
Planning and Optimization
E4. Flow & Potential Heuristics
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Reminder: SAS+ Planning Tasks

For a SAS+ planning task Π = 〈V , I ,O, γ〉:
V is a set of finite-domain state variables,

Each atom has the form v = d with v ∈ V , d ∈ dom(v).

Operator preconditions and the goal formula γ
are conjunctions of atoms.

Operator effects are conjunctions of atomic effects,
i.e., they have the form v1 := d1 ∧ · · · ∧ vn := dn.
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Example Task (1)

One package, two trucks, two locations

Variables:

pos-p with dom(pos-p) = {loc1, loc2, t1, t2}
pos-t-i with dom(pos-t-i) = {loc1, loc2} for i ∈ {1, 2}

The package is at location 1 and the trucks at location 2,

I = {pos-p 7→ loc1, pos-t-1 7→ loc2, pos-t-2 7→ loc2)

The goal is to have the package at location 2 and
truck 1 at location 1.

γ = (pos-p = loc2) ∧ (pos-t-1 = loc1)
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Example Task (2)

Operators: for i , j , k ∈ {1, 2}:

load(ti , locj) = 〈pos-t-i = locj ∧ pos-p = locj ,

pos-p := ti , 1〉
unload(ti , locj) = 〈pos-t-i = locj ∧ pos-p = ti ,

pos-p := locj , 1〉
drive(ti , locj , lock) = 〈pos-t-i = locj ,

pos-t-i := lock , 1〉
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Example Task: Observations

Consider some atoms of the example task:

pos-p = loc1 initially true and must be false in the goal
. at location 1 the package must be loaded
. one time more often than unloaded.

pos-p = loc2 initially false and must be true in the goal
. at location 2 the package must be unloaded
. one time more often than loaded.

pos-p = t1 initially false and must be false in the goal
. same number of load and unload actions for truck 1.

Can we derive a heuristic from this kind of information?
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Example: Flow Constraints

Let π be some arbitrary plan for the example task and let
#o denote the number of occurrences of operator o in π.
Then the following holds:

pos-p = loc1 initially true and must be false in the goal
. at location 1 the package must be loaded
. one time more often than unloaded.
#load(t1, loc1) + #load(t2, loc1) =
1 + #unload(t1, loc1) + #unload(t2, loc1)

pos-p = t1 initially false and must be false in the goal
. same number of load and unload actions for truck 1.
#unload(t1, loc1) + #unload(t1, loc2) =
#load(t1, loc1) + #load(t1, loc2)



Introduction Transition Normal Form Flow Heuristic Potential Heuristics Summary

Network Flow Heuristics: General Idea

Formulate flow constraints for each atom.

These are satisfied by every plan of the task.

The cost of a plan is
∑

o∈O cost(o)#o

The objective value of an integer program that minimizes this
cost subject to the flow constraints is a lower bound on the
plan cost (i.e., an admissible heuristic estimate).

As solving the IP is NP-hard, we solve the LP relaxation
instead.

How do we get the flow constraints?
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How to Derive Flow Constraints?

The constraints formulate how often an atom can be
produced or consumed.

“Produced” (resp. “consumed”) means that the atom is false
(resp. true) before an operator application and true (resp.
false) in the successor state.

For general SAS+ operators, this depends on the state where
the operator is applied: effect v := d only produces v = d
if the operator is applied in a state s with s(v) 6= d .

For general SAS+ tasks, the goal does not have to specify a
value for every variable.

All this makes the definition of flow constraints somewhat
involved and in general such constraints are inequalitites.

Good news: easy for tasks in transition normal form
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Transition Normal Form
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Variables Occurring in Conditions and Effects

Many algorithmic problems for SAS+ planning tasks
become simpler when we can make two further restrictions.

These are related to the variables that occur
in conditions and effects of the task.

Definition (vars(ϕ), vars(e))

For a logical formula ϕ over finite-domain variables V ,
vars(ϕ) denotes the set of finite-domain variables occurring in ϕ.

For an effect e over finite-domain variables V ,
vars(e) denotes the set of finite-domain variables occurring in e.
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Transition Normal Form

Definition (Transition Normal Form)

A SAS+ planning task Π = 〈V , I ,O, γ〉
is in transition normal form (TNF) if

for all o ∈ O, vars(pre(o)) = vars(eff(o)), and

vars(γ) = V .

In words, an operator in TNF must mention the same variables
in the precondition and effect, and a goal in TNF must mention
all variables (= specify exactly one goal state).
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Converting Operators to TNF: Violations

There are two ways in which an operator o can violate TNF:

There exists a variable v ∈ vars(pre(o)) \ vars(eff(o)).

There exists a variable v ∈ vars(eff(o)) \ vars(pre(o)).

The first case is easy to address: if v = d is a precondition
with no effect on v , just add the effect v := d .

The second case is more difficult: if we have the effect v := d
but no precondition on v , how can we add a precondition on v
without changing the meaning of the operator?
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Converting Operators to TNF: Multiplying Out

Solution 1: multiplying out

1 While there exists an operator o and a variable
v ∈ vars(eff(o)) with v /∈ vars(pre(o)):

For each d ∈ dom(v), add a new operator that is like o
but with the additional precondition v = d .
Remove the original operator.

2 Repeat the previous step until no more such variables exist.

Problem:

If an operator o has n such variables, each with k values
in its domain, this introduces kn variants of o.

Hence, this is an exponential transformation.
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Converting Operators to TNF: Auxiliary Values

Solution 2: auxiliary values

1 For every variable v , add a new auxiliary value u to its domain.

2 For every variable v and value d ∈ dom(v) \ {u},
add a new operator to change the value of v from d to u
at no cost: 〈v = d , v := u, 0〉.

3 For all operators o and all variables
v ∈ vars(eff(o)) \ vars(pre(o)),
add the precondition v = u to pre(o).

Properties:

Transformation can be computed in linear time.

Due to the auxiliary values, there are new states
and transitions in the induced transition system,
but all path costs between original states remain the same.
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Converting Goals to TNF

The auxiliary value idea can also be used
to convert the goal γ to TNF.

For every variable v /∈ vars(γ), add the condition v = u to γ.

With these ideas, every SAS+ planning task can be
converted into transition normal form in linear time.
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TNF for Example Task (1)

The example task is not in transition normal form:

Load and unload operators have preconditions on the position
of some truck but no effect on this variable.

The goal does not specify a value for variable pos-t-2.
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TNF for Example Task (2)

Operators in transition normal form: for i , j , k ∈ {1, 2}:

load(ti , locj) = 〈pos-t-i = locj ∧ pos-p = locj ,

pos-p := ti ∧ pos-t-i := locj , 1〉
unload(ti , locj) = 〈pos-t-i = locj ∧ pos-p = ti ,

pos-p := locj ∧ pos-t-i := locj , 1〉
drive(ti , locj , lock) = 〈pos-t-i = locj ,

pos-t-i := lock , 1〉
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TNF for Example Task (3)

To bring the goal in normal form,

add an additional value u to dom(pos-t-2)

add zero-cost operators
o1 = 〈pos-t-2 = loc1, pos-t-2 := u, 0〉 and
o2 = 〈pos-t-2 = loc2, pos-t-2 := u, 0〉
Add pos-t-2 = u to the goal:
γ = (pos-p = loc2) ∧ (pos-t-1 = loc1) ∧ (pos-t-2 = u)
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Flow Heuristic
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Notation

In SAS+ tasks, states are variable assignments,
conditions are conjunctions over atoms, and
effects are conjunctions of atomic effects.

In the following, we use a unifying notation to express
that an atom is true in a state/entailed by a condition/
made true by an effect.

For state s, we write (v = d) ∈ s to express that s(v) = d .

For a conjunction of atoms ϕ, we write (v = d) ∈ ϕ to express
that ϕ has a conjunct v = d (or alternatively ϕ |= v = d).

For effect e, we write (v = d) ∈ e to express that e contains
the atomic effect v := d .
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Flow Constraints (1)

A flow constraint for an atom relates how often it can be produced
to how often it can be consumed.

Let o be an operator in transition normal form. Then:

o produces atom a iff a ∈ eff(o) and a 6∈ pre(o).

o consumes atom a iff a ∈ pre(o) and a 6∈ eff(o).

Otherwise o is neutral wrt. atom a.

 State-independent
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Flow Constraints (2)

A flow constraint for an atom relates how often it can be produced
to how often it can be consumed.

The constraint depends on the current state s and the goal γ.
If γ mentions all variables (as in TNF), the following holds:

If a ∈ s and a ∈ γ then atom a must be equally often
produced and consumed.

Analogously for a 6∈ s and a 6∈ γ.

If a ∈ s and a 6∈ γ then a must be consumed one time more
often than it is produced.

If a 6∈ s and a ∈ γ then a must be produced one time more
often than it is consumed.



Introduction Transition Normal Form Flow Heuristic Potential Heuristics Summary

Iverson Bracket

The dependency on the current state and the goal can concisely be
expressed with Iverson brackets:

Definition (Iverson Bracket)

Let P be a logical proposition (= some statement that can be
evaluated to true or false). Then

[P] =

{
1 if P is true

0 if P is false.

Example: [2 6= 3] = 1
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Flow Constraints (3)

Definition (Flow Constraint)

Let Π = 〈V , I ,O, γ〉 be a task in transition normal form.
The flow constraint for atom a in state s is

[a ∈ s] +
∑

o∈O:a∈eff(o)

Counto = [a ∈ γ] +
∑

o∈O:a∈pre(o)

Counto

Counto is an LP variable for the number of occurrences of
operator o.

Neutral operators either appear on both sides or on none.
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Flow Heuristic

Definition (Flow Heuristic)

Let Π = 〈V , I ,O, γ〉 be a SAS+ task in transition normal form and
let A = {(v = d) | v ∈ V , d ∈ dom(v)} be the set of atoms of Π.

The flow heuristic hflow(s) is the objective value of the following
LP or ∞ if the LP is infeasible:

minimize
∑

o∈O cost(o) · Counto subject to

[a ∈ s] +
∑

o∈O:a∈eff(o)

Counto = [a ∈ γ] +
∑

o∈O:a∈pre(o)

Counto for all a ∈ A

Counto ≥ 0 for all o ∈ O



Introduction Transition Normal Form Flow Heuristic Potential Heuristics Summary

Flow Heuristic on Example Task

 Blackboard
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Flow Heuristic: Properties (1)

Theorem

The flow heuristic hflow is goal-aware, safe, consistent and
admissible.

Proof Sketch.

It suffices to prove goal-awareness and consistency.

Goal-awareness: If s |= γ then Counto = 0 for all o ∈ O is feasible
and the objective function has value 0. As Counto ≥ 0 for all
variables and operator costs are nonnegative, the objective value
cannot be smaller. . . .



Introduction Transition Normal Form Flow Heuristic Potential Heuristics Summary

Flow Heuristic: Properties (2)

Proof Sketch (continued).

Consistency: Let o be an operator that is applicable in state s and
let s ′ = sJoK.

Increasing Counto by one in an optimal feasible assignment for the
LP for state s ′ yields a feasible assignment for the LP for state s,
where the objective function is hflow(s ′) + cost(o).

This is an upper bound on hflow(s), so in total
hflow(s) ≤ hflow(s ′) + cost(o).
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Potential Heuristics
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Potential Heuristics

Potential Heuristics: Idea

Heuristic design as an optimization problem:

Define simple numerical state features f1, . . . , fn.

Consider heuristics that are linear combinations of features:

h(s) = w1f1(s) + · · ·+ wnfn(s)

with weights (potentials) wi ∈ R
Find potentials for which h is admissible and well-informed.

Motivation:

declarative approach to heuristic design

heuristic very fast to compute if features are
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Features

Definition (feature)

A (state) feature for a planning task is a numerical function
defined on the states of the task: f : S → R.

Atomic features test if some atom is true in a state:

Definition (atomic feature)

Let v = d be an atom of a FDR planning task.

The atomic feature fv=d is defined as:

fv=d(s) = [(v = d) ∈ s]
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Features

Definition (feature)

A (state) feature for a planning task is a numerical function
defined on the states of the task: f : S → R.

Atomic features test if some atom is true in a state:

Definition (atomic feature)

Let v = d be an atom of a FDR planning task.

The atomic feature fv=d is defined as:

fv=d(s) = [(v = d) ∈ s]
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Potential Heuristics

Definition (potential heuristic)

A potential heuristic for a set of features F = {f1, . . . , fn}
is a heuristic function h defined as a linear combination
of the features:

h(s) = w1f1(s) + · · ·+ wnfn(s)

with weights (potentials) wi ∈ R.

 cf. evaluation functions for board games like Chess

We only consider atomic potential heuristics,
which are based on the set of all atomic features.

Example for a task with state variables v1 and v2 and
dom(v1) = dom(v2) = {d1, d2, d3}:

h(s) = 3fv1=d1 + 1
2 fv1=d2 − 2fv1=d3 + 2.5fv2=d1
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How to Set the Weights?

We want to find good atomic potential heuristics:

admissible

consistent

well-informed

How to achieve this? Linear programming to the rescue!
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Admissible and Consistent Potential Heuristics

Constraints on potentials characterize (= are necessary and
sufficient for) admissible and consistent atomic potential heuristics:

Goal-awareness ∑
goal atoms a

wa = 0

Consistency∑
a consumed

by o

wa −
∑

a produced
by o

wa ≤ cost(o) for all operators o

Remarks:

assumes transition normal form (not a limitation)

goal-aware and consistent = admissible and consistent
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Well-Informed Potential Heuristics

How to find a well-informed potential heuristic?

 encode quality metric in the objective function
and use LP solver to find a heuristic maximizing it

Examples:

maximize heuristic value of a given state (e.g., initial state)

maximize average heuristic value of all states
(including unreachable ones)

maximize average heuristic value of some sample states

minimize estimated search effort
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Potential and Flow Heuristic

Theorem

For state s, let hmaxpot(s) denote the maximal heuristic value
of all admissible and consistent atomic potential heuristics in s.

Then hmaxpot(s) = hflow(s).

Proof idea: compare dual of hflow(s) LP to potential heuristic
Proof idea: constraints optimized for state s.

If we optimize the potentials for a given state then for this state it
equals the flow heuristic.
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Summary
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Summary

A flow constraint for an atom describes how the number of
producing operator applications is linked to the number of
consuming operator applications.

The flow heuristic computes a lower bound on the cost of
each operator sequence that satisfies these constraints for all
atoms.

The flow heuristic only considers the number of occurrences
of each operator, but ignores their order.

Potential heuristics can be used as fast admissible
approximations of hflow.
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