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Exploiting Additivity

I Additivity allows to add up heuristic estimates admissibly.
This gives better heuristic estimates than the maximum.

I For example, the canonical heuristic for PDBs sums up where
addition is admissible (by an additivity criterion) and takes the
maximum otherwise.

I Cost partitioning provides a more general additivity criterion,
based on an adaption of the operator costs.
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E5.2 Cost Partitioning
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Cost Partitioning

Definition (Cost Partitioning)

Let Π be a planning task with operators O.

A cost partitioning for Π is a tuple 〈cost1, . . . , costn〉, where

I costi : O → R+
0 for 1 ≤ i ≤ n and

I
∑n

i=1 costi (o) ≤ cost(o) for all o ∈ O.

The cost partitioning induces a tuple 〈Π1, . . . ,Πn〉 of planning
tasks, where each Πi is identical to Π except that the cost
of each operator o is costi (o).

G. Röger, T. Keller (Universität Basel) Planning and Optimization November 19, 2018 7 / 29

E5. Cost Partitioning: Definition, Properties, and Abstractions Cost Partitioning

Cost Partitioning: Admissibility (1)

Theorem (Sum of Solution Costs is Admissible)

Let Π be a planning task, 〈cost1, . . . , costn〉 be a cost partitioning
and 〈Π1, . . . ,Πn〉 be the tuple of induced tasks.

Then the sum of the solution costs of the induced tasks is an
admissible heuristic for Π, i.e.,

∑n
i=1 h

∗
Πi
≤ h∗Π.
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Cost Partitioning: Admissibility (2)

Proof of Theorem.

Let π = 〈o1, . . . , om〉 be an optimal plan for state s of Π. Then

n∑
i=1

h∗Πi
(s) ≤

n∑
i=1

m∑
j=1

costi (oj) (π plan in each Πi )

=
m∑
j=1

n∑
i=1

costi (oj) (comm./ass. of sum)

≤
m∑
j=1

cost(oj) (cost partitioning)

= h∗Π(s) (π optimal plan in Π)
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Cost Partitioning Preserves Admissibility

In the rest of the chapter, we write hΠ to denote heuristic h
evaluated on task Π.

Corollary (Sum of Admissible Estimates is Admissible)

Let Π be a planning task and let 〈Π1, . . . ,Πn〉 be induced by a cost
partitioning.

For admissible heuristics h1, . . . , hn, the sum h(s) =
∑n

i=1 hi ,Πi
(s)

is an admissible estimate for s in Π.
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Cost Partitioning Preserves Consistency

Theorem (Cost Partitioning Preserves Consistency)

Let Π be a planning task and let 〈Π1, . . . ,Πn〉 be induced
by a cost partitioning 〈cost1, . . . , costn〉.

If h1, . . . , hn are consistent heuristics then h =
∑n

i=1 hi ,Πi

is a consistent heuristic for Π.

Proof.
Let o be an operator that is applicable in state s.

h(s) =
n∑

i=1

hi ,Πi
(s) ≤

n∑
i=1

(costi (o) + hi ,Πi
(sJoK))

=
n∑

i=1

costi (o) +
n∑

i=1

hi ,Πi
(sJoK) ≤ cost(o) + h(sJoK)
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Cost Partitioning: Example

Example (No Cost Partitioning)

00

01

10

11

2 2 2

0∗ 1∗

∗0

∗1

2 2

2

2

2

Heuristic value: max{2, 2} = 2
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Cost Partitioning: Example

Example (Cost Partitioning 1)

00

01

10

11

2 2 2

0∗ 1∗

∗0

∗1

1 1

1

1

1

Heuristic value: 1 + 1 = 2
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Cost Partitioning: Example

Example (Cost Partitioning 2)

00
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11

2 2 2

0∗ 1∗

∗0

∗1

0 0

2

2

0

Heuristic value: 2 + 2 = 4
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Cost Partitioning: Example

Example (Cost Partitioning 3)

00

01

10

11

2 2 2

0∗ 1∗

∗0

∗1

2 2

0

0

2

Heuristic value: 0 + 0 = 0
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Cost Partitioning: Quality

I h(s) = h1,Π1(s) + · · ·+ hn,Πn(s)
can be better or worse than any hi ,Π(s)
→ depending on cost partitioning

I strategies for defining cost-functions
I uniform: costi (o) = cost(o)/n
I zero-one: full operator cost in one copy, zero in all others
I . . .

Can we find an optimal cost partitioning?
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Optimal Cost Partitioning

Optimal Cost Partitioning with LPs

I Use variables for cost of each operator in each task copy

I Express heuristic values with linear constraints

I Maximize sum of heuristic values subject to these constraints

LPs known for

I abstraction heuristics

I landmark heuristic
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E5.3 Optimal Cost Partitioning for
Abstractions
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Optimal Cost Partitioning for Abstractions

Abstractions

I Simplified versions of the planning task, e.g. projections

I Cost of optimal abstract plan is admissible estimate

How to express the heuristic value as linear constraints?
 Shortest path problem in abstract transition system
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LP for Shortest Path in State Space

Variables
Distances for each state s,
GoalDist

Objective

Maximize GoalDist

Subject to

DistancesI = 0 for the initial state sI

Distances′ ≤ Distances + cost(o) for all transitions s
o−→ s ′

GoalDist ≤ Distances? for all goal states s?
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Optimal Cost Partitioning for Abstractions I

Variables
For each abstraction α:

Distanceαs for each abstract state s,
costαo for each operator o,
GoalDistα

Objective

Maximize
∑

α GoalDistα

. . .
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Optimal Cost Partitioning for Abstractions II

Subject to

for all operators o∑
α

Costαo ≤ cost(o)

Costαo ≥ 0 for all abstractions α

and for all abstractions α

DistanceαsI = 0 for the abstract initial state sI

Distanceαs′ ≤ Distanceαs + Costαo for all transition s
o−→ s ′

GoalDistα ≤ Distanceαs? for all abstract goal states s?
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Example (1)

Example

00

01
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11

2 2 2

0∗ 1∗

∗0

∗1
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Example (2)

Maximize GoalDist1 + GoalDist2 subject to

Cost1
red + Cost2

red ≤ 2

Cost1
blue + Cost2

blue ≤ 2

Cost1
red ≥ 0

Cost2
red ≥ 0

Cost1
blue ≥ 0

Cost2
blue ≥ 0 . . .
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Example (3)

. . . and . . .

Distance1
0 = 0

Distance1
0 ≤ Distance1

0 + Cost1
red

Distance1
1 ≤ Distance1

0 + Cost1
blue

Distance1
1 ≤ Distance1

1 + Cost1
red

GoalDist1 ≤ Distance1
1

Distance2
0 = 0

Distance2
1 ≤ Distance2

0 + Cost2
red

Distance2
0 ≤ Distance2

1 + Cost2
blue

GoalDist2 ≤ Distance2
1
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Caution

A word of warning

I optimization for every state gives
best-possible cost partitioning

I but takes time

Better heuristic guidance often does not outweigh the overhead.
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E5.4 Summary

G. Röger, T. Keller (Universität Basel) Planning and Optimization November 19, 2018 28 / 29



E5. Cost Partitioning: Definition, Properties, and Abstractions Summary

Summary

I Cost partitioning allows to admissibly add up estimates of
several heuristics.

I This can be better or worse than the best individual heuristic
on the original problem, depending on the cost partitioning.

I For some heuristic classes, we know how to determine an
optimal cost partitioning, using linear programming.

I Although solving a linear program is possible in polynomial
time, the better heuristic guidance often does not outweigh
the overhead.
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