(\pi(s)) + \sum_{s' \in S} T(s, \pi(s), s') \cdot \hat{V}^{i-1}_\pi(s')$ if $\max_{s \in S} |\hat{V}_{\pi}^{i}(s) - \hat{V}_{\pi}^{i-1}(s)| < \epsilon$: return \hat{V}_{π}^{i}

Note: can be generalized to executable policies

G. Röger, T. Keller (Universität Basel)

Planning and Optimization

November 26, 2018

F3. Blind Methods: Policy Iteration

Policy Evaluation

Policy Evaluation: DR-MDPs

What about policy evaluation for DR-MDPs?

- ▶ DR-MDPs (with finite state set) are always cyclic ⇒ acyclic policy evaluation not applicable
- ▶ But: existence of goal state not required for iterative policy evaluation
- ▶ albeit traces are infinite, iterative policy evaluation converges due to discount factor in DR-MDPs
- ⇒ use iterative policy evaluation

F3. Blind Methods: Policy Iteration

Policy Evaluation

Policy Evaluation: FH-MDPs

What about policy evaluation for FH-MDPs?

- ▶ The relevant state space for FH-MDPs consists of pairs of states and steps-to-go
- ▶ as each transition includes a decrease of the steps-to-go, the state space is always acyclic
- ⇒ use acyclic policy evaluation

F3. Blind Methods: Policy Iteration Policy Iteration

F3.2 Policy Iteration

G. Röger, T. Keller (Universität Basel)

Planning and Optimization

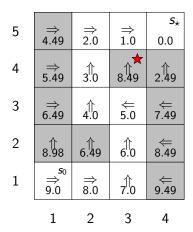
November 26, 2018

Policy Iteration

F3. Blind Methods: Policy Iteration

Policy Iteration

Example: Greedy Action



► Can we learn more from this than the state-values of a policy?

G. Röger, T. Keller (Universität Basel)

Planning and Optimization

November 26, 2018

F3. Blind Methods: Policy Iteration

Example: Greedy Action

				_
5	⇒ 4.49	⇒ 2.0	\Rightarrow 1.0	<i>s</i> ⋆ 0.0
	4.49	2.0	A	0.0
4	⇒ 5.49	↑ 3.0	8.49	↑ 2.49
3	⇒ 6.49	↑ 4.0	↓ 5.0	7.49
2	↑ 8.98	↑ 6.49	∱ 6.0	∉ 8.49
1	\Rightarrow 9.0	1 8.0	↑ 7.0	⇐ 9.49

- ► Can we learn more from this than the state-values of a policy?
- ► Yes! By evaluating all state-action pairs we can derive a better policy

F3. Blind Methods: Policy Iteration

Greedy actions and policies

Definition (Greedy Action)

Let s be a state of an SSP or DR-MDP $\mathcal T$ and V be a state-value function for \mathcal{T} . The greedy action in s with respect to V is

$$a_V(s) := rg\min_{\ell \in L(s)} c(\ell) + \sum_{s' \in \operatorname{\mathsf{succ}}(s,\ell)} \mathcal{T}(s,\ell,s') \cdot V(s').$$

The greedy policy is the policy π_V with $\pi_V(s) = a_V(s)$.

Note: V is often derived as $V_{\pi'}$ from a policy π' , but we allow for arbitrary state-value functions that map each state to a real value.

G. Röger, T. Keller (Universität Basel)

Planning and Optimization

November 26, 2018

G. Röger, T. Keller (Universität Basel)

Planning and Optimization

Policy Iteration

Policy Iteration

- ▶ Policy Iteration (PI) was first proposed by Howard in 1960
- exploits observation that greedy actions in result of policy evaluation describe better policy
- ▶ starts with arbitrary policy π_0
- ► alternates policy evaluation and policy improvement
- until convergence to an optimal policy
 (when policy doesn't change between two steps)

G. Röger, T. Keller (Universität Basel)

Planning and Optimization

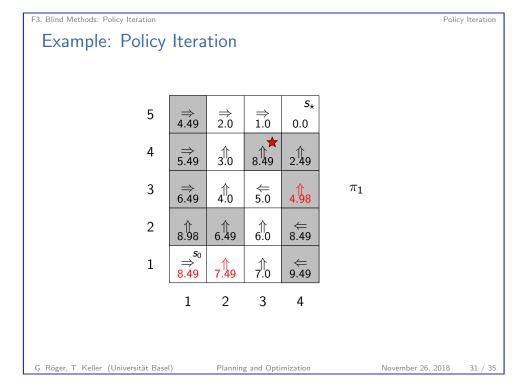
November 26, 2018

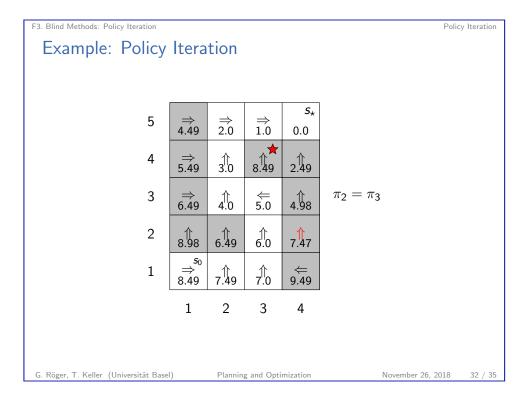
29 / 35

G. Röger, T. Keller (Universität Basel)

F3. Blind Methods: Policy Iteration Example: Policy Iteration s_{\star} 5 ⇒ 2.0 4.49 1.0 0.0 8.49 3.0 4 2.49 5.49 3 4.0 π_0 6.49 5.0 7.49 2 8.98 6.49 6.0 8.49 \Rightarrow 9.0 1 ⇒ 8.0 7.0 9.49 2 3 4

Planning and Optimization





Policy Iteration

Policy Iteration

```
Policy Iteration for SSP, FH-MDP or DR-MDP \mathcal{T} initialize \pi_0 to any policy (for SSP: proper) for i=1,2,\ldots: compute V_{\pi_i} let \pi_{i+1} be the greedy policy w.r.t V_{\pi_i} if \pi_i=\pi_{i+1}: return \pi_i
```

G. Röger, T. Keller (Universität Basel)

Planning and Optimization

November 26, 2018

33 / 35

G. Röger, T. Keller (Universität Basel)

F3. Blind Methods: Policy Iteration

Summar

Summary

- ▶ Policy evaluation for acyclic policy is possible in one sweep over the state space.
- ► Iterative policy evaluation converges over multiple sweeps to true state-values.
- ► Greedy actions in evaluated policy allow to improve policy.
- ▶ Policy iteration alternates policy evaluation and policy improvement.
- ▶ Policy iteration results in optimal policy.

G. Röger, T. Keller (Universität Basel) Planning and Optimization November 26, 2018

F3. 3 Summary

F3. 8 Summary

Planning and Optimization