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Solutions in SSPs

(W= ()=—={R—(")
move-L, pickup, move-R, drop

m solution in deterministic transition systems is plan, i.e., a goal
path from sy to some s, € S,

m cheapest plan is optimal solution

m deterministic agent that executes plan will reach goal
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Solutions in SSPs

move-L, pickup, move-R, drop

m probabilistic agent will not reach goal or cannot execute plan
m non-determinism can lead to different outcome than
anticipated in plan

B require a more general solution: a policy
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Solutions in SSPs

pickup

m policy must be allowed to be cyclic
m policy must be able to branch over outcomes

m policy assigns applicable labels to states
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Policy for SSPs

Definition (Policy for SSPs)
Let 7 =(S,L,c, T,so, Si) be an SSP. A policy for T is a mapping
m:S — LU{L} such that 7(s) € L(s) U{L} for all s.

The set of reachable states S;(s) from s under 7 is defined
recursively as the smallest set satisfying the rules

m s € Sy(s) and
m succ(s’, 7(s")) C Sx(s) for all s € S;(s)\ Sk where 7(s’) # L.
If m(s") # L for all s' € Si(s), then 7 is executable in s.
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Policy Representation

m size of explicit representation of executable policy 7 is |Sx(so)|
m often, |S;(so)| similar to |S|
m compact policy representation, e.g. via value function

approximation or neural networks, is active research area
= not covered in this course

m instead, we consider small state spaces for basic algorithms

m or online planning where planning for the current state sp is
interleaved with execution of 7(sp)
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Value Functions of SSPs

Definition (Value Functions of SSPs)

Let 7 =(S,L,c, T,so,Si) be an SSP and 7 be an executable
policy for 7. The state-value V(s) of s under 7 is defined as

Va(s) = 0 if se S,
) Qe(s, w(s))  otherwise,

where the action-value Qr(s,¢) under 7 is defined as

Qx(s,0) :=c(f) + Z (T(S,E, s')- Vﬂ(s’)).

s'esucc(s,l)
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Example: Value Functions of SSPs

Consider example task and 7 with 7(LR) = move-L,
m(LL) = pickup, 7(TL) = move-R and n(TR) = drop.
Vi(LR) =1+ V,(LL)
Vi(LL) = 14 V,(TL)
Vi(TL) =1+ (0.8 Vi(RR)) + (0.2 Vi(LR))
V.(TR) =1+ V.(RR)
V.(RL) =0
V.(RR) =0

What is the solution of this? = next week!
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Bellman Optimality Equation

Definition (Optimal Policy in SSPs)

Let the Bellman optimality equation for a state s of an SSP be the
set of equations that describes V,(s), where

Vi(s) _Jo if se S,
* - minge;(s) Qx(s, ) otherwise,

Qu(s,0) =c(t)+ Z (T(s,2,5") - Vi(s")).

s’ esucc(s,l)

A policy 7* is an optimal policy if 7*(s) € arg minyc () Q«(s, £) for
all s € S, and the expected cost of 7* in T is Vi(sp).
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Dead-end States

m dead-end states are a problem with our formalization

m each policy with non-zero probability of reaching a dead-end
has infinite state-value

m one solution is to search for policy with highest probability to
reach the goal

m unfortunately, this ignores costs
m there is also research on dead-end detection

m in this course, we only consider SSPs, FH-MDPs and
DR-MDPs that are dead-end free
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Policies for FH-MDPs

m What is the optimal policy for the SSP at the blackboard?
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Policies for FH-MDPs

m What is the optimal policy for the SSP at the blackboard?
m Can we do better if we regard this as an FH-MDP?
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Policies for FH-MDPs

m What is the optimal policy for the SSP at the blackboard?
m Can we do better if we regard this as an FH-MDP?

m Yes, by acting differently close to the horizon.
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Policy for FH-MDPs

Definition (Policy for FH-MDPs)

Let 7 =(S,L,R, T,sg, H) be an FH-MDP. A policy for T is a
mapping 7 : S x {1,...,H} — LU {L} such that

m(s,d) € L(s) U{L} for all s.

The set of reachable states S;(s, d) from s with d steps-to-go
under 7 is defined recursively as the smallest set satisfying the
rules

m (s,d) € S5;(s,d) and
m (s",d —1) € S;(s,d) for all s” € succ(s’,n(s’)) and
(s',d"y € Sz(s) with d’ > 0 and 7(s’,d") # L.
If w(s’,d") # L for all (s’,d") € Sz(s,d) with d’ > 0, then 7 is
executable in s.
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Value Functions for FH-MDPs

Definition (Value Functions for FH-MDPs)

Let 7 =(S,L,c, T,sg, H) be an FH-MDP and 7 be an executable
policy for 7. The state-value V. (s, d) of s and d under 7 is
defined as

0 ifd=0
Q(s,d,m(s)) otherwise,

Vi(s,d) = {
where the action-value Q. (s, d,?) under 7 is defined as

Qu(s.d.0) =R(s,0)+ > (T(s,4,8) Vo(s',d - 1)).

s'esucc(s,l)




Policies & Value Functions Factored MDPs Summary

0000000000000 e0 00«

Bellman Optimality Equation

Definition (Optimal Policy in FH-MDPs)

Let the Bellman optimality equation for a state s of an FH-MDP
be the set of equations that describes V. (s, d), where

0 ifd=0
maxye(s) Qu(s, d, ) otherwise,

Vi(s, d) = {

Qs(s,d,0) = R(s,0)+ Z (T(s,6,8") Vi(s',d — 1)).

s’ esucc(s,l)

A policy 7* is an optimal policy if
(s, d) € argmaxye(s) Qu(s, d, £) for all s € S and
d e {1,...,H}, and the expected reward of 7* in T is Vi(so, H).

v
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(Optimal) Policy and Value Functions for DR-MDPs

m policy does not distinguish states based on steps-to-go
(or rather the reverse “distance-from-init")

m value functions have no “terminal case”
m value functions discount reward with ~

m Bellman optimality equation derived from value functions as
for FH-MDP
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Factored MDPs
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Factored SSPs

We would like to specify huge SSPs without enumerating states. In
classical planning, we achieved this via propositional planning tasks:

m represent different aspects of the world
in terms of different Boolean state variables

m treat state variables as atomic propositions
~~ a state is a valuation of state variables

m n state variables induce 2" states
~ exponentially more compact than “flat” representations

= can also be used for SSPs
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Reminder: Syntax of Operators

Definition (Operator)
An operator o over state variables V' is an object
with three properties:
m a precondition pre(o), a logical formula over V
m an effect eff0) over V, defined on the following slides

m a cost cost(o) € R{

= can also be used for SSPs
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Reminder: Syntax of Effects

Definition (Effect)

Effects over state variables V are inductively defined as follows:

m If v € V is a state variable, then v and —v are effects
(atomic effect).

mIf ep,..., e, are effects, then (e; A -+ A e,) is an effect
(conjunctive effect).
The special case with n = 0 is the empty effect T.

m If x is a logical formula and e is an effect,
then (x > e) is an effect (conditional effect).

Parentheses can be omitted when this does not cause ambiguity.
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Syntax of Probabilistic Effects

Definition (Effect)
Effects over state variables V are inductively defined as follows:
m If v € V is a state variable, then v and —v are effects
(atomic effect).
m If e,..., e, are effects, then (e; A --- A e,) is an effect
(conjunctive effect).
The special case with n = 0 is the empty effect T.
m If x is a logical formula and e is an effect,
then (x > e) is an effect (conditional effect).
m Ifey,..., e, are effects and p1, ..., ps € [0,1] such that
> n i pi=1, then (p1:ei|...|pn: en) is an effect
(probabilistic effect).

Parentheses can be omitted when this does not cause ambiguity.
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m FDR tasks can be generalized to SSPs in the same way

m both propositional and FDR tasks can be generalized to
FH-MDPs and DR-MDPs
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Summary

m Policies consider branching and cycles

m State-value of a policy describes expected reward of following
that policy

m Related Bellman optimality equation describes optimal policy

m Compact descriptions that induce SSPs and MDPs analogous
to classical planning
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