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Reminder: Disjunctive Action Landmarks

Disjunctive action landmark

I Set of operators

I Every plan uses at least one of them

I Landmark cost = cost of cheapest operator
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Reminder: Cost Partitioning Heuristic for Landmarks

We have already seen a landmark heuristic based on
cost partitioning:

Definition (Uniform Cost Partitioning Heuristic for Landmarks)

Let L be a set of disjunctive action landmarks.

The uniform cost partitioning heuristic hUCP(L) is defined as

hUCP(L) =
∑
L∈L

min
o∈L

c ′(o) with

c ′(o) = cost(o)/|{L ∈ L | o ∈ L}|.
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Reminder: Proof Back Then

Theorem (Uniform Cost Partitioning Heuristic is Admissible)

Let L be a set of disjunctive action landmarks for state s of Π.
Then hUCP(L) is an admissible heuristic estimate for s.

Proof.

Let π = 〈o1, . . . , on〉 be an optimal plan for s. For L ∈ L define a
new cost function costL as costL(o) = c ′(o) if o ∈ L and
costL(o) = 0 otherwise. Let ΠL be a modified version of Π, where
for all operators o the cost is replaced with costL(o).
(. . . )∑

L∈L costL(o) =
∑

L∈L:o∈L cost(o)/|{L ∈ L | o ∈ L}| = cost(o)
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Heuristic is Based on Cost Partitioning

I For disj. action landmark L of state s in task Π′,
let hL,Π′(s) be the cost of L in Π′.

I Consider set {L1, . . . , Ln} of disj. action landmarks
for state s of task Π.

I Use cost partitioning 〈costL1 , . . . , costLn〉, where

costLi (o) =

{
cost(o)/|{L ∈ L | o ∈ L}| if o ∈ Li

0 otherwise

I Let 〈ΠL1 , . . . ,ΠLn〉 be the tuple of induced tasks.

I h(s) =
∑n

i=1 hLi ,ΠLi
(s) is an admissible estimate for s in Π.

I h is uniform cost partitioning heuristic for landmarks.
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Optimal Cost Partitioning for Landmarks

Can we find a better cost partitioning?

I Use again LP that covers heuristic computation and
cost partitioning.

I LP variable CostL for cost of landmark L in induced task
(corresponds to hLi ,ΠLi

)

I Explicit variables for cost partitioning not necessary. Use
implicitly costL(o) = CostL for all o ∈ L and 0 otherwise.
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Optimal Cost Partitioning for Landmarks: LP

Variables
CostL for each disj. action landmark L ∈ L

Objective

Maximize
∑

L∈L CostL

Subject to∑
L∈L:o∈L

CostL ≤ cost(o) for all operators o

CostL ≥ 0 for all landmarks L ∈ L
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Optimal Cost Partitioning for Landmarks (Dual view)

Variables
Appliedo for each operator o

Objective

Minimize
∑

o Appliedo · cost(o)

Subject to ∑
o∈L

Appliedo ≥ 1 for all landmarks L

Appliedo ≥ 0 for all operators o

Minimize “plan cost” with all landmarks satisfied.
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E6.2 General Cost Partitioning
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General Cost Partitioning

Cost functions usually non-negative

I We tacitly also required this for task copies

I Makes intuitively sense: original costs are non-negative

I But: not necessary for cost-partitioning!
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General Cost Partitioning

Definition (General Cost Partitioning)

Let Π be a planning task with operators O.

A general cost partitioning for Π is a tuple 〈cost1, . . . , costn〉,
where

I costi : O → R for 1 ≤ i ≤ n and

I
∑n

i=1 costi (o) ≤ cost(o) for all o ∈ O.
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General Cost Partitioning: Admissibility

Theorem (Sum of Solution Costs is Admissible)

Let Π be a planning task, 〈cost1, . . . , costn〉 be a general cost
partitioning and 〈Π1, . . . ,Πn〉 be the tuple of induced tasks.

Then the sum of the solution costs of the induced tasks is an
admissible heuristic for Π, i.e.,

∑n
i=1 h

∗
Πi
≤ h∗Π.

(Proof omitted.)
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General Cost Partitioning: Example

Example
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General Cost Partitioning: Example

Example
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G. Röger, T. Keller (Universität Basel) Planning and Optimization November 19, 2018 18 / 24

E6. Cost Partitioning: Landmarks and Generalization General Cost Partitioning

General Cost Partitioning: Example

Example
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Heuristic value: −∞+ 3 = −∞
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LP for Shortest Path in State Space with Negative Costs

Variables
Distances for each state s,
GoalDist

Objective

Maximize GoalDist

Subject to

DistancesI = 0 for the initial state sI

Distances′ ≤ Distances + cost(o) for all alive transitions s
o−→ s ′

GoalDist ≤ Distances? for all goal states s?

alive: on any path from initial state to goal state
Modification also correct (but unnecessary) for non-negative costs
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Experimental Results
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Expansions with A∗ (excluding last f -layer) for optimal cost
partitioning of all projections to single variables.

[Pommerening et al., AAAI 2015]
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General Cost Partitioning: Remarks

I More powerful than non-negative cost partitioning

I Optimal general cost partitioning:
omit constraints to non-negative cost variables

I optimal cost partitioning maximizes objective value
I removing constraints can only increase heuristic value

I Optimal general cost partitioning is never worse than an
optimal non-negative cost partitioning.
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E6.3 Summary

G. Röger, T. Keller (Universität Basel) Planning and Optimization November 19, 2018 23 / 24

E6. Cost Partitioning: Landmarks and Generalization Summary

Summary

I We can compute an optimal cost partitioning for a given set
of disjunctive action landmarks in polynomial time.

I In constrast to standard (non-negative) cost partitioning,
general cost partitioning allows negative operators costs.

I General cost partitioning has the same relevant properties as
non-negative cost partitioning but is more powerful.
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