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F1. Markov Decision Processes Motivation

Limitations of Classical PlanningGeneralization of Classical
Planning: Temporal Planning

I timetable for astronauts on ISS

I concurrency required for some experiments

I optimize makespan
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F1. Markov Decision Processes Motivation

Limitations of Classical PlanningGeneralization of Classical
Planning: Numeric Planning

I kinematics of robotic arm
I state space is continuous
I preconditions and effects described by complex functionsG. Röger, T. Keller (Universität Basel) Planning and Optimization November 21, 2018 6 / 25

F1. Markov Decision Processes Motivation

Limitations of Classical PlanningGeneralization of Classical
Planning: MDPs
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I satellite takes images of patches on earth

I weather forecast is uncertain

I find solution with lowest expected cost
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F1. Markov Decision Processes Motivation

Limitations of Classical PlanningGeneralization of Classical
Planning: Multiplayer Games

I Chess
I there is an opponent with
I contradictory objective

G. Röger, T. Keller (Universität Basel) Planning and Optimization November 21, 2018 8 / 25



F1. Markov Decision Processes Motivation

Limitations of Classical PlanningGeneralization of Classical
Planning: POMDPs

I Solitaire
I some state information cannot be observed
I must reason over belief for good behaviour
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F1. Markov Decision Processes Motivation

Limitations of Classical Planning

I many applications are combinations of these

I all of these are active research areas

I we focus on one of them:
probabilistic planning with Markov decision processes

I MDPs are closely related to games (Why?)
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F1. Markov Decision Processes Markov Decision Processes

F1.2 Markov Decision Processes
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F1. Markov Decision Processes Markov Decision Processes

Markov Decision Processes

I Markov decision processes (MDPs) studied since the 1950s

I Work up to 1980s mostly on theory and basic algorithms for
small to medium sized MDPs

I Today, focus on large (typically factored) MDPs

I Fundamental datastructure for reinforcement learning
(not covered in this course)

I and for probabilistic planning

I different variants exist
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F1. Markov Decision Processes Markov Decision Processes

Reminder: Transition Systems

Definition (Transition System)

A transition system is a 6-tuple T = 〈S , L, c ,T , s0, S?〉 where

I S is a finite set of states,

I L is a finite set of (transition) labels,

I c : L→ R+
0 is a label cost function,

I T ⊆ S × L× S is the transition relation,

I s0 ∈ S is the initial state, and

I S? ⊆ S is the set of goal states.
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F1. Markov Decision Processes Markov Decision Processes

Reminder: Transition System Example

LR

LL TL

RL

TR RR

Logistics problem with one package, one trucks, two locations:

I location of package: {L,R,T}
I location of truck: {L,R}
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F1. Markov Decision Processes Markov Decision Processes

Stochastic Shortest Path Problem

Definition (Stochastic Shortest Path Problem)

A stochastic shortest path problem (SSP) is a 6-tuple
T = 〈S , L, c ,T , s0, S?〉, where

I S is a finite set of states,

I L is a finite set of (transition) labels,

I c : L→ R+
0 is a label cost function,

I T : S × L× S 7→ [0, 1] is the transition function,

I s0 ∈ S is the initial state, and

I S? ⊆ S is the set of goal states.

For all s ∈ S and ` ∈ L with T (s, `, s ′) > 0 for some s ′ ∈ S , we
require

∑
s′∈S T (s, `, s ′) = 1.

Note: An SSP is the probabilistic pendant of a transition system.
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F1. Markov Decision Processes Markov Decision Processes

Reminder: Transition System Example

LR

LL TL

RL

TR RR

.8.2
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.8

Logistics problem with one package, one trucks, two locations:

I location of package: {L,R,T}
I location of truck: {L,R}
I if truck moves with package, 20% chance of losing package
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F1. Markov Decision Processes Markov Decision Processes

Terminology (1)

I If p := T (s, `, s ′) > 0, we write s
p:`−−→ s ′ or s

p−→ s ′ if not
interested in `.

I If T (s, `, s ′) = 1, we also write s
`−→ s ′ or s → s ′ if not

interested in `.

I If T (s, `, s ′) > 0 for some s ′ we say that ` is applicable in s.

I The set of applicable labels in s is L(s).
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F1. Markov Decision Processes Markov Decision Processes

Terminology (2)

I the successor set of s and ` is
succ(s, `) = {s ′ ∈ S | T (s, `, s ′) > 0}

I s ′ is a successor of s if s ′ ∈ succ(s, `) for some `

I s is predecessor of s ′ if s ′ ∈ succ(s, `) for some `

I with s ′ ∼ succ(s, `) we denote that successor s ′ ∈ succ(s, `) of
s and ` is sampled according to probability distribution T
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F1. Markov Decision Processes Markov Decision Processes

Terminology (3)

I s ′ is reachable from s if there exists a sequence of transitions

s0
p1:`1−−−→ s1, . . . , sn−1

pn:`n−−−→ sn s.t. s0 = s and sn = s ′

I Note: n = 0 possible; then s = s ′

I s0, . . . , sn is called (state) path from s to s ′

I `1, . . . , `n is called (label) path from s to s ′

I s0
`1−→ s1, . . . , sn−1

`n−→ sn is called trace from s to s ′

I length of path/trace is n
I cost of label path/trace is

∑n
i=1 c(`i )

I probability of path/trace is
∏n

i=1 pi
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F1. Markov Decision Processes Markov Decision Processes

Finite-horizon Markov Decision Process

Definition (Finite-horizon Markov Decision Process)

A finite-horizon Markov decision process (FH-MDP) is a 6-tuple
T = 〈S , L,R,T , s0,H〉, where

I S is a finite set of states,

I L is a finite set of (transition) labels,

I R : S × L→ R is the reward function,

I T : S × L× S 7→ [0, 1] is the transition function,

I s0 ∈ S is the initial state, and

I H ∈ N is the finite horizon.

For all s ∈ S and ` ∈ L with T (s, `, s ′) > 0 for some s ′ ∈ S , we
require

∑
s′∈S T (s, `, s ′) = 1.
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F1. Markov Decision Processes Markov Decision Processes

Example: Push Your Luck
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Discounted Reward Markov Decision Process

Definition (Discounted Reward Markov Decision Process)

A discounted reward Markov decision process (DR-MDP) is a
6-tuple T = 〈S , L,R,T , s0, γ〉, where

I S is a finite set of states,

I L is a finite set of (transition) labels,

I R : S × L→ R is the reward function,

I T : S × L× S 7→ [0, 1] is the transition function,

I s0 ∈ S is the initial state, and

I γ ∈ (0, 1) is the discount factor.

For all s ∈ S and ` ∈ L with T (s, `, s ′) > 0 for some s ′ ∈ S , we
require

∑
s′∈S T (s, `, s ′) = 1.
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Example: Grid World
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I each move goes in orthogonal direction with some probability

I (4,3) gives reward of +1 and sets position back to (1,1)

I (4,2) gives reward of -1
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F1. Markov Decision Processes Summary

F1.3 Summary
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F1. Markov Decision Processes Summary

Summary

I Many planning scenarios beyond classical planning

I We focus on probabilistic planning

I SSPs are classical planning + probabilistic transition function

I FH-MDPs and DR-MDPs allow state-dependent rewards

I FH-MDPs consider finite number of steps

I DR-MDPs discount rewards over infinite horizon
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