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Limitations of Classical Planning
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m timetable for astronauts on ISS
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m timetable for astronauts on ISS
m concurrency required for some experiments

m optimize makespan
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Limitations of Classical Planning

m kinematics of robotic arm
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Generalization of Classical Planning: Numeric Planning

m kinematics of robotic arm
m state space is continuous
m preconditions and effects described by complex functions
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m satellite takes images of patches on earth
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m satellite takes images of patches on earth
m weather forecast is uncertain

m find solution with lowest expected cost
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m Chess
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m Chess
m there is an opponent with
m contradictory objective
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Limitations of Classical Planning

m Solitaire
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Generalization of Classical Planning: POMDPs
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m Solitaire
m some state information cannot be observed

m must reason over belief for good behaviour
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Limitations of Classical Planning

m many applications are combinations of these
m all of these are active research areas

m we focus on one of them:
probabilistic planning with Markov decision processes

m MDPs are closely related to games (Why?)
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Markov Decision Processes

m Markov decision processes (MDPs) studied since the 1950s

m Work up to 1980s mostly on theory and basic algorithms for
small to medium sized MDPs

m Today, focus on large (typically factored) MDPs

m Fundamental datastructure for reinforcement learning
(not covered in this course)

m and for probabilistic planning

m different variants exist
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Reminder: Transition Systems

Definition (Transition System)

A transition system is a 6-tuple 7 = (S, L, ¢, T, so, Si) where
m S is a finite set of states,
m L is a finite set of (transition) labels,
mc:L— RBL is a label cost function,

T C S x L xS is the transition relation,

sp € S is the initial state, and

S, C S is the set of goal states.
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Reminder: Transition System Example

|
(18)

Logistics problem with one package, one trucks, two locations:
m location of package: {L,R, T}
m location of truck: {L, R}
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Stochastic Shortest Path Problem

Definition (Stochastic Shortest Path Problem)

A stochastic shortest path problem (SSP) is a 6-tuple
T=(S,L,c,T,s0,Ss), where
m S is a finite set of states,

m L is a finite set of (transition) labels,

mc:L— RBL is a label cost function,
mT:S5SxLxSw+—[0,1]is the transition function,
m sp € S is the initial state, and
m S, C S is the set of goal states.
For all s € S and ¢ € L with T(s,¢,s") > 0 for some s’ € S, we
require Y .5 T(s,¢,s") = 1.

Note: An SSP is the probabilistic pendant of a transition system.
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Reminder: Transition System Example

Logistics problem with one package, one trucks, two locations:
m location of package: {L,R, T}
m location of truck: {L, R}

m if truck moves with package, 20% chance of losing package
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Terminology (1)

. R4 )
If p:= T(s,¢,s') >0, we write s == s’ or s 2 s’ if not
interested in £.

. ‘ .
If T(s,¢,s") =1, we also write s — s’ or s — s if not
interested in /.

If T(s,¢,s") >0 for some s’ we say that ¢ is applicable in s.

The set of applicable labels in s is L(s).
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Terminology (2)

m the successor set of s and £ is

succ(s,l) ={s' € S| T(s,¢,s") >0}
m s’ is a successor of s if s’ € succ(s, £) for some £
m s is predecessor of " if s’ € succ(s, £) for some £

m with s’ ~ succ(s, ¢) we denote that successor s’ € succ(s, £) of
s and ¢ is sampled according to probability distribution T
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Summary

Terminology (3)

m s’ is reachable from s if there exists a sequence of transitions

p: 4 _ Pn:en
SO 2L sl st N snst sO=sands" =
Note: n = 0 possible; then s = ¢
s, ...,s"is called (state) path from s to s’
ly,..., 4, is called (label) path from s to s’
¢ A .
s 2y sl s" 1 20 57 s called trace from s to s’

length of path/trace is n
cost of label path/trace is >.7_; c(¢;)
probability of path/trace is []"_; p;
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Finite-horizon Markov Decision Process

Definition (Finite-horizon Markov Decision Process)

A finite-horizon Markov decision process (FH-MDP) is a 6-tuple
T=(SL,R,T,sp, H), where
S is a finite set of states,

L is a finite set of (transition) labels,

]
|
m R:S xL—Ris the reward function,
m 7T:5xLxS~—1]0,1] is the transition function,
m sp € S is the initial state, and
m H € N is the finite horizon.
For all s € S and ¢ € L with T(s,¢,s") > 0 for some s’ € S, we

require > .5 T(s,4,5') = 1.
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Example: Push Your Luck
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Discounted Reward Markov Decision Process

Definition (Discounted Reward Markov Decision Process)

A discounted reward Markov decision process (DR-MDP) is a
6-tuple T =(S,L, R, T, sp,7), where

m S is a finite set of states,

m L is a finite set of (transition) labels,

m R:S x L — Ris the reward function,

m 7T:5xLxS~—1]0,1] is the transition function,

m sp € S is the initial state, and

m 7 € (0,1) is the discount factor.

For all s € S and ¢ € L with T(s,¢,s") > 0 for some s’ € S, we
require > .5 T(s,4,5') = 1.
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Example: Grid World

m each move goes in orthogonal direction with some probability
m (4,3) gives reward of +1 and sets position back to (1,1)
m (4,2) gives reward of -1



[ Je]

Summary



Summary

oe

Summary

Many planning scenarios beyond classical planning

We focus on probabilistic planning

SSPs are classical planning + probabilistic transition function
FH-MDPs and DR-MDPs allow state-dependent rewards
FH-MDPs consider finite number of steps

DR-MDPs discount rewards over infinite horizon
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