

Planning and Optimization

E2. Landmarks: Cut Landmarks & LM-cut Heuristic

Gabriele Röger and Thomas Keller

Universität Basel

November 12, 2018

Roadmap for this Chapter

- We first introduce a new **normal form** for delete-free STRIPS **tasks** that simplifies later definitions.
- We then present a method that **computes disjunctive action landmarks** for such tasks.
- We conclude with the **LM-cut heuristic** that builds on this method.

i-g Form

Delete-Free STRIPS Planning Task in i-g Form (1)

In this chapter, we only consider **delete-free** STRIPS tasks in a special form:

Definition (i-g Form for Delete-free STRIPS)

A delete-free STRIPS planning task $\langle V, I, O, \gamma \rangle$ is in **i-g form** if

- V contains atoms i and g
- Initially exactly i is true: $I(v) = \mathbf{T}$ iff $v = i$
- g is the only goal atom: $\gamma = g$
- Every action has at least one precondition.

Transformation to i-g Form

Every delete-free STRIPS task $\Pi = \langle V, I, O, \gamma \rangle$ can easily be transformed into an analogous task in i-g form.

- If i or g are in V already, rename them everywhere.
- Add i and g to V .
- Add an operator $\langle i, \bigwedge_{v \in V: I(v) = \top} v, 0 \rangle$.
- Add an operator $\langle \gamma, g, 0 \rangle$.
- Replace all operator preconditions \top with i .
- Replace initial state and goal.

Transformation to i-g Form

Every delete-free STRIPS task $\Pi = \langle V, I, O, \gamma \rangle$ can easily be transformed into an analogous task in i-g form.

- If i or g are in V already, rename them everywhere.
- Add i and g to V .
- Add an operator $\langle i, \bigwedge_{v \in V: I(v) = \top} v, 0 \rangle$.
- Add an operator $\langle \gamma, g, 0 \rangle$.
- Replace all operator preconditions \top with i .
- Replace initial state and goal.

In what sense are the tasks “analogous”?

Delete-Free STRIPS Planning Task in i-g Form (2)

- In the following, we assume tasks in i-g form.
- Providing O suffices to describe the overall task:
 - V are the variables mentioned in the operators in O .
 - always exactly i true in I and $\gamma = g$
- In the following, we only provide O for the description of the task.
- Since we consider delete-free STRIPS tasks, $pre(o)$ and $eff(o)$ are conjunctions of atoms. In the following, we treat them as *sets* $pre(o)$ and $add(o)$ of atoms.
- We write operator $o = \langle pre(o), add(o), cost(o) \rangle$ as $\langle pre(o) \rightarrow add(o) \rangle_{cost(o)}$, omitting braces for sets.

Example: Delete-Free Planning Task in i-g Form

Example

Operators:

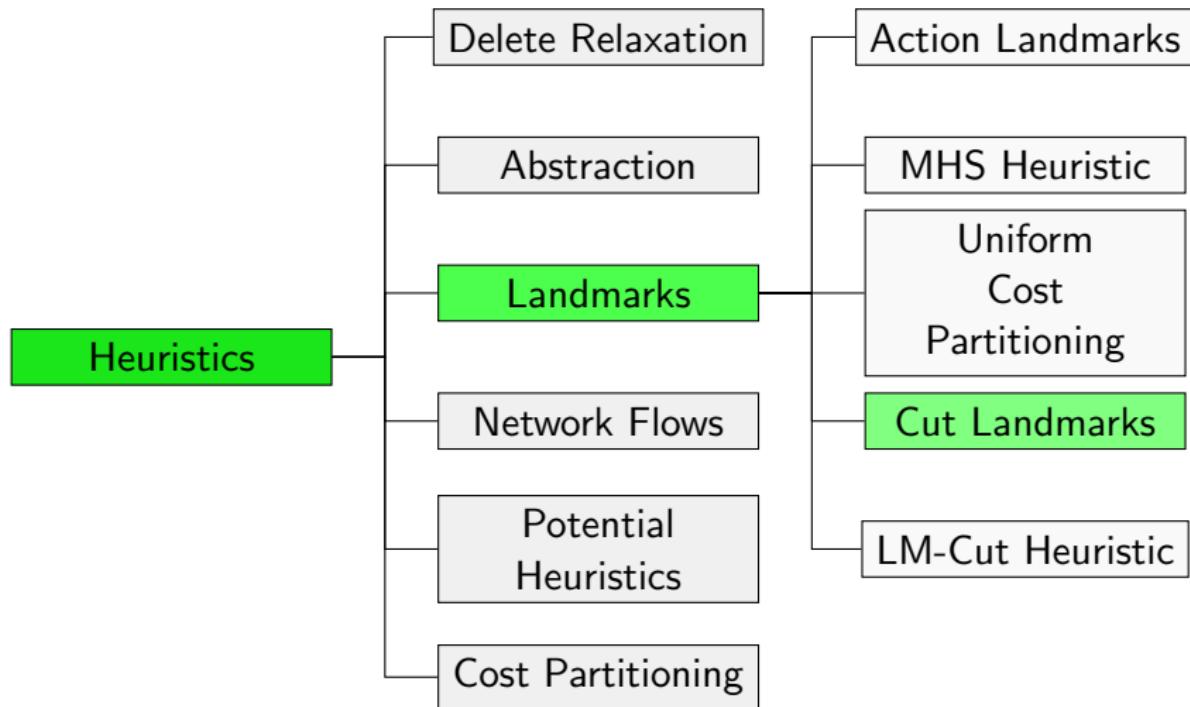
- $o_1 = \langle i \rightarrow x, y \rangle_3$
- $o_2 = \langle i \rightarrow x, z \rangle_4$
- $o_3 = \langle i \rightarrow y, z \rangle_5$
- $o_4 = \langle x, y, z \rightarrow g \rangle_0$

optimal solution?

Example: Delete-Free Planning Task in i-g Form

Example

Operators:


- $o_1 = \langle i \rightarrow x, y \rangle_3$
- $o_2 = \langle i \rightarrow x, z \rangle_4$
- $o_3 = \langle i \rightarrow y, z \rangle_5$
- $o_4 = \langle x, y, z \rightarrow g \rangle_0$

optimal solution to reach g from i :

- **plan:** o_1, o_2, o_4
- **cost:** $3 + 4 + 0 = 7$ ($= h^+(I)$ because plan is **optimal**)

Cut Landmarks

Content of this Course: Heuristics

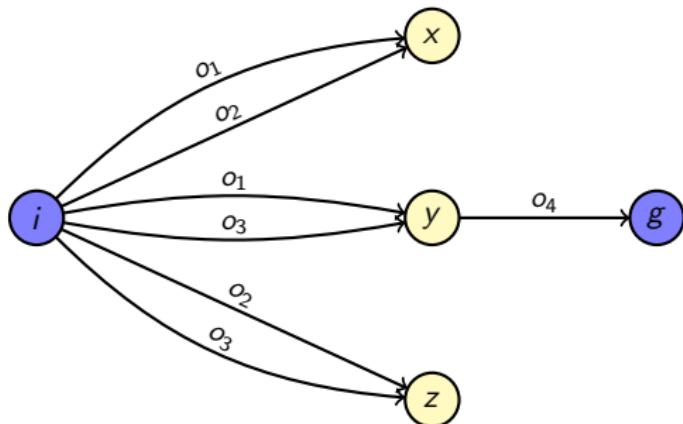
Justification Graphs

Definition (Precondition Choice Function)

A **precondition choice function (pcf)** $P : O \rightarrow V$ for a delete-free STRIPS task $\Pi = \langle V, I, O, \gamma \rangle$ in i-g form maps each operator to one of its preconditions (i.e. $P(o) \in \text{pre}(o)$ for all $o \in O$).

Definition (Justification Graphs)

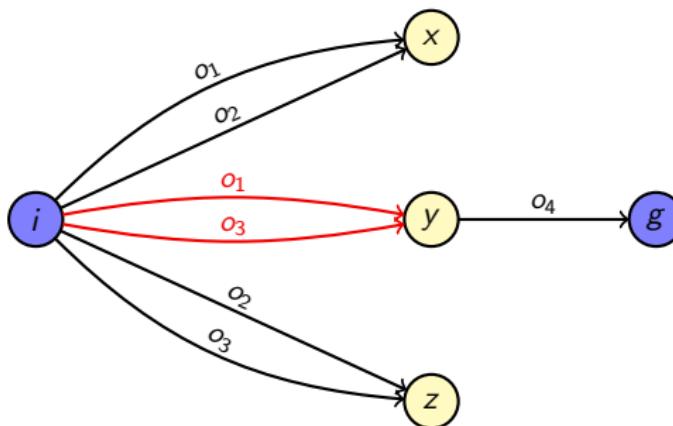
Let P be a pcf for $\langle V, I, O, \gamma \rangle$ in i-g form. The **justification graph** for P is the directed, edge-labeled graph $J = \langle V, E \rangle$, where


- the vertices are the variables from V , and
- E contains an edge $P(o) \xrightarrow{o} a$ for each $o \in O$, $a \in \text{add}(o)$.

Example: Justification Graph

Example

pcf P : $P(o_1) = P(o_2) = P(o_3) = i, P(o_4) = y$


$o_1 = \langle \textcolor{red}{i} \rightarrow x, y \rangle_3$
 $o_2 = \langle \textcolor{red}{i} \rightarrow x, z \rangle_4$
 $o_3 = \langle \textcolor{red}{i} \rightarrow y, z \rangle_5$
 $o_4 = \langle x, \textcolor{red}{y}, z \rightarrow g \rangle_0$

Cuts

Definition (Cut)

A **cut** in a justification graph is a subset C of its edges such that all paths from i to g contain an edge from C .

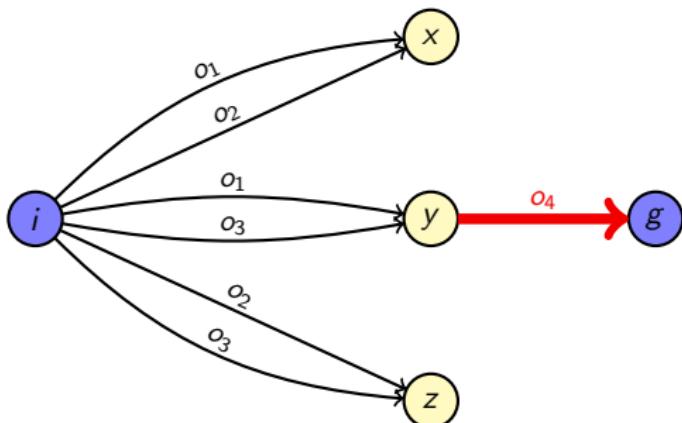
Cuts are Disjunctive Action Landmarks

Theorem (Cuts are Disjunctive Action Landmarks)

Let P be a pcf for $\langle V, I, O, \gamma \rangle$ (in i-g form) and C be a **cut** in the justification graph for P .

The set of **edge labels** from C (formally $\{o \mid \langle v, o, v' \rangle \in C\}$) is a **disjunctive action landmark** for I .

Proof idea:

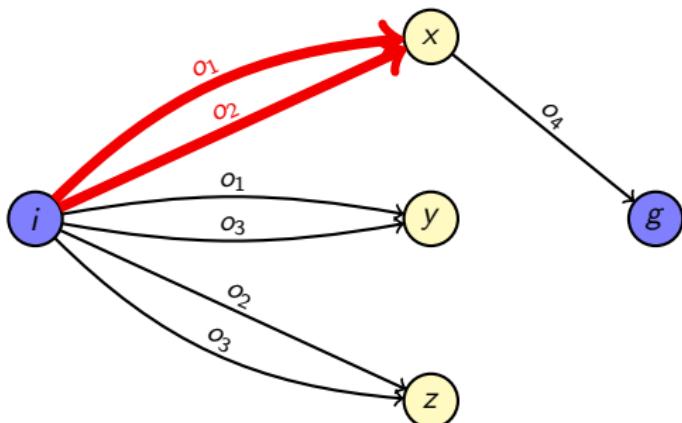

- The justification graph corresponds to a simpler problem where some preconditions (those not picked by the pcf) are ignored.
- Cuts are landmarks for this simplified problem.
- Hence they are also landmarks for the original problem.

Example: Cuts in Justification Graphs

Example

landmark $A = \{o_4\}$ (cost = 0)

$o_1 = \langle i \rightarrow x, y \rangle_3$
 $o_2 = \langle i \rightarrow x, z \rangle_4$
 $o_3 = \langle i \rightarrow y, z \rangle_5$
 $o_4 = \langle x, y, z \rightarrow g \rangle_0$

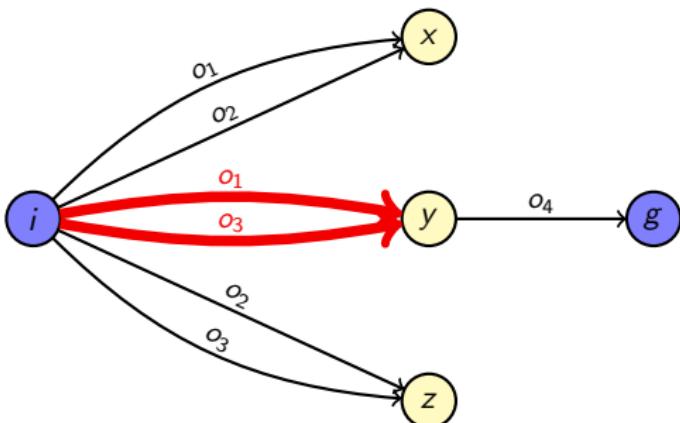


Example: Cuts in Justification Graphs

Example

landmark $B = \{o_1, o_2\}$ (cost = 3)

$o_1 = \langle i \rightarrow x, y \rangle_3$
 $o_2 = \langle i \rightarrow x, z \rangle_4$
 $o_3 = \langle i \rightarrow y, z \rangle_5$
 $o_4 = \langle x, y, z \rightarrow g \rangle_0$

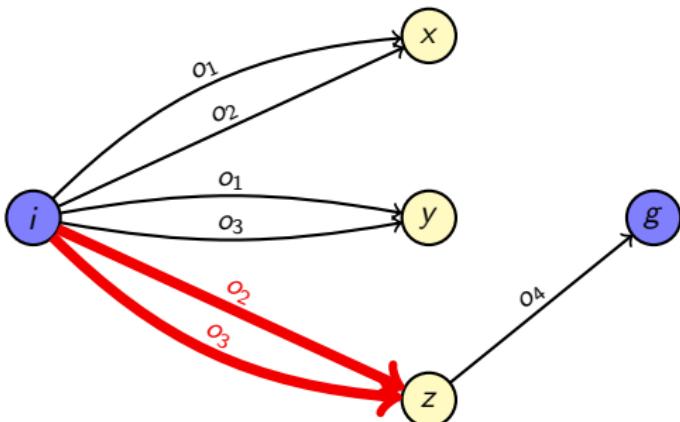


Example: Cuts in Justification Graphs

Example

landmark $C = \{o_1, o_3\}$ (cost = 3)

$o_1 = \langle i \rightarrow x, y \rangle_3$
 $o_2 = \langle i \rightarrow x, z \rangle_4$
 $o_3 = \langle i \rightarrow y, z \rangle_5$
 $o_4 = \langle x, y, z \rightarrow g \rangle_0$



Example: Cuts in Justification Graphs

Example

landmark $D = \{o_2, o_3\}$ (cost = 4)

$o_1 = \langle i \rightarrow x, y \rangle_3$
 $o_2 = \langle i \rightarrow x, z \rangle_4$
 $o_3 = \langle i \rightarrow y, z \rangle_5$
 $o_4 = \langle x, y, z \rightarrow g \rangle_0$

Power of Cuts in Justification Graphs

- Which landmarks can be computed with the cut method?

Power of Cuts in Justification Graphs

- Which landmarks can be computed with the cut method?
- **all interesting ones!**

Proposition (perfect hitting set heuristics)

*Let \mathcal{L} be the set of **all** “cut landmarks” of a given planning task with initial state I . Then $h^{MHS}(\mathcal{L}) = h^+(I)$.*

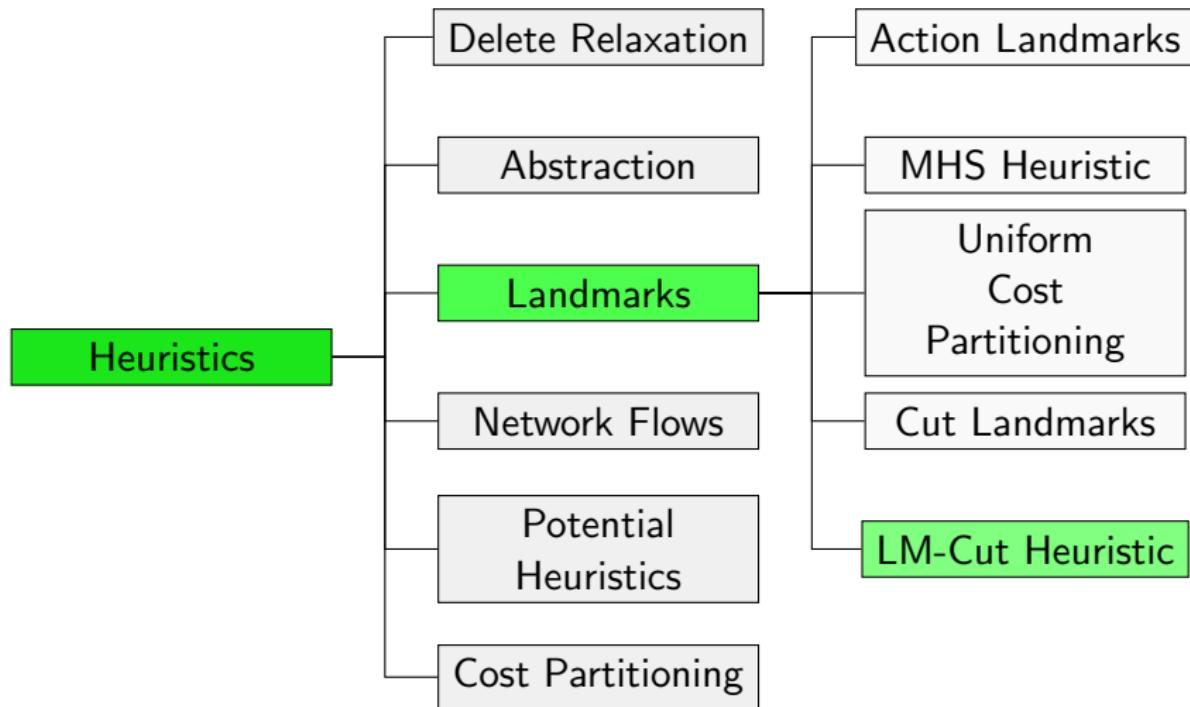
~~ Hitting set heuristic for \mathcal{L} is **perfect**.

Power of Cuts in Justification Graphs

- Which landmarks can be computed with the cut method?
- **all interesting ones!**

Proposition (perfect hitting set heuristics)

*Let \mathcal{L} be the set of **all** “cut landmarks” of a given planning task with initial state I . Then $h^{MHS}(\mathcal{L}) = h^+(I)$.*


~~ Hitting set heuristic for \mathcal{L} is **perfect**.

Proof idea:

- Show 1:1 correspondence of hitting sets H for \mathcal{L} and plans, i.e., each hitting set for \mathcal{L} corresponds to a plan, and vice versa.

The LM-Cut Heuristic

Content of this Course: Heuristics

LM-Cut Heuristic: Motivation

- In general, there are exponentially many pcfs, hence computing all relevant landmarks is not tractable.
- The **LM-cut heuristic** is a method that chooses pcfs and computes cuts in a **goal-oriented** way.
- As a side effect, it computes a (non-uniform) cost partitioning.
 - ↝ currently one of the best admissible planning heuristic

LM-Cut Heuristic (1)

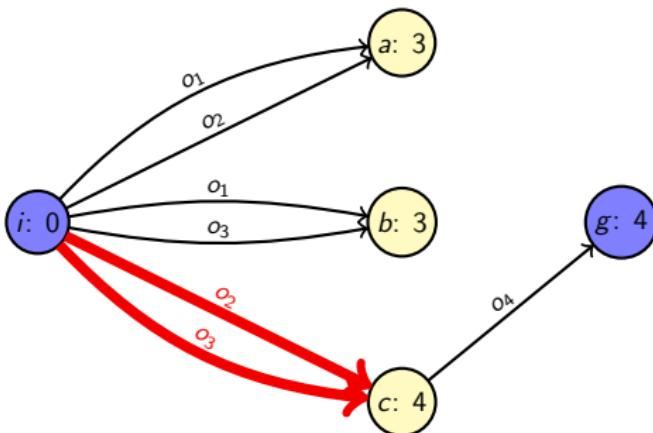
$h^{\text{LM-cut}}$: Helmert & Domshlak (2009)

Initialize $h^{\text{LM-cut}}(I) := 0$. Then iterate:

- ① Compute h^{\max} values of the variables.
Stop if $h^{\max}(g) = 0$.
- ② Let P be a pcf that chooses preconditions with maximal h^{\max} value.
- ③ Compute the justification graph for P .
- ④ Compute a cut which guarantees $\text{cost}(L) > 0$ for the corresponding landmark L (next slide).
- ⑤ Increase $h^{\text{LM-cut}}(I)$ by $\text{cost}(L)$.
- ⑥ Decrease $\text{cost}(o)$ by $\text{cost}(L)$ for all $o \in L$.

LM-Cut Heuristic (2)

$h^{\text{LM-cut}}$: Helmert & Domshlak (2009)

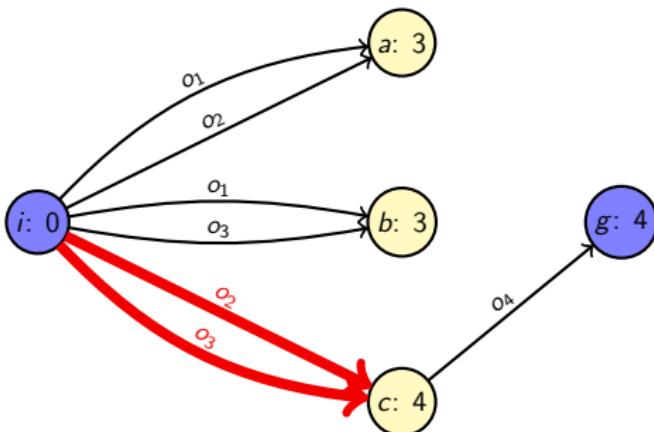

- ④ Compute a cut which guarantees $\text{cost}(L) > 0$ for the corresponding landmark L as follows:
 - The **goal zone** V_g of the justification graph consists of all nodes that have a path to g where all edges are labelled with zero-cost operators.
 - The cut contains all edges $\langle v, o, v' \rangle$ such that $v \notin V_g$, $v' \in V_g$ and v can be reached from i without traversing a node in V_g .

Example: Computation of LM-Cut

Example

round 1: $P(o_4) = c \rightsquigarrow L = \{o_2, o_3\}$ [4]

$$\begin{aligned}o_1 &= \langle i \rightarrow a, b \rangle_3 \\o_2 &= \langle i \rightarrow a, c \rangle_4 \\o_3 &= \langle i \rightarrow b, c \rangle_5 \\o_4 &= \langle a, b, c \rightarrow g \rangle_0\end{aligned}$$

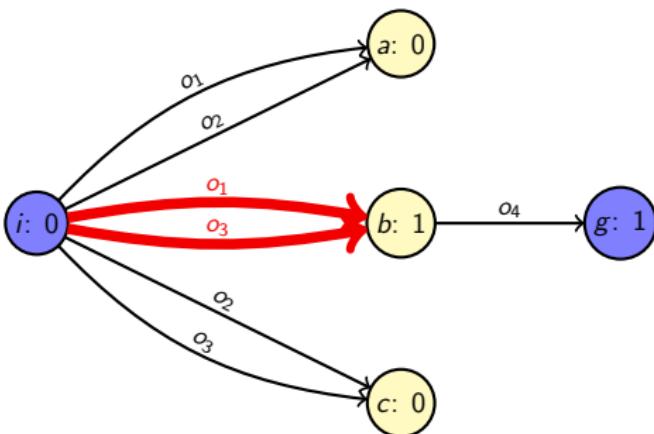


Example: Computation of LM-Cut

Example

round 1: $P(o_4) = c \rightsquigarrow L = \{o_2, o_3\} [4] \rightsquigarrow h^{\text{LM-cut}}(I) := 4$

$$\begin{aligned}o_1 &= \langle i \rightarrow a, b \rangle_3 \\o_2 &= \langle i \rightarrow a, c \rangle_0 \\o_3 &= \langle i \rightarrow b, c \rangle_1 \\o_4 &= \langle a, b, c \rightarrow g \rangle_0\end{aligned}$$

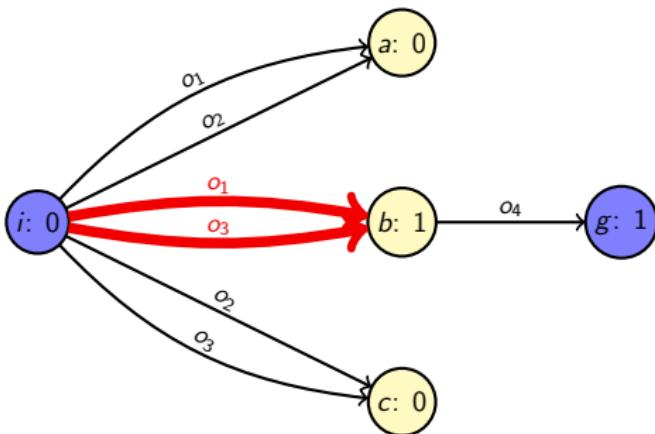


Example: Computation of LM-Cut

Example

round 2: $P(o_4) = b \rightsquigarrow L = \{o_1, o_3\}$ [1]

$$\begin{aligned}o_1 &= \langle \textcolor{red}{i} \rightarrow a, b \rangle_3 \\o_2 &= \langle \textcolor{red}{i} \rightarrow a, c \rangle_0 \\o_3 &= \langle \textcolor{red}{i} \rightarrow b, c \rangle_1 \\o_4 &= \langle a, \textcolor{red}{b}, c \rightarrow g \rangle_0\end{aligned}$$

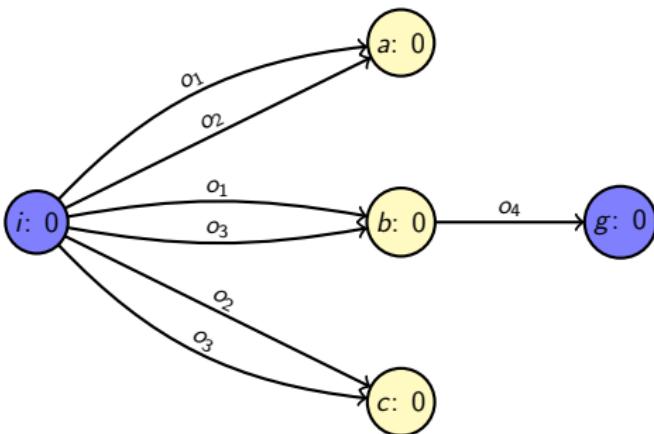


Example: Computation of LM-Cut

Example

round 2: $P(o_4) = b \rightsquigarrow L = \{o_1, o_3\} [1] \rightsquigarrow h^{\text{LM-cut}}(I) := 4 + 1 = 5$

$$\begin{aligned}o_1 &= \langle i \rightarrow a, b \rangle_2 \\o_2 &= \langle i \rightarrow a, c \rangle_0 \\o_3 &= \langle i \rightarrow b, c \rangle_0 \\o_4 &= \langle a, b, c \rightarrow g \rangle_0\end{aligned}$$



Example: Computation of LM-Cut

Example

round 3: $h^{\max}(g) = 0 \rightsquigarrow \text{done!} \rightsquigarrow h^{\text{LM-cut}}(I) = 5$

$$\begin{aligned}o_1 &= \langle i \rightarrow a, b \rangle_2 \\o_2 &= \langle i \rightarrow a, c \rangle_0 \\o_3 &= \langle i \rightarrow b, c \rangle_0 \\o_4 &= \langle a, b, c \rightarrow g \rangle_0\end{aligned}$$

Properties of LM-Cut Heuristic

Theorem

Let $\langle V, I, O, G \rangle$ be a delete-free STRIPS task in i-g normal form.
The **LM-cut heuristic is admissible**: $h^{\text{LM-cut}}(I) \leq h^*(I)$.

(Proof omitted.)

If Π is not delete-free, we can compute $h^{\text{LM-cut}}$ on Π^+ .
Then $h^{\text{LM-cut}}$ is bound by h^+ .

Summary & Outlook

Summary

- **Cuts in justification graphs** are a general method to find disjunctive action landmarks.
- Hitting sets over **all cut landmarks** yield a **perfect heuristic** for delete-free planning tasks.
- The **LM-cut heuristic** is an admissible heuristic based on these ideas.

Outlook

- We have only considered (disjunctive) action landmarks, **not atom or formula landmarks**.
- There are other landmark generation methods, e.g. based on a version of relaxed task graphs.
- The LM-cut heuristic extracts the landmarks for each state.
- Other methods extract landmarks once, **propagating** them over the course of the search.
- Such methods are usually enhanced with **orderings** (e.g. stating that some landmark must be achieved before some other landmark).
- The (inadmissible) **LM-Count heuristic** counts the number of formula landmarks that still need to be achieved.