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F2. Policies & Compact Description Policies & Value Functions

Solutions in SSPs

(W=(=—=(R—)
move-L, pickup, move-R, drop

» solution in deterministic transition systems is plan, i.e., a goal
path from sy to some s, € S,

» cheapest plan is optimal solution
» deterministic agent that executes plan will reach goal
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F2. Policies & Compact Description Policies & Value Functions

Solutions in SSPs

move-L, pickup, move-R, drop

> probabilistic agent will not reach goal or cannot execute plan

» non-determinism can lead to different outcome than
anticipated in plan

> require a more general solution: a policy
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Solutions in SSPs

pickup

> policy must be allowed to be cyclic
> policy must be able to branch over outcomes

> policy assigns applicable labels to states
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Policy for SSPs

Definition (Policy for SSPs)
Let 7 =(S,L,c, T,so,S«) be an SSP. A policy for T is a mapping
m:5 — LU{L} such that w(s) € L(s) U{L} forall s.

The set of reachable states S;(s) from s under 7 is defined
recursively as the smallest set satisfying the rules

» s € S5:(s) and
» succ(s’,7(s")) C Sy(s) for all " € S;(s) \ Si where 7(s") # L.
If m(s") # L for all s’ € S;(s), then 7 is executable in s.
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Policy Representation

» size of explicit representation of executable policy 7 is |Sx(so)|
» often, |S;(so)| similar to |5|

» compact policy representation, e.g. via value function
approximation or neural networks, is active research area
= not covered in this course

> instead, we consider small state spaces for basic algorithms

» or online planning where planning for the current state sg is
interleaved with execution of 7(sp)
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F2. Policies & Compact Description

Value Functions of SSPs

Definition (Value Functions of SSPs)

Let T =(S,L,c, T,so,S«) be an SSP and 7 be an executable
policy for 7. The state-value V(s) of s under 7 is defined as

Vas) = {o fses.
Qx(s,m(s)) otherwise,

where the action-value Q(s,¢) under 7 is defined as

Qe(s, ) :=c(O)+ D (T(s,4,8)- Va(s).

s’esucc(s )
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Example: Value Functions of SSPs

Example
Consider example task and 7 with 7(LR) = move-L,
m(LL) = pickup, 7(TL) = move-R and 7(TR) = drop.

Vi(LR) = 1+ V,(LL)

Vi(LL) =1+ VL (TL)

Vi(TL) =1 + (0.8 - V4(RR)) + (0.2 - Vi(LR))
V.(TR) = 1+ V4(RR)

Vi(RL) =0

V.(RR) =0

What is the solution of this? = next week!
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F2. Policies & Compact Description

Bellman Optimality Equation

Definition (Optimal Policy in SSPs)
Let the Bellman optimality equation for a state s of an SSP be the
set of equations that describes V,(s), where

Vi(s) _J0 if se S,
- o minge;(s) @«(s,£) otherwise,

Qu(s,0) =c(f) + Z (T(S,E, s')- V*(s’)).

s’esucc(s,f)

A policy 7* is an optimal policy if 7(s) € arg minge(s) Q«(s, ¢) for
all s € S, and the expected cost of 7* in T is V,(sp).
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Dead-end States

» dead-end states are a problem with our formalization

> each policy with non-zero probability of reaching a dead-end
has infinite state-value

> one solution is to search for policy with highest probability to
reach the goal

» unfortunately, this ignores costs
» there is also research on dead-end detection

> in this course, we only consider SSPs, FH-MDPs and
DR-MDPs that are dead-end free
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F2. Policies & Compact Description

Policies for FH-MDPs

» What is the optimal policy for the SSP at the blackboard?
» Can we do better if we regard this as an FH-MDP?

> Yes, by acting differently close to the horizon.
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Policy for FH-MDPs

Definition (Policy for FH-MDPs)

Let T =(S,L,R, T,sp, H) be an FH-MDP. A policy for T is a
mapping 7 : S x {1,...,H} — LU{L} such that

m(s,d) € L(s) U{L} forall s.

The set of reachable states S;(s, d) from s with d steps-to-go
under 7 is defined recursively as the smallest set satisfying the
rules

> (s,d) € Sx(s,d) and
» (5" d" —1) € S;(s,d) for all " € succ(s’, 7(s")) and
(s',d") € Sz(s) with d’ > 0 and n(s,d") # L.
If 7(s’,d") # L for all (s',d") € S;(s,d) with d’ > 0, then 7 is
executable in s.
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F2. Policies & Compact Description

Value Functions for FH-MDPs

Definition (Value Functions for FH-MDPs)

Let 7 =(S,L,c, T,so, H) be an FH-MDP and 7 be an executable
policy for 7. The state-value V. (s, d) of s and d under 7 is
defined as

0 ifd=0
Qx(s,d,m(s)) otherwise,

Vi(s,d) = {

where the action-value Q. (s, d, /) under 7 is defined as

Qe(s.d 0):==R(s,0)+ > (T(s,4,5)- Va(s',d —1)).

s’ €succ(s,f)
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Bellman Optimality Equation

Definition (Optimal Policy in FH-MDPs)
Let the Bellman optimality equation for a state s of an FH-MDP
be the set of equations that describes V, (s, d), where

0 ifd=0
maxye(s) Qu(s,d, () otherwise,

Qu(s,d,0) = R(s,?)+ Z (T(s,¢,8")- Vi(s',d —1)).

s’esucc(s,f)

Vi(s, d) =

A policy 7 is an optimal policy if
(s, d) € argmaxye () Qu(s, d, ¢) for all s € S and
d e {1,...,H}, and the expected reward of 7* in T is V. (sp, H).
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F2. Policies & Compact Description

(Optimal) Policy and Value Functions for DR-MDPs

v

policy does not distinguish states based on steps-to-go
(or rather the reverse “distance-from-init")

value functions have no “terminal case”

v

v

value functions discount reward with ~y

v

Bellman optimality equation derived from value functions as
for FH-MDP
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F2.2 Factored MDPs
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Factored SSPs

We would like to specify huge SSPs without enumerating states. In
classical planning, we achieved this via propositional planning tasks:

» represent different aspects of the world
in terms of different Boolean state variables

> treat state variables as atomic propositions
~~ a state is a valuation of state variables

» n state variables induce 2" states
~~ exponentially more compact than “flat” representations

= can also be used for SSPs
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F2. Policies & Compact Description Factored MDPs

Reminder: Syntax of Operators

Definition (Operator)
An operator o over state variables V is an object
with three properties:

» a precondition pre(o), a logical formula over V
» an effect eff o) over V, defined on the following slides

> a cost cost(o) € Ry

= can also be used for SSPs
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Reminder: Syntax of Effects

Definition (Effect)
Effects over state variables V' are inductively defined as follows:

» If v € V is a state variable, then v and —v are effects
(atomic effect).

» If e,..., e, are effects, then (e; A --- A e,) is an effect
(conjunctive effect).
The special case with n = 0 is the empty effect T.

> If x is a logical formula and e is an effect,
then (x > e) is an effect (conditional effect).

Parentheses can be omitted when this does not cause ambiguity.
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Syntax of Probabilistic Effects

Definition (Effect)
Effects over state variables V' are inductively defined as follows:

» If v € V is a state variable, then v and —v are effects
(atomic effect).

» If e,..., e, are effects, then (e; A --- A e,) is an effect
(conjunctive effect).
The special case with n = 0 is the empty effect T.

> If x is a logical formula and e is an effect,
then (y > e) is an effect (conditional effect).

> If er,..., e, are effects and p1, ..., pn € [0, 1] such that
St ipi=1, then (p1:ei|...|p,: ey) is an effect
(probabilistic effect).

Parentheses can be omitted when this does not cause ambiguity.
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» FDR tasks can be generalized to SSPs in the same way

> both propositional and FDR tasks can be generalized to
FH-MDPs and DR-MDPs
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F2.3 Summary
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F2. Policies & Compact Description

Summary

v

Policies consider branching and cycles

State-value of a policy describes expected reward of following
that policy

Related Bellman optimality equation describes optimal policy
Compact descriptions that induce SSPs and MDPs analogous
to classical planning

v

v

v
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