

Planning and Optimization

E6. Cost Partitioning: Landmarks and Generalization

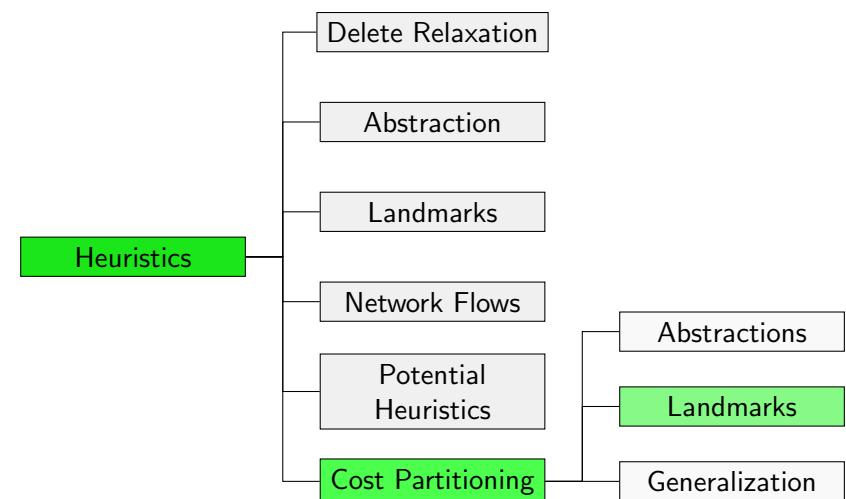
Gabriele Röger and Thomas Keller

Universität Basel

November 19, 2018

Planning and Optimization

November 19, 2018 — E6. Cost Partitioning: Landmarks and Generalization


E6.1 Cost Partitioning for Landmarks

E6.2 General Cost Partitioning

E6.3 Summary

E6.1 Cost Partitioning for Landmarks

Content of this Course: Heuristics

Reminder: Disjunctive Action Landmarks

Disjunctive action landmark

- ▶ Set of operators
- ▶ Every plan uses at least one of them
- ▶ Landmark cost = cost of cheapest operator

Reminder: Cost Partitioning Heuristic for Landmarks

We have already seen a landmark heuristic based on cost partitioning:

Definition (Uniform Cost Partitioning Heuristic for Landmarks)

Let \mathcal{L} be a set of disjunctive action landmarks.

The **uniform cost partitioning heuristic** $h^{UCP}(\mathcal{L})$ is defined as

$$h^{UCP}(\mathcal{L}) = \sum_{L \in \mathcal{L}} \min_{o \in L} c'(o) \text{ with}$$

$$c'(o) = \text{cost}(o)/|\{L \in \mathcal{L} \mid o \in L\}|.$$

Reminder: Proof Back Then

Theorem (Uniform Cost Partitioning Heuristic is Admissible)

Let \mathcal{L} be a set of disjunctive action landmarks for state s of Π .

Then $h^{UCP}(\mathcal{L})$ is an admissible heuristic estimate for s .

Proof.

Let $\pi = \langle o_1, \dots, o_n \rangle$ be an optimal plan for s . For $L \in \mathcal{L}$ define a new cost function cost_L as $\text{cost}_L(o) = c'(o)$ if $o \in L$ and $\text{cost}_L(o) = 0$ otherwise. Let Π_L be a modified version of Π , where for all operators o the cost is replaced with $\text{cost}_L(o)$.
 (\dots) □

$$\sum_{L \in \mathcal{L}} \text{cost}_L(o) = \sum_{L \in \mathcal{L}: o \in L} \text{cost}(o)/|\{L \in \mathcal{L} \mid o \in L\}| = \text{cost}(o)$$

Heuristic is Based on Cost Partitioning

▶ For disj. action landmark L of state s in task Π' , let $h_{L, \Pi'}(s)$ be the cost of L in Π' .

▶ Consider set $\{L_1, \dots, L_n\}$ of disj. action landmarks for state s of task Π .

▶ Use cost partitioning $\langle \text{cost}_{L_1}, \dots, \text{cost}_{L_n} \rangle$, where

$$\text{cost}_{L_i}(o) = \begin{cases} \text{cost}(o)/|\{L \in \mathcal{L} \mid o \in L\}| & \text{if } o \in L_i \\ 0 & \text{otherwise} \end{cases}$$

▶ Let $\langle \Pi_{L_1}, \dots, \Pi_{L_n} \rangle$ be the tuple of induced tasks.

▶ $h(s) = \sum_{i=1}^n h_{L_i, \Pi_{L_i}}(s)$ is an admissible estimate for s in Π .

▶ h is uniform cost partitioning heuristic for landmarks.

Optimal Cost Partitioning for Landmarks

Can we find a better cost partitioning?

- ▶ Use again LP that covers heuristic computation and cost partitioning.
- ▶ LP variable Cost_L for cost of landmark L in induced task (corresponds to h_{L,Π_L})
- ▶ Explicit variables for cost partitioning not necessary. Use implicitly $\text{cost}_L(o) = \text{Cost}_L$ for all $o \in L$ and 0 otherwise.

Optimal Cost Partitioning for Landmarks (Dual view)

Variables

Applied_o for each operator o

Objective

Minimize $\sum_o \text{Applied}_o \cdot \text{cost}(o)$

Subject to

$$\sum_{o \in L} \text{Applied}_o \geq 1 \text{ for all landmarks } L$$

$$\text{Applied}_o \geq 0 \text{ for all operators } o$$

Minimize “plan cost” with all landmarks satisfied.

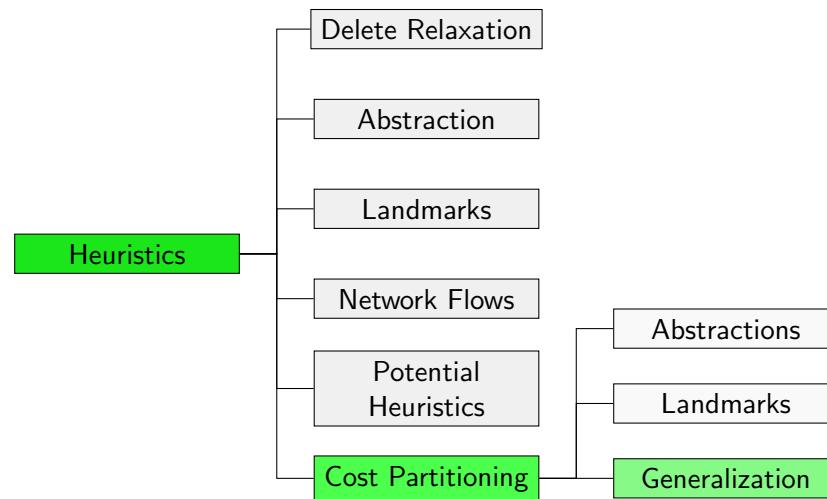
Optimal Cost Partitioning for Landmarks: LP

Variables

Cost_L for each disj. action landmark $L \in \mathcal{L}$

Objective

Maximize $\sum_{L \in \mathcal{L}} \text{Cost}_L$


Subject to

$$\sum_{L \in \mathcal{L}: o \in L} \text{Cost}_L \leq \text{cost}(o) \quad \text{for all operators } o$$

$$\text{Cost}_L \geq 0 \quad \text{for all landmarks } L \in \mathcal{L}$$

E6.2 General Cost Partitioning

Content of this Course: Heuristics

General Cost Partitioning

Cost functions **usually non-negative**

- ▶ We tacitly also required this for task copies
- ▶ Makes intuitively sense: original costs are non-negative
- ▶ But: not necessary for cost-partitioning!

General Cost Partitioning

Definition (General Cost Partitioning)

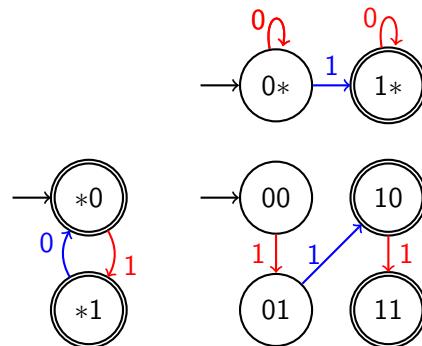
Let Π be a planning task with operators O .

A **general cost partitioning** for Π is a tuple $\langle cost_1, \dots, cost_n \rangle$, where

- ▶ $cost_i : O \rightarrow \mathbb{R}$ for $1 \leq i \leq n$ and
- ▶ $\sum_{i=1}^n cost_i(o) \leq cost(o)$ for all $o \in O$.

General Cost Partitioning: Admissibility

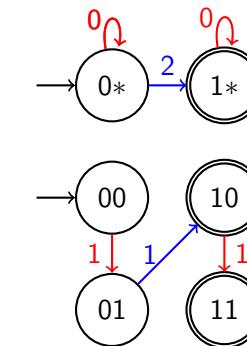
Theorem (Sum of Solution Costs is Admissible)


Let Π be a planning task, $\langle cost_1, \dots, cost_n \rangle$ be a **general cost partitioning** and $\langle \Pi_1, \dots, \Pi_n \rangle$ be the tuple of induced tasks.

Then the sum of the solution costs of the induced tasks is an **admissible heuristic** for Π , i.e., $\sum_{i=1}^n h_{\Pi_i}^* \leq h_{\Pi}^*$.

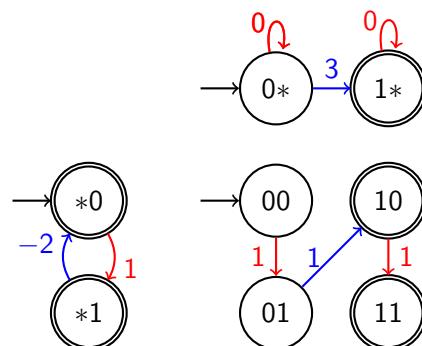
(Proof omitted.)

General Cost Partitioning: Example


Example

Heuristic value: $0 + 1 = 1$

General Cost Partitioning: Example


Example

Heuristic value: $0 + 2 = 2$

General Cost Partitioning: Example

Example

Heuristic value: $-\infty + 3 = -\infty$

LP for Shortest Path in State Space with Negative Costs

Variables

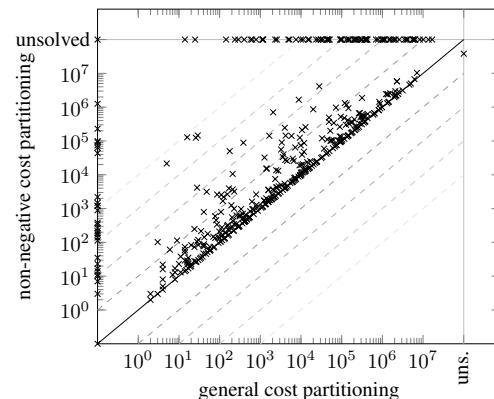
Distance_s for each state s ,
 GoalDist

Objective

Maximize GoalDist

Subject to

$\text{Distance}_{s_i} = 0$ for the initial state s_i


$\text{Distance}_{s'} \leq \text{Distance}_s + \text{cost}(o)$ for all alive transitions $s \xrightarrow{o} s'$

$\text{GoalDist} \leq \text{Distance}_{s_*}$ for all goal states s_*

alive: on any path from initial state to goal state

Modification also correct (but unnecessary) for non-negative costs

Experimental Results

Expansions with A* (excluding last f -layer) for optimal cost partitioning of all projections to single variables.

[Pommerening et al., AAAI 2015]

General Cost Partitioning: Remarks

- ▶ **More powerful** than non-negative cost partitioning
- ▶ **Optimal** general cost partitioning:
omit constraints to non-negative cost variables
 - ▶ optimal cost partitioning maximizes objective value
 - ▶ removing constraints can only increase heuristic value
- ▶ Optimal general cost partitioning is never worse than an optimal non-negative cost partitioning.

E6.3 Summary

Summary

- ▶ We can compute an **optimal cost partitioning** for a given set of disjunctive action **landmarks** in polynomial time.
- ▶ In contrast to standard (non-negative) cost partitioning, **general cost partitioning** allows negative operators costs.
- ▶ General cost partitioning has the same relevant properties as non-negative cost partitioning but is more powerful.