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E4. Flow & Potential Heuristics

Reminder: SAS™ Planning Tasks

For a SAS™ planning task M= (V, 1, 0,):
» V is a set of finite-domain state variables,
» Each atom has the form v = d with v € V,d € dom(v).

» Operator preconditions and the goal formula
are conjunctions of atoms.

> Operator effects are conjunctions of atomic effects,
i.e., they have the form vy :=dy A -+ A v, = d,.
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Example Task (1)

v

One package, two trucks, two locations

v

Variables:
» pos-p with dom(pos-p) = {locy, locy, t1, t2}
> pos-t-i with dom(pos-t-i) = {locy, loc, } for i € {1,2}
The package is at location 1 and the trucks at location 2,
» | ={pos-p— locy, pos-t-1 — locy, pos-t-2 +— locy)

v

v

The goal is to have the package at location 2 and
truck 1 at location 1.

» v = (pos-p = locy) A (pos-t-1 = locy)

Introduction
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Example Task (2)

» Operators: for i,j, k € {1,2}:

load(t;, locj) = (pos-t-i = locj A\ pos-p = loc;,
pos-p := t;, 1)
unload(t;, locj) = (pos-t-i = loc; A\ pos-p = t;,
pos-p := locj, 1)
drive(t;, locj, loc) = (pos-t-i = loc;,
pos-t-i ;= loc, 1)
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Example Task: Observations
Consider some atoms of the example task:
» pos-p = locy initially true and must be false in the goal
> at location 1 the package must be loaded
one time more often than unloaded.
> pos-p = locy initially false and must be true in the goal
> at location 2 the package must be unloaded
one time more often than loaded.
> pos-p = tj initially false and must be false in the goal
> same number of load and unload actions for truck 1.
Can we derive a heuristic from this kind of information?
Planning and Optimization November 14, 2018 8 /42
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Example: Flow Constraints

Let m be some arbitrary plan for the example task and let
#o0 denote the number of occurrences of operator o in .
Then the following holds:

» pos-p = locy initially true and must be false in the goal

> at location 1 the package must be loaded
one time more often than unloaded.

#load(ty, locy) + #load(to, locy) =
1 + #unload(ty, loc1) + #unload(t,, locy)

> pos-p = ty initially false and must be false in the goal
> same number of load and unload actions for truck 1.
#unload(ty, loc1) + #unload(ty, locy) =
#load(ty, loc1) + #load(t1, locy)
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Network Flow Heuristics: General Idea

» Formulate flow constraints for each atom.
> These are satisfied by every plan of the task.
» The cost of a plan is ), cost(o)#o

» The objective value of an integer program that minimizes this
cost subject to the flow constraints is a lower bound on the
plan cost (i.e., an admissible heuristic estimate).

> As solving the IP is NP-hard, we solve the LP relaxation
instead.

How do we get the flow constraints?
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How to Derive Flow Constraints?

» The constraints formulate how often an atom can be
produced or consumed.

» “Produced” (resp. “consumed”) means that the atom is false
(resp. true) before an operator application and true (resp.
false) in the successor state.

» For general SAS™ operators, this depends on the state where
the operator is applied: effect v := d only produces v = d
if the operator is applied in a state s with s(v) # d.

» For general SAS™ tasks, the goal does not have to specify a
value for every variable.

> All this makes the definition of flow constraints somewhat
involved and in general such constraints are inequalitites.

Good news: easy for tasks in transition normal form
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E4.2 Transition Normal Form
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Variables Occurring in Conditions and Effects

» Many algorithmic problems for SAS™ planning tasks
become simpler when we can make two further restrictions.

» These are related to the variables that occur
in conditions and effects of the task.

Definition (vars(y), vars(e))
For a logical formula ¢ over finite-domain variables V/,
vars() denotes the set of finite-domain variables occurring in .

For an effect e over finite-domain variables V/,
vars(e) denotes the set of finite-domain variables occurring in e.
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Transition Normal Form

Definition (Transition Normal Form)

A SAST planning task M= (V. 1, 0,7)

is in transition normal form (TNF) if
» for all o € O, vars(pre(o)) = vars(effl0)), and
> vars(y) = V.

In words, an operator in TNF must mention the same variables
in the precondition and effect, and a goal in TNF must mention
all variables (= specify exactly one goal state).

G. Roger, T. Keller (Universitat Basel) Planning and Optimization November 14, 2018 14 / 42

E4. Flow & Potential Heuristics Transition Normal Form

Converting Operators to TNF: Violations

There are two ways in which an operator o can violate TNF:
» There exists a variable v € vars(pre(0)) \ vars(eff(0)).
» There exists a variable v € vars(eff0)) \ vars(pre(o)).

The first case is easy to address: if v = d is a precondition
with no effect on v, just add the effect v := d.

The second case is more difficult: if we have the effect v := d
but no precondition on v, how can we add a precondition on v
without changing the meaning of the operator?
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Converting Operators to TNF: Multiplying Out

Solution 1: multiplying out

@ While there exists an operator o and a variable
v € vars(eff(0)) with v & vars(pre(0)):
» For each d € dom(v), add a new operator that is like o
but with the additional precondition v = d.
» Remove the original operator.

@ Repeat the previous step until no more such variables exist.

Problem:

> If an operator o has n such variables, each with k values
in its domain, this introduces k" variants of o.

» Hence, this is an exponential transformation.
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Converting Operators to TNF: Auxiliary Values

Solution 2: auxiliary values

@ For every variable v, add a new auxiliary value u to its domain.
@ For every variable v and value d € dom(v) \ {u},

add a new operator to change the value of v from d to u

at no cost: (v =d,v :=u,0).
© For all operators o and all variables

v € vars(eff(0)) \ vars(pre(0)),
add the precondition v = u to pre(o).

Properties:
» Transformation can be computed in linear time.
» Due to the auxiliary values, there are new states

and transitions in the induced transition system,
but all path costs between original states remain the same.
November 14, 2018 17 / 42
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Converting Goals to TNF

» The auxiliary value idea can also be used
to convert the goal v to TNF.

» For every variable v ¢ vars(y), add the condition v = u to .

With these ideas, every SAS™ planning task can be
converted into transition normal form in linear time.
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TNF for Example Task (1)

The example task is not in transition normal form:

» Load and unload operators have preconditions on the position
of some truck but no effect on this variable.

» The goal does not specify a value for variable pos-t-2.
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TNF for Example Task (2)

Operators in transition normal form: for i,j, k € {1,2}:

load(t;, locj) = (pos-t-i = loc; A\ pos-p = loc;,
pos-p 1= tj A\ pos-t-i := locj, 1)
unload(t;, locj) = (pos-t-i = loc; A\ pos-p = t;,
pos-p := locj N\ pos-t-i := loc;, 1)
drive(t;, locj, locy) = (pos-t-i = loc;,

pos-t-i := locy, 1)
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TNF for Example Task (3)

To bring the goal in normal form,
» add an additional value u to dom(pos-t-2)
» add zero-cost operators
o1 = (pos-t-2 = locy, pos-t-2 := u, 0) and
02 = (pos-t-2 = locy, pos-t-2 := u, 0)
» Add pos-t-2 = u to the goal:
~v = (pos-p = locy) A (pos-t-1 = locy) A (pos-t-2 = u)
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E4.3 Flow Heuristic
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Notation

» In SAS™ tasks, states are variable assignments,
conditions are conjunctions over atoms, and
effects are conjunctions of atomic effects.

> In the following, we use a unifying notation to express
that an atom is true in a state/entailed by a condition/
made true by an effect.

» For state s, we write (v = d) € s to express that s(v) = d.

» For a conjunction of atoms ¢, we write (v = d) € ¢ to express
that ¢ has a conjunct v = d (or alternatively ¢ = v = d).

> For effect e, we write (v = d) € e to express that e contains
the atomic effect v :=d.
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Flow Constraints (1)

A flow constraint for an atom relates how often it can be produced
to how often it can be consumed.

Let o be an operator in transition normal form. Then:
» o produces atom a iff a € eff(0o) and a & pre(o).
» o consumes atom a iff a € pre(o) and a & eff(0).

» Otherwise o is neutral wrt. atom a.

~ State-independent

G. Roger, T. Keller (Universitat Basel) Planning and Optimization November 14, 2018
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Flow Constraints (2)

A flow constraint for an atom relates how often it can be produced
to how often it can be consumed.

The constraint depends on the current state s and the goal 7.
If v mentions all variables (as in TNF), the following holds:

> If a € s and a € y then atom a must be equally often
produced and consumed.

> Analogously for a¢ s and a & 7.

> If a € s and a ¢~y then a must be consumed one time more
often than it is produced.

> If a¢& s and a € -y then a must be produced one time more
often than it is consumed.
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Iverson Bracket

The dependency on the current state and the goal can concisely be
expressed with Iverson brackets:

Definition (lverson Bracket)

Let P be a logical proposition (= some statement that can be
evaluated to true or false). Then

1 if Pis true

[Pl = o
0 if P is false.

Example: [2# 3] =1

Planning and Optimization November 14, 2018 26 / 42
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Flow Constraints (3)
Definition (Flow Constraint)
Let M= (V,/,0,~) be a task in transition normal form.
The flow constraint for atom a in state s is
[a€s]+ E Count, =[a €]+ g Count,
o€ 0:aceff(0) 0€0:acpre(o)
» Count, is an LP variable for the number of occurrences of
operator o.
» Neutral operators either appear on both sides or on none.
G. Roger, T. Keller (Universitat Basel) Planning and Optimization November 14, 2018 27 / 42
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Flow Heuristic

Definition (Flow Heuristic)

Let M= (V,/,0,~) be a SAS™ task in transition normal form and
let A={(v=d)|veV,dedom(v)} be the set of atoms of 1.

The flow heuristic Af°¥(s) is the objective value of the following
LP or oo if the LP is infeasible:

minimize ) _o cost(o) - Count,  subject to

[aes]+ > Counto,=[aeq]+ > Count, forallac A
o€ 0:aceff(0) o€ 0:acpre(o)

Count, >0 foralloe O
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Flow Heuristic on Example Task

~ Blackboard
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Flow Heuristic: Properties (1)

Theorem

The flow heuristic h® is goal-aware, safe, consistent and
admissible.

Proof Sketch.
It suffices to prove goal-awareness and consistency.

Goal-awareness: If s = then Count, = 0 for all o0 € O is feasible
and the objective function has value 0. As Count, > 0 for all

variables and operator costs are nonnegative, the objective value
cannot be smaller.
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Flow Heuristic: Properties (2)

Proof Sketch (continued).

Consistency: Let o be an operator that is applicable in state s and
let s" = s[o].

Increasing Count, by one in an optimal feasible assignment for the
LP for state s’ yields a feasible assignment for the LP for state s,
where the objective function is h1°%(s") + cost(o).

This is an upper bound on Af°¥(s), so in total
hflow(s) < hflow(s") + cost(o). O
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E4.4 Potential Heuristics
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Potential Heuristics

Potential Heuristics: ldea
Heuristic design as an optimization problem:

> Define simple numerical state features f1,...,f,.

» Consider heuristics that are linear combinations of features:
h(s) = wifi(s) + - - - + wpfy(s)
with weights (potentials) w; € R

» Find potentials for which h is admissible and well-informed.

Motivation:
» declarative approach to heuristic design

> heuristic very fast to compute if features are
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Features

Definition (feature)
A (state) feature for a planning task is a numerical function
defined on the states of the task: f : § — R.

Atomic features test if some atom is true in a state:

Definition (atomic feature)
Let v = d be an atom of a FDR planning task.

The atomic feature f,— is defined as:

fr=a(s) = [(v = d) € 5]

G. Roger, T. Keller (Universitat Basel) Planning and Optimization November 14, 2018

Potential Heuristics

35 / 42

E4. Flow & Potential Heuristics

Potential Heuristics

Definition (potential heuristic)

A potential heuristic for a set of features F = {f1,...,f}
is a heuristic function h defined as a linear combination
of the features:

h(s) = wifi(s) + - - - + wpfy(s)
with weights (potentials) w; € R.

~ cf. evaluation functions for board games like Chess

> We only consider atomic potential heuristics,
which are based on the set of all atomic features.

» Example for a task with state variables v; and v» and
dom(v1) = dom(vp) = {d1, do, d3}:
h(S) = 3f\,1:d1 + %fvlzdz - 2fv1:d3 + 2-5f\/2:d1

November 14, 2018
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How to Set the Weights?

We want to find good atomic potential heuristics:
» admissible
> consistent

» well-informed

How to achieve this? Linear programming to the rescue!

G. Roger, T. Keller (Universitat Basel) Planning and Optimization November 14, 2018 37 /42

E4. Flow & Potential Heuristics Potential Heuristics

Admissible and Consistent Potential Heuristics

Constraints on potentials characterize (= are necessary and
sufficient for) admissible and consistent atomic potential heuristics:

Goal-awareness

Z wy; =0

goal atoms a

Consistency

ZW"’ - Zwa < cost(o) for all operators o

a consumed  a produced
by o by o

Remarks:
» assumes transition normal form (not a limitation)

> goal-aware and consistent = admissible and consistent
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Well-Informed Potential Heuristics

How to find a well-informed potential heuristic?
~= encode quality metric in the objective function
and use LP solver to find a heuristic maximizing it
Examples:
» maximize heuristic value of a given state (e.g., initial state)

> maximize average heuristic value of all states
(including unreachable ones)

» maximize average heuristic value of some sample states

» minimize estimated search effort
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Potential and Flow Heuristic

Theorem

For state s, let h™2*P°(s) denote the maximal heuristic value
of all admissible and consistent atomic potential heuristics in s.

Then h™¥°t(s) — pfiow(s).

Proof idea: compare dual of h®¥(s) LP to potential heuristic
constraints optimized for state s.

If we optimize the potentials for a given state then for this state it
equals the flow heuristic.
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Summary

v

A flow constraint for an atom describes how the number of
producing operator applications is linked to the number of
consuming operator applications.

E4.5 Summary

» The flow heuristic computes a lower bound on the cost of
each operator sequence that satisfies these constraints for all
atoms.

> The flow heuristic only considers the number of occurrences
of each operator, but ignores their order.

» Potential heuristics can be used as fast admissible
approximations of hflow,

G. Roger, T. Keller (Universitat Basel) Planning and Optimization November 14, 2018 41 / 42 G. Roger, T. Keller (Universitat Basel) Planning and Optimization November 14, 2018 42 / 42




	Introduction
	Transition Normal Form
	Flow Heuristic
	Potential Heuristics
	Summary

