

Motivation

Limitations of Classical PlanningGeneralization of Classical Planning: Temporal Planning

- timetable for astronauts on ISS
- concurrency required for some experiments
- ► optimize makespan

G. Röger, T. Keller (Universität Basel) Planning and Optimization

F1. Markov Decision Processes

Motivation

5 / 25

7 / 25

November 21, 2018

Limitations of Classical PlanningGeneralization of Classical Planning: MDPs

- satellite takes images of patches on earth
- weather forecast is uncertain
- find solution with lowest expected cost

kinematics of robotic arm state space is continuous G. Röger, T. Keller (Universität Basel)

F1. Markov Decision Processes

Limitations of Classical PlanningGeneralization of Classical Planning: Multiplayer Games

- there is an opponent with
- contradictory objective

Motivation

F1. Markov Decision Processes Motivation Limitations of Classical PlanningGeneralization of Classical Planning: POMDPs ÷ Â. Score: 48 Moves: 13 Solitaire some state information cannot be observed must reason over belief for good behaviour G. Röger, T. Keller (Universität Basel) Planning and Optimization November 21, 2018 9 / 25

F1. Markov Decision Processes Markov Decision Processes F1.2 Markov Decision Processes

11 / 25

F1.	Markov	Decision	Processes	
-----	--------	----------	-----------	--

Discounted Reward Markov Decision Process

Definition (Discounted Reward Markov Decision Process) A discounted reward Markov decision process (DR-MDP) is a 6-tuple $\mathcal{T} = \langle S, L, R, T, s_0, \gamma \rangle$, where

- ► *S* is a finite set of states,
- ► L is a finite set of (transition) labels,
- ▶ $R: S \times L \rightarrow \mathbb{R}$ is the reward function,
- ▶ $T: S \times L \times S \mapsto [0, 1]$ is the transition function,
- ▶ $s_0 \in S$ is the initial state, and
- $\gamma \in (0, 1)$ is the discount factor.

For all $s \in S$ and $\ell \in L$ with $T(s, \ell, s') > 0$ for some $s' \in S$, we require $\sum_{s' \in S} T(s, \ell, s') = 1$.

Planning and Optimization

G. Röger, T. Keller (Universität Basel)

November 21, 2018 22 / 25

Markov Decision Processes

