

Planning and Optimization

E2. Landmarks: Cut Landmarks & LM-cut Heuristic

Gabriele Röger and Thomas Keller

Universität Basel

November 12, 2018

Planning and Optimization

November 12, 2018 — E2. Landmarks: Cut Landmarks & LM-cut Heuristic

E2.1 i-g Form

E2.2 Cut Landmarks

E2.3 The LM-Cut Heuristic

Roadmap for this Chapter

- ▶ We first introduce a new **normal form for delete-free STRIPS tasks** that simplifies later definitions.
- ▶ We then present a method that **computes disjunctive action landmarks** for such tasks.
- ▶ We conclude with the **LM-cut heuristic** that builds on this method.

E2.1 i-g Form

Delete-Free STRIPS Planning Task in i-g Form (1)

In this chapter, we only consider **delete-free** STRIPS tasks in a special form:

Definition (i-g Form for Delete-free STRIPS)

A delete-free STRIPS planning task $\langle V, I, O, \gamma \rangle$ is in **i-g form** if

- ▶ V contains atoms i and g
- ▶ Initially exactly i is true: $I(v) = \top$ iff $v = i$
- ▶ g is the only goal atom: $\gamma = g$
- ▶ Every action has at least one precondition.

Transformation to i-g Form

Every delete-free STRIPS task $\Pi = \langle V, I, O, \gamma \rangle$ can easily be transformed into an analogous task in i-g form.

- ▶ If i or g are in V already, rename them everywhere.
- ▶ Add i and g to V .
- ▶ Add an operator $\langle i, \bigwedge_{v \in V: I(v) = \top} v, 0 \rangle$.
- ▶ Add an operator $\langle \gamma, g, 0 \rangle$.
- ▶ Replace all operator preconditions \top with i .
- ▶ Replace initial state and goal.

In what sense are the tasks “analogous”?

Delete-Free STRIPS Planning Task in i-g Form (2)

- ▶ In the following, we assume tasks in i-g form.
- ▶ Providing O suffices to describe the overall task:
 - ▶ V are the variables mentioned in the operators in O .
 - ▶ always exactly i true in I and $\gamma = g$
- ▶ In the following, we only provide O for the description of the task.
- ▶ Since we consider delete-free STRIPS tasks, $pre(o)$ and $eff(o)$ are conjunctions of atoms. In the following, we treat them as **sets** $pre(o)$ and $add(o)$ of atoms.
- ▶ We write operator $o = \langle pre(o), add(o), cost(o) \rangle$ as $\langle pre(o) \rightarrow add(o) \rangle_{cost(o)}$, omitting braces for sets.

Example: Delete-Free Planning Task in i-g Form

Example

Operators:

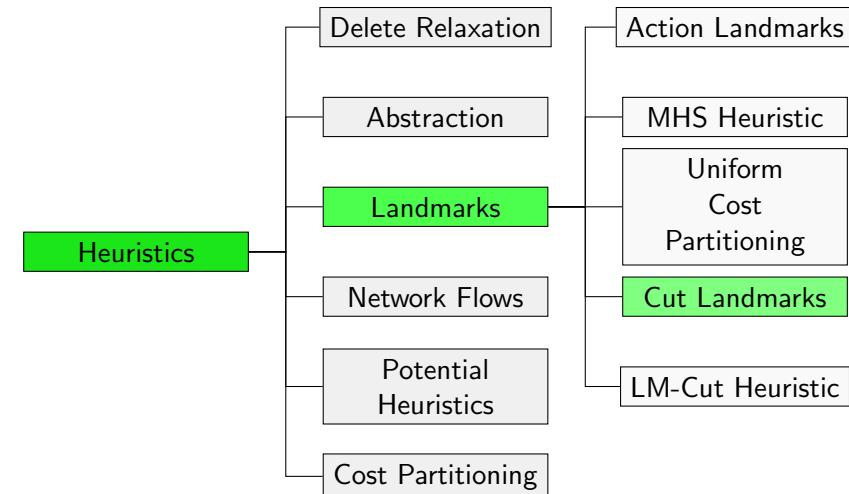
- ▶ $o_1 = \langle i \rightarrow x, y \rangle_3$
- ▶ $o_2 = \langle i \rightarrow x, z \rangle_4$
- ▶ $o_3 = \langle i \rightarrow y, z \rangle_5$
- ▶ $o_4 = \langle x, y, z \rightarrow g \rangle_0$

optimal solution to reach g from i :

- ▶ **plan:** o_1, o_2, o_4
- ▶ **cost:** $3 + 4 + 0 = 7$ ($= h^+(I)$ because plan is **optimal**)

E2.2 Cut Landmarks

Content of this Course: Heuristics



Justification Graphs

Definition (Precondition Choice Function)

A **precondition choice function (pcf)** $P : O \rightarrow V$ for a delete-free STRIPS task $\Pi = \langle V, I, O, \gamma \rangle$ in i-g form maps each operator to one of its preconditions (i.e. $P(o) \in \text{pre}(o)$ for all $o \in O$).

Definition (Justification Graphs)

Let P be a pcf for $\langle V, I, O, \gamma \rangle$ in i-g form. The **justification graph** for P is the directed, edge-labeled graph $J = \langle V, E \rangle$, where

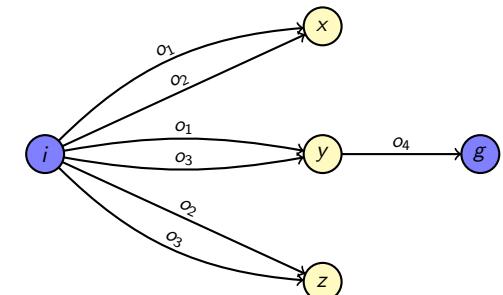
- ▶ the vertices are the variables from V , and
- ▶ E contains an edge $P(o) \xrightarrow{o} a$ for each $o \in O$, $a \in \text{add}(o)$.

Example: Justification Graph

Example

pcf P : $P(o_1) = P(o_2) = P(o_3) = i, P(o_4) = y$

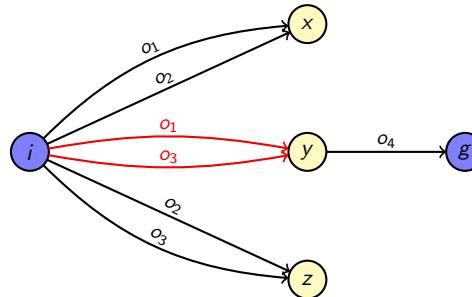
$$\begin{aligned}
 o_1 &= \langle i \rightarrow x, y \rangle_3 \\
 o_2 &= \langle i \rightarrow x, z \rangle_4 \\
 o_3 &= \langle i \rightarrow y, z \rangle_5 \\
 o_4 &= \langle x, y, z \rightarrow g \rangle_0
 \end{aligned}$$



Cuts

Definition (Cut)

A **cut** in a justification graph is a subset C of its edges such that all paths from i to g contain an edge from C .



Cuts are Disjunctive Action Landmarks

Theorem (Cuts are Disjunctive Action Landmarks)

Let P be a pcf for $\langle V, I, O, \gamma \rangle$ (in i-g form) and C be a **cut** in the justification graph for P .

The set of **edge labels** from C (formally $\{o \mid \langle v, o, v' \rangle \in C\}$) is a **disjunctive action landmark** for I .

Proof idea:

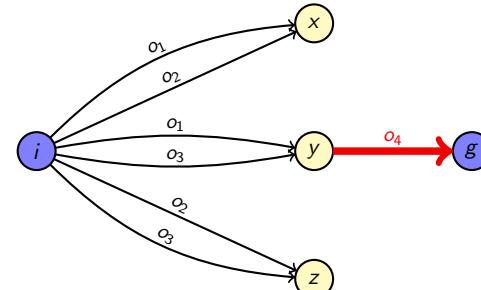
- ▶ The justification graph corresponds to a simpler problem where some preconditions (those not picked by the pcf) are ignored.
- ▶ Cuts are landmarks for this simplified problem.
- ▶ Hence they are also landmarks for the original problem.

Example: Cuts in Justification Graphs

Example

landmark $A = \{o_4\}$ (cost = 0)

$$\begin{aligned} o_1 &= \langle i \rightarrow x, y \rangle_3 \\ o_2 &= \langle i \rightarrow x, z \rangle_4 \\ o_3 &= \langle i \rightarrow y, z \rangle_5 \\ o_4 &= \langle x, y, z \rightarrow g \rangle_0 \end{aligned}$$

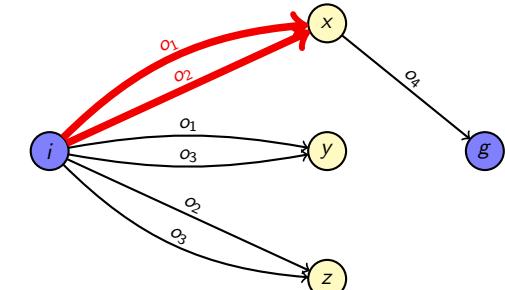


Example: Cuts in Justification Graphs

Example

landmark $B = \{o_1, o_2\}$ (cost = 3)

$$\begin{aligned} o_1 &= \langle i \rightarrow x, y \rangle_3 \\ o_2 &= \langle i \rightarrow x, z \rangle_4 \\ o_3 &= \langle i \rightarrow y, z \rangle_5 \\ o_4 &= \langle x, y, z \rightarrow g \rangle_0 \end{aligned}$$

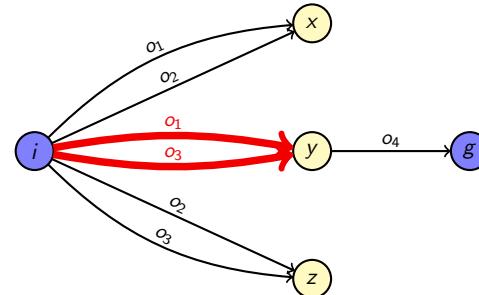


Example: Cuts in Justification Graphs

Example

landmark $C = \{o_1, o_3\}$ (cost = 3)

$o_1 = \langle i \rightarrow x, y \rangle_3$
 $o_2 = \langle i \rightarrow x, z \rangle_4$
 $o_3 = \langle i \rightarrow y, z \rangle_5$
 $o_4 = \langle x, y, z \rightarrow g \rangle_0$

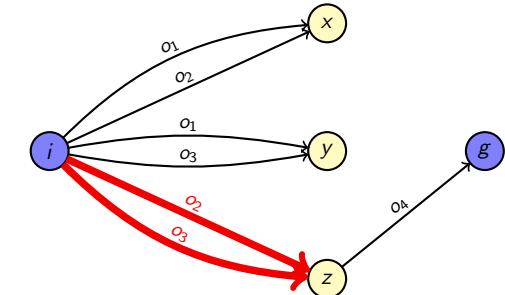


Example: Cuts in Justification Graphs

Example

landmark $D = \{o_2, o_3\}$ (cost = 4)

$o_1 = \langle i \rightarrow x, y \rangle_3$
 $o_2 = \langle i \rightarrow x, z \rangle_4$
 $o_3 = \langle i \rightarrow y, z \rangle_5$
 $o_4 = \langle x, y, z \rightarrow g \rangle_0$



Power of Cuts in Justification Graphs

- ▶ Which landmarks can be computed with the cut method?
- ▶ all interesting ones!

Proposition (perfect hitting set heuristics)

Let \mathcal{L} be the set of all “cut landmarks” of a given planning task with initial state I . Then $h^{MHS}(\mathcal{L}) = h^+(I)$.

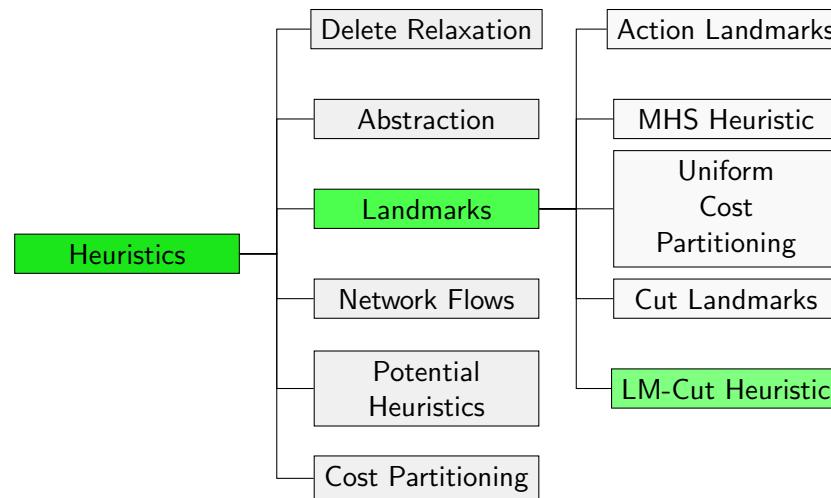
↝ Hitting set heuristic for \mathcal{L} is perfect.

Proof idea:

- ▶ Show 1:1 correspondence of hitting sets H for \mathcal{L} and plans, i.e., each hitting set for \mathcal{L} corresponds to a plan, and vice versa.

E2.3 The LM-Cut Heuristic

Content of this Course: Heuristics



LM-Cut Heuristic (1)

$h^{\text{LM-cut}}$: Helmert & Domshlak (2009)

Initialize $h^{\text{LM-cut}}(I) := 0$. Then iterate:

- ① Compute h^{max} values of the variables.
Stop if $h^{\text{max}}(g) = 0$.
- ② Let P be a pcf that chooses preconditions with maximal h^{max} value.
- ③ Compute the justification graph for P .
- ④ Compute a cut which guarantees $\text{cost}(L) > 0$ for the corresponding landmark L (next slide).
- ⑤ Increase $h^{\text{LM-cut}}(I)$ by $\text{cost}(L)$.
- ⑥ Decrease $\text{cost}(o)$ by $\text{cost}(L)$ for all $o \in L$.

LM-Cut Heuristic: Motivation

- ▶ In general, there are exponentially many pcfs, hence computing all relevant landmarks is not tractable.
- ▶ The **LM-cut heuristic** is a method that chooses pcfs and computes cuts in a **goal-oriented** way.
- ▶ As a side effect, it computes a (non-uniform) cost partitioning.
~~ currently one of the best admissible planning heuristic

LM-Cut Heuristic (2)

$h^{\text{LM-cut}}$: Helmert & Domshlak (2009)

- ④ Compute a cut which guarantees $\text{cost}(L) > 0$ for the corresponding landmark L as follows:

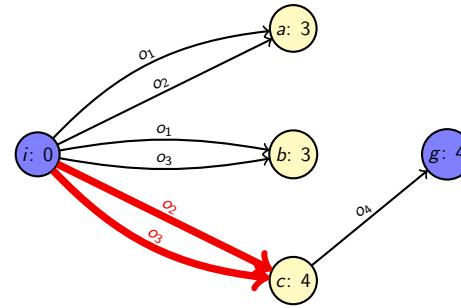
- ▶ The **goal zone** V_g of the justification graph consists of all nodes that have a path to g where all edges are labelled with zero-cost operators.
- ▶ The cut contains all edges $\langle v, o, v' \rangle$ such that $v \notin V_g$, $v' \in V_g$ and v can be reached from i without traversing a node in V_g .

Example: Computation of LM-Cut

Example

round 1: $P(o_4) = c \rightsquigarrow L = \{o_2, o_3\}$ [4]

$$\begin{aligned} o_1 &= \langle i \rightarrow a, b \rangle_3 \\ o_2 &= \langle i \rightarrow a, c \rangle_4 \\ o_3 &= \langle i \rightarrow b, c \rangle_5 \\ o_4 &= \langle a, b, c \rightarrow g \rangle_0 \end{aligned}$$

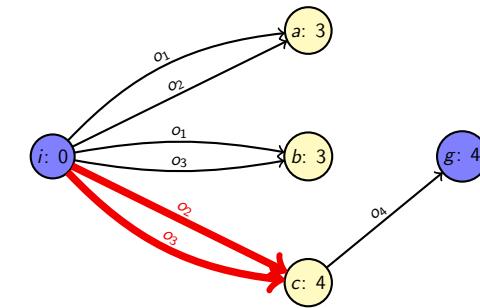


Example: Computation of LM-Cut

Example

round 1: $P(o_4) = c \rightsquigarrow L = \{o_2, o_3\}$ [4] $\rightsquigarrow h^{\text{LM-cut}}(I) := 4$

$$\begin{aligned} o_1 &= \langle i \rightarrow a, b \rangle_3 \\ o_2 &= \langle i \rightarrow a, c \rangle_0 \\ o_3 &= \langle i \rightarrow b, c \rangle_1 \\ o_4 &= \langle a, b, c \rightarrow g \rangle_0 \end{aligned}$$

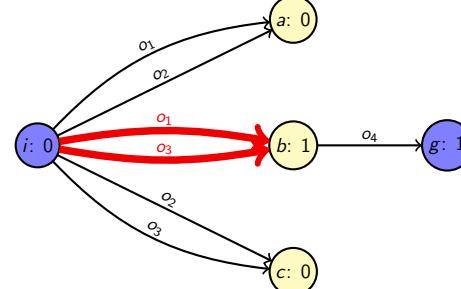


Example: Computation of LM-Cut

Example

round 2: $P(o_4) = b \rightsquigarrow L = \{o_1, o_3\}$ [1]

$$\begin{aligned} o_1 &= \langle i \rightarrow a, b \rangle_3 \\ o_2 &= \langle i \rightarrow a, c \rangle_0 \\ o_3 &= \langle i \rightarrow b, c \rangle_1 \\ o_4 &= \langle a, b, c \rightarrow g \rangle_0 \end{aligned}$$

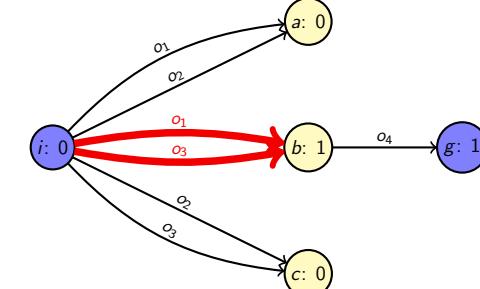


Example: Computation of LM-Cut

Example

round 2: $P(o_4) = b \rightsquigarrow L = \{o_1, o_3\}$ [1] $\rightsquigarrow h^{\text{LM-cut}}(I) := 4 + 1 = 5$

$$\begin{aligned} o_1 &= \langle i \rightarrow a, b \rangle_2 \\ o_2 &= \langle i \rightarrow a, c \rangle_0 \\ o_3 &= \langle i \rightarrow b, c \rangle_0 \\ o_4 &= \langle a, b, c \rightarrow g \rangle_0 \end{aligned}$$



Example: Computation of LM-Cut

Example

round 3: $h^{\max}(g) = 0 \rightsquigarrow \text{done!} \rightsquigarrow h^{\text{LM-cut}}(I) = 5$

$$\begin{aligned} o_1 &= \langle i \rightarrow a, b \rangle_2 \\ o_2 &= \langle i \rightarrow a, c \rangle_0 \\ o_3 &= \langle i \rightarrow b, c \rangle_0 \\ o_4 &= \langle a, b, c \rightarrow g \rangle_0 \end{aligned}$$

