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Motivation
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Limitations of Classical Planning

timetable for astronauts on ISS

concurrency required for some experiments

optimize makespan
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Generalization of Classical Planning: Temporal Planning

timetable for astronauts on ISS

concurrency required for some experiments

optimize makespan
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Limitations of Classical Planning

kinematics of robotic arm

state space is continuous

preconditions and effects described by complex functions
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Generalization of Classical Planning: Numeric Planning

kinematics of robotic arm

state space is continuous

preconditions and effects described by complex functions
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Limitations of Classical Planning
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satellite takes images of patches on earth

weather forecast is uncertain

find solution with lowest expected cost



Motivation Markov Decision Processes Summary

Generalization of Classical Planning: MDPs
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satellite takes images of patches on earth

weather forecast is uncertain

find solution with lowest expected cost
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Limitations of Classical Planning

Chess

there is an opponent with

contradictory objective
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Generalization of Classical Planning: Multiplayer Games

Chess

there is an opponent with

contradictory objective
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Limitations of Classical Planning

Solitaire

some state information cannot be observed

must reason over belief for good behaviour
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Generalization of Classical Planning: POMDPs

Solitaire

some state information cannot be observed

must reason over belief for good behaviour
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Limitations of Classical Planning

many applications are combinations of these

all of these are active research areas

we focus on one of them:
probabilistic planning with Markov decision processes

MDPs are closely related to games (Why?)
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Markov Decision Processes
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Markov Decision Processes

Markov decision processes (MDPs) studied since the 1950s

Work up to 1980s mostly on theory and basic algorithms for
small to medium sized MDPs

Today, focus on large (typically factored) MDPs

Fundamental datastructure for reinforcement learning
(not covered in this course)

and for probabilistic planning

different variants exist
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Reminder: Transition Systems

Definition (Transition System)

A transition system is a 6-tuple T = 〈S , L, c ,T , s0, S?〉 where

S is a finite set of states,

L is a finite set of (transition) labels,

c : L→ R+
0 is a label cost function,

T ⊆ S × L× S is the transition relation,

s0 ∈ S is the initial state, and

S? ⊆ S is the set of goal states.
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Reminder: Transition System Example
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RL

TR RR

Logistics problem with one package, one trucks, two locations:

location of package: {L,R,T}
location of truck: {L,R}
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Stochastic Shortest Path Problem

Definition (Stochastic Shortest Path Problem)

A stochastic shortest path problem (SSP) is a 6-tuple
T = 〈S , L, c ,T , s0, S?〉, where

S is a finite set of states,

L is a finite set of (transition) labels,

c : L→ R+
0 is a label cost function,

T : S × L× S 7→ [0, 1] is the transition function,

s0 ∈ S is the initial state, and

S? ⊆ S is the set of goal states.

For all s ∈ S and ` ∈ L with T (s, `, s ′) > 0 for some s ′ ∈ S , we
require

∑
s′∈S T (s, `, s ′) = 1.

Note: An SSP is the probabilistic pendant of a transition system.
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Reminder: Transition System Example

LR

LL TL

RL

TR RR

.8.2

.2

.8
Logistics problem with one package, one trucks, two locations:

location of package: {L,R,T}
location of truck: {L,R}
if truck moves with package, 20% chance of losing package
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Terminology (1)

If p := T (s, `, s ′) > 0, we write s
p:`−−→ s ′ or s

p−→ s ′ if not
interested in `.

If T (s, `, s ′) = 1, we also write s
`−→ s ′ or s → s ′ if not

interested in `.

If T (s, `, s ′) > 0 for some s ′ we say that ` is applicable in s.

The set of applicable labels in s is L(s).
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Terminology (2)

the successor set of s and ` is
succ(s, `) = {s ′ ∈ S | T (s, `, s ′) > 0}
s ′ is a successor of s if s ′ ∈ succ(s, `) for some `

s is predecessor of s ′ if s ′ ∈ succ(s, `) for some `

with s ′ ∼ succ(s, `) we denote that successor s ′ ∈ succ(s, `) of
s and ` is sampled according to probability distribution T
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Terminology (3)

s ′ is reachable from s if there exists a sequence of transitions

s0
p1:`1−−−→ s1, . . . , sn−1

pn:`n−−−→ sn s.t. s0 = s and sn = s ′

Note: n = 0 possible; then s = s ′

s0, . . . , sn is called (state) path from s to s ′

`1, . . . , `n is called (label) path from s to s ′

s0
`1−→ s1, . . . , sn−1

`n−→ sn is called trace from s to s ′

length of path/trace is n
cost of label path/trace is

∑n
i=1 c(`i )

probability of path/trace is
∏n

i=1 pi
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Finite-horizon Markov Decision Process

Definition (Finite-horizon Markov Decision Process)

A finite-horizon Markov decision process (FH-MDP) is a 6-tuple
T = 〈S , L,R,T , s0,H〉, where

S is a finite set of states,

L is a finite set of (transition) labels,

R : S × L→ R is the reward function,

T : S × L× S 7→ [0, 1] is the transition function,

s0 ∈ S is the initial state, and

H ∈ N is the finite horizon.

For all s ∈ S and ` ∈ L with T (s, `, s ′) > 0 for some s ′ ∈ S , we
require

∑
s′∈S T (s, `, s ′) = 1.



Motivation Markov Decision Processes Summary

Example: Push Your Luck
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Discounted Reward Markov Decision Process

Definition (Discounted Reward Markov Decision Process)

A discounted reward Markov decision process (DR-MDP) is a
6-tuple T = 〈S , L,R,T , s0, γ〉, where

S is a finite set of states,

L is a finite set of (transition) labels,

R : S × L→ R is the reward function,

T : S × L× S 7→ [0, 1] is the transition function,

s0 ∈ S is the initial state, and

γ ∈ (0, 1) is the discount factor.

For all s ∈ S and ` ∈ L with T (s, `, s ′) > 0 for some s ′ ∈ S , we
require

∑
s′∈S T (s, `, s ′) = 1.
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Example: Grid World
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each move goes in orthogonal direction with some probability

(4,3) gives reward of +1 and sets position back to (1,1)

(4,2) gives reward of -1
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Summary
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Summary

Many planning scenarios beyond classical planning

We focus on probabilistic planning

SSPs are classical planning + probabilistic transition function

FH-MDPs and DR-MDPs allow state-dependent rewards

FH-MDPs consider finite number of steps

DR-MDPs discount rewards over infinite horizon
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