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F2. Policies & Compact Description Policies & Value Functions

Solutions in SSPs

LR

LL TL

RL

TR RR

move-L, pickup, move-R, drop

I solution in deterministic transition systems is plan, i.e., a goal
path from s0 to some s? ∈ S?

I cheapest plan is optimal solution

I deterministic agent that executes plan will reach goal
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Solutions in SSPs

LR

LL TL

RL

TR RR

move-L, pickup, move-R, drop

.8.2

can’t drop!

.2

.8

I probabilistic agent will not reach goal or cannot execute plan

I non-determinism can lead to different outcome than
anticipated in plan

I require a more general solution: a policy

G. Röger, T. Keller (Universität Basel) Planning and Optimization November 21, 2018 6 / 26

F2. Policies & Compact Description Policies & Value Functions

Solutions in SSPs

LR

move-L

LL

pickup

TL

move-R

RL

TR

drop

RR

move-L, pickup, move-R, drop

.8.2

.2

.8

I policy must be allowed to be cyclic

I policy must be able to branch over outcomes

I policy assigns applicable labels to states
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Policy for SSPs

Definition (Policy for SSPs)

Let T = 〈S , L, c ,T , s0,S?〉 be an SSP. A policy for T is a mapping
π : S → L ∪ {⊥} such that π(s) ∈ L(s) ∪ {⊥} for all s.

The set of reachable states Sπ(s) from s under π is defined
recursively as the smallest set satisfying the rules

I s ∈ Sπ(s) and

I succ(s ′, π(s ′)) ⊆ Sπ(s) for all s ′ ∈ Sπ(s) \S? where π(s ′) 6= ⊥.

If π(s ′) 6= ⊥ for all s ′ ∈ Sπ(s), then π is executable in s.

G. Röger, T. Keller (Universität Basel) Planning and Optimization November 21, 2018 8 / 26



F2. Policies & Compact Description Policies & Value Functions

Policy Representation

I size of explicit representation of executable policy π is |Sπ(s0)|
I often, |Sπ(s0)| similar to |S |
I compact policy representation, e.g. via value function

approximation or neural networks, is active research area
⇒ not covered in this course

I instead, we consider small state spaces for basic algorithms

I or online planning where planning for the current state s0 is
interleaved with execution of π(s0)
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Value Functions of SSPs

Definition (Value Functions of SSPs)

Let T = 〈S , L, c ,T , s0,S?〉 be an SSP and π be an executable
policy for T . The state-value Vπ(s) of s under π is defined as

Vπ(s) :=

{
0 if s ∈ S?

Qπ(s, π(s)) otherwise,

where the action-value Qπ(s, `) under π is defined as

Qπ(s, `) := c(`) +
∑

s′∈succ(s,`)

(
T (s, `, s ′) · Vπ(s ′)

)
.
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Example: Value Functions of SSPs

Example

Consider example task and π with π(LR) = move-L,
π(LL) = pickup, π(TL) = move-R and π(TR) = drop.

V?(LR) = 1 + V?(LL)

V?(LL) = 1 + V?(TL)

V?(TL) = 1 + (0.8 · V?(RR)) + (0.2 · V?(LR))

V?(TR) = 1 + V?(RR)

V?(RL) = 0

V?(RR) = 0

What is the solution of this? ⇒ next week!
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Bellman Optimality Equation

Definition (Optimal Policy in SSPs)

Let the Bellman optimality equation for a state s of an SSP be the
set of equations that describes V?(s), where

V?(s) :=

{
0 if s ∈ S?

min`∈L(s)Q?(s, `) otherwise,

Q?(s, `) := c(`) +
∑

s′∈succ(s,`)

(
T (s, `, s ′) · V?(s ′)

)
.

A policy π? is an optimal policy if π?(s) ∈ arg min`∈L(s)Q?(s, `) for
all s ∈ S , and the expected cost of π? in T is V?(s0).
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Dead-end States

I dead-end states are a problem with our formalization

I each policy with non-zero probability of reaching a dead-end
has infinite state-value

I one solution is to search for policy with highest probability to
reach the goal

I unfortunately, this ignores costs

I there is also research on dead-end detection

I in this course, we only consider SSPs, FH-MDPs and
DR-MDPs that are dead-end free
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Policies for FH-MDPs

I What is the optimal policy for the SSP at the blackboard?

I Can we do better if we regard this as an FH-MDP?

I Yes, by acting differently close to the horizon.
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Policy for FH-MDPs

Definition (Policy for FH-MDPs)

Let T = 〈S , L,R,T , s0,H〉 be an FH-MDP. A policy for T is a
mapping π : S × {1, . . . ,H} → L ∪ {⊥} such that
π(s, d) ∈ L(s) ∪ {⊥} for all s.

The set of reachable states Sπ(s, d) from s with d steps-to-go
under π is defined recursively as the smallest set satisfying the
rules

I 〈s, d〉 ∈ Sπ(s, d) and

I 〈s ′′, d ′ − 1〉 ∈ Sπ(s, d) for all s ′′ ∈ succ(s ′, π(s ′)) and
〈s ′, d ′〉 ∈ Sπ(s) with d ′ > 0 and π(s ′, d ′) 6= ⊥.

If π(s ′, d ′) 6= ⊥ for all 〈s ′, d ′〉 ∈ Sπ(s, d) with d ′ > 0, then π is
executable in s.
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Value Functions for FH-MDPs

Definition (Value Functions for FH-MDPs)

Let T = 〈S , L, c ,T , s0,H〉 be an FH-MDP and π be an executable
policy for T . The state-value Vπ(s, d) of s and d under π is
defined as

Vπ(s, d) :=

{
0 if d = 0

Qπ(s, d , π(s)) otherwise,

where the action-value Qπ(s, d , `) under π is defined as

Qπ(s, d , `) := R(s, `) +
∑

s′∈succ(s,`)

(
T (s, `, s ′) · Vπ(s ′, d − 1)

)
.
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Bellman Optimality Equation

Definition (Optimal Policy in FH-MDPs)

Let the Bellman optimality equation for a state s of an FH-MDP
be the set of equations that describes V?(s, d), where

V?(s, d) :=

{
0 if d = 0

max`∈L(s)Q?(s, d , `) otherwise,

Q?(s, d , `) := R(s, `) +
∑

s′∈succ(s,`)

(
T (s, `, s ′) · V?(s ′, d − 1)

)
.

A policy π? is an optimal policy if
π?(s, d) ∈ arg max`∈L(s)Q?(s, d , `) for all s ∈ S and
d ∈ {1, . . . ,H}, and the expected reward of π? in T is V?(s0,H).
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(Optimal) Policy and Value Functions for DR-MDPs

I policy does not distinguish states based on steps-to-go
(or rather the reverse “distance-from-init”)

I value functions have no “terminal case”

I value functions discount reward with γ

I Bellman optimality equation derived from value functions as
for FH-MDP
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F2.2 Factored MDPs
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F2. Policies & Compact Description Factored MDPs

Factored SSPs

We would like to specify huge SSPs without enumerating states. In
classical planning, we achieved this via propositional planning tasks:

I represent different aspects of the world
in terms of different Boolean state variables

I treat state variables as atomic propositions
 a state is a valuation of state variables

I n state variables induce 2n states
 exponentially more compact than “flat” representations

⇒ can also be used for SSPs
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Reminder: Syntax of Operators

Definition (Operator)

An operator o over state variables V is an object
with three properties:

I a precondition pre(o), a logical formula over V

I an effect eff(o) over V , defined on the following slides

I a cost cost(o) ∈ R+
0

⇒ can also be used for SSPs
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Reminder: Syntax of Effects

Definition (Effect)

Effects over state variables V are inductively defined as follows:

I If v ∈ V is a state variable, then v and ¬v are effects
(atomic effect).

I If e1, . . . , en are effects, then (e1 ∧ · · · ∧ en) is an effect
(conjunctive effect).
The special case with n = 0 is the empty effect >.

I If χ is a logical formula and e is an effect,
then (χ B e) is an effect (conditional effect).

Parentheses can be omitted when this does not cause ambiguity.
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Syntax of Probabilistic Effects

Definition (Effect)

Effects over state variables V are inductively defined as follows:

I If v ∈ V is a state variable, then v and ¬v are effects
(atomic effect).

I If e1, . . . , en are effects, then (e1 ∧ · · · ∧ en) is an effect
(conjunctive effect).
The special case with n = 0 is the empty effect >.

I If χ is a logical formula and e is an effect,
then (χ B e) is an effect (conditional effect).

I If e1, . . . , en are effects and p1, . . . , pn ∈ [0, 1] such that∑n
i=1 pi = 1, then (p1 : e1| . . . |pn : en) is an effect

(probabilistic effect).

Parentheses can be omitted when this does not cause ambiguity.
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I FDR tasks can be generalized to SSPs in the same way

I both propositional and FDR tasks can be generalized to
FH-MDPs and DR-MDPs
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F2.3 Summary
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F2. Policies & Compact Description Summary

Summary

I Policies consider branching and cycles

I State-value of a policy describes expected reward of following
that policy

I Related Bellman optimality equation describes optimal policy

I Compact descriptions that induce SSPs and MDPs analogous
to classical planning
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