

Planning and Optimization

F2. Policies & Compact Description

Gabriele Röger and Thomas Keller

Universität Basel

November 21, 2018

Planning and Optimization

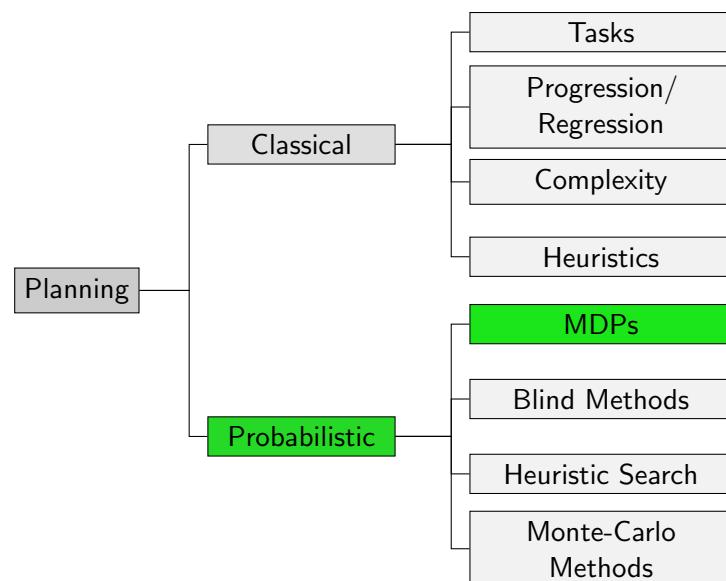
November 21, 2018 — F2. Policies & Compact Description

F2.1 Policies & Value Functions

F2.2 Factored MDPs

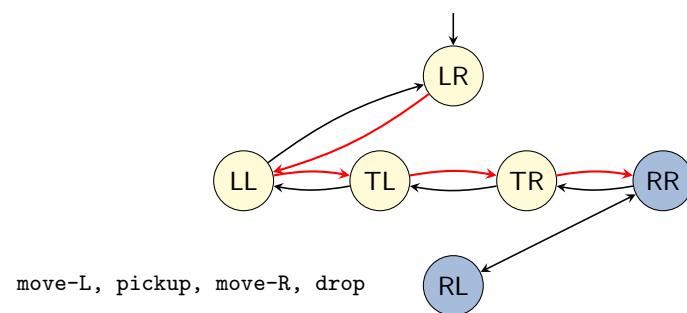
F2.3 Summary

Content of this Course



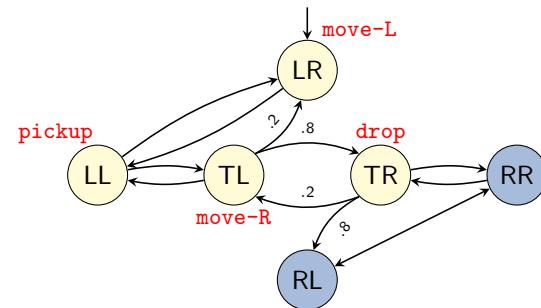
F2.1 Policies & Value Functions

Solutions in SSPs



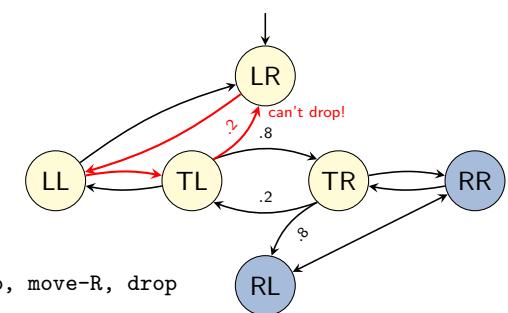
- ▶ solution in deterministic transition systems is **plan**, i.e., a goal path from s_0 to some $s_* \in S_*$
- ▶ **cheapest** plan is **optimal solution**
- ▶ deterministic agent that **executes** plan will reach goal

Solutions in SSPs



- ▶ policy must be allowed to be **cyclic**
- ▶ policy must be able to **branch** over outcomes
- ▶ policy assigns **applicable labels** to states

Solutions in SSPs



- ▶ probabilistic agent **will not reach goal** or **cannot execute plan**
- ▶ non-determinism can lead to **different outcome** than **anticipated** in plan
- ▶ require a more general solution: a **policy**

Solutions in SSPs

Policy for SSPs

Definition (Policy for SSPs)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ be an SSP. A **policy** for \mathcal{T} is a mapping $\pi : S \rightarrow L \cup \{\perp\}$ such that $\pi(s) \in L(s) \cup \{\perp\}$ for all s .

The set of **reachable states** $S_\pi(s)$ from s under π is defined recursively as the smallest set satisfying the rules

- ▶ $s \in S_\pi(s)$ and
- ▶ $\text{succ}(s', \pi(s')) \subseteq S_\pi(s)$ for all $s' \in S_\pi(s) \setminus S_*$ where $\pi(s') \neq \perp$.

If $\pi(s') \neq \perp$ for all $s' \in S_\pi(s)$, then π is **executable in s** .

Policy Representation

- size of **explicit representation** of executable policy π is $|S_\pi(s_0)|$
- often, $|S_\pi(s_0)|$ similar to $|S|$
- compact** policy representation, e.g. via value function approximation or neural networks, is active research area
⇒ not covered in this course
- instead, we consider **small state spaces** for basic algorithms
- or **online** planning where planning for the current state s_0 is interleaved with **execution** of $\pi(s_0)$

Value Functions of SSPs

Definition (Value Functions of SSPs)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ be an SSP and π be an executable policy for \mathcal{T} . The **state-value** $V_\pi(s)$ of s under π is defined as

$$V_\pi(s) := \begin{cases} 0 & \text{if } s \in S_* \\ Q_\pi(s, \pi(s)) & \text{otherwise,} \end{cases}$$

where the **action-value** $Q_\pi(s, \ell)$ under π is defined as

$$Q_\pi(s, \ell) := c(\ell) + \sum_{s' \in \text{succ}(s, \ell)} (T(s, \ell, s') \cdot V_\pi(s')).$$

Example: Value Functions of SSPs

Example

Consider example task and π with $\pi(\text{LR}) = \text{move-L}$, $\pi(\text{LL}) = \text{pickup}$, $\pi(\text{TL}) = \text{move-R}$ and $\pi(\text{TR}) = \text{drop}$.

$$\begin{aligned} V_*(\text{LR}) &= 1 + V_*(\text{LL}) \\ V_*(\text{LL}) &= 1 + V_*(\text{TL}) \\ V_*(\text{TL}) &= 1 + (0.8 \cdot V_*(\text{RR})) + (0.2 \cdot V_*(\text{LR})) \\ V_*(\text{TR}) &= 1 + V_*(\text{RR}) \\ V_*(\text{RL}) &= 0 \\ V_*(\text{RR}) &= 0 \end{aligned}$$

What is the solution of this? ⇒ next week!

Bellman Optimality Equation

Definition (Optimal Policy in SSPs)

Let the **Bellman optimality equation** for a state s of an SSP be the set of equations that describes $V_*(s)$, where

$$\begin{aligned} V_*(s) &:= \begin{cases} 0 & \text{if } s \in S_* \\ \min_{\ell \in L(s)} Q_*(s, \ell) & \text{otherwise,} \end{cases} \\ Q_*(s, \ell) &:= c(\ell) + \sum_{s' \in \text{succ}(s, \ell)} (T(s, \ell, s') \cdot V_*(s')). \end{aligned}$$

A policy π^* is an **optimal policy** if $\pi^*(s) \in \arg \min_{\ell \in L(s)} Q_*(s, \ell)$ for all $s \in S$, and the **expected cost** of π^* in \mathcal{T} is $V_*(s_0)$.

Dead-end States

- ▶ dead-end states are a problem with our formalization
- ▶ each policy with non-zero probability of reaching a dead-end has infinite state-value
- ▶ one solution is to search for policy with highest probability to reach the goal
- ▶ unfortunately, this ignores costs
- ▶ there is also research on dead-end detection
- ▶ in this course, we only consider SSPs, FH-MDPs and DR-MDPs that are dead-end free

Policies for FH-MDPs

- ▶ What is the optimal policy for the SSP at the blackboard?
- ▶ Can we do better if we regard this as an FH-MDP?
- ▶ Yes, by acting differently close to the horizon.

Policy for FH-MDPs

Definition (Policy for FH-MDPs)

Let $\mathcal{T} = \langle S, L, R, T, s_0, H \rangle$ be an FH-MDP. A policy for \mathcal{T} is a mapping $\pi : S \times \{1, \dots, H\} \rightarrow L \cup \{\perp\}$ such that $\pi(s, d) \in L(s) \cup \{\perp\}$ for all s .

The set of reachable states $S_\pi(s, d)$ from s with d steps-to-go under π is defined recursively as the smallest set satisfying the rules

- ▶ $\langle s, d \rangle \in S_\pi(s, d)$ and
- ▶ $\langle s'', d' - 1 \rangle \in S_\pi(s, d)$ for all $s'' \in \text{succ}(s', \pi(s'))$ and $\langle s', d' \rangle \in S_\pi(s)$ with $d' > 0$ and $\pi(s', d') \neq \perp$.

If $\pi(s', d') \neq \perp$ for all $\langle s', d' \rangle \in S_\pi(s, d)$ with $d' > 0$, then π is executable in s .

Value Functions for FH-MDPs

Definition (Value Functions for FH-MDPs)

Let $\mathcal{T} = \langle S, L, c, T, s_0, H \rangle$ be an FH-MDP and π be an executable policy for \mathcal{T} . The state-value $V_\pi(s, d)$ of s and d under π is defined as

$$V_\pi(s, d) := \begin{cases} 0 & \text{if } d = 0 \\ Q_\pi(s, d, \pi(s)) & \text{otherwise,} \end{cases}$$

where the action-value $Q_\pi(s, d, \ell)$ under π is defined as

$$Q_\pi(s, d, \ell) := R(s, \ell) + \sum_{s' \in \text{succ}(s, \ell)} (T(s, \ell, s') \cdot V_\pi(s', d - 1)).$$

Bellman Optimality Equation

Definition (Optimal Policy in FH-MDPs)

Let the Bellman optimality equation for a state s of an FH-MDP be the set of equations that describes $V_*(s, d)$, where

$$V_*(s, d) := \begin{cases} 0 & \text{if } d = 0 \\ \max_{\ell \in L(s)} Q_*(s, d, \ell) & \text{otherwise,} \end{cases}$$

$$Q_*(s, d, \ell) := R(s, \ell) + \sum_{s' \in \text{succ}(s, \ell)} (T(s, \ell, s') \cdot V_*(s', d - 1)).$$

A policy π^* is an optimal policy if

$\pi^*(s, d) \in \arg \max_{\ell \in L(s)} Q_*(s, d, \ell)$ for all $s \in S$ and
 $d \in \{1, \dots, H\}$, and the expected reward of π^* in \mathcal{T} is $V_*(s_0, H)$.

(Optimal) Policy and Value Functions for DR-MDPs

- ▶ policy does **not distinguish states** based on steps-to-go (or rather the reverse “distance-from-init”)
- ▶ value functions have no **“terminal case”**
- ▶ value functions **discount** reward with γ
- ▶ Bellman optimality equation derived from value functions **as for FH-MDP**

F2.2 Factored MDPs

Factored SSPs

We would like to specify huge SSPs without enumerating states. In classical planning, we achieved this via propositional planning tasks:

- ▶ represent different aspects of the world in terms of different **Boolean state variables**
- ▶ treat state variables as atomic propositions
 \rightsquigarrow a state is a **valuation of state variables**
- ▶ n state variables induce 2^n states
 \rightsquigarrow **exponentially more compact** than “flat” representations
- ⇒ can also be used for SSPs

Reminder: Syntax of Operators

Definition (Operator)

An **operator** o over state variables V is an object with three properties:

- ▶ a **precondition** $pre(o)$, a logical formula over V
- ▶ an **effect** $eff(o)$ over V , defined on the following slides
- ▶ a **cost** $cost(o) \in \mathbb{R}_0^+$

⇒ can also be used for SSPs

Reminder: Syntax of Effects

Definition (Effect)

Effects over state variables V are inductively defined as follows:

- ▶ If $v \in V$ is a state variable, then v and $\neg v$ are effects (**atomic effect**).
- ▶ If e_1, \dots, e_n are effects, then $(e_1 \wedge \dots \wedge e_n)$ is an effect (**conjunctive effect**).
The special case with $n = 0$ is the **empty effect** \top .
- ▶ If χ is a logical formula and e is an effect, then $(\chi \triangleright e)$ is an effect (**conditional effect**).

Parentheses can be omitted when this does not cause ambiguity.

Syntax of Probabilistic Effects

Definition (Effect)

Effects over state variables V are inductively defined as follows:

- ▶ If $v \in V$ is a state variable, then v and $\neg v$ are effects (**atomic effect**).
- ▶ If e_1, \dots, e_n are effects, then $(e_1 \wedge \dots \wedge e_n)$ is an effect (**conjunctive effect**).
The special case with $n = 0$ is the **empty effect** \top .
- ▶ If χ is a logical formula and e is an effect, then $(\chi \triangleright e)$ is an effect (**conditional effect**).
- ▶ If e_1, \dots, e_n are effects and $p_1, \dots, p_n \in [0, 1]$ such that $\sum_{i=1}^n p_i = 1$, then $(p_1 : e_1 | \dots | p_n : e_n)$ is an effect (**probabilistic effect**).

Parentheses can be omitted when this does not cause ambiguity.

- ▶ **FDR tasks** can be generalized to SSPs in the same way
- ▶ both propositional and FDR tasks can be **generalized to FH-MDPs and DR-MDPs**

F2.3 Summary

Summary

- ▶ Policies consider branching and cycles
- ▶ State-value of a policy describes **expected reward** of following that policy
- ▶ Related **Bellman optimality equation** describes optimal policy
- ▶ **Compact descriptions** that induce SSPs and MDPs analogous to classical planning