

Planning and Optimization

E1. Landmarks: MHS & Uniform Cost Partitioning Heuristic

Gabriele Röger and Thomas Keller

Universität Basel

November 12, 2018

Planning and Optimization

November 12, 2018 — E1. Landmarks: MHS & Uniform Cost Partitioning Heuristic

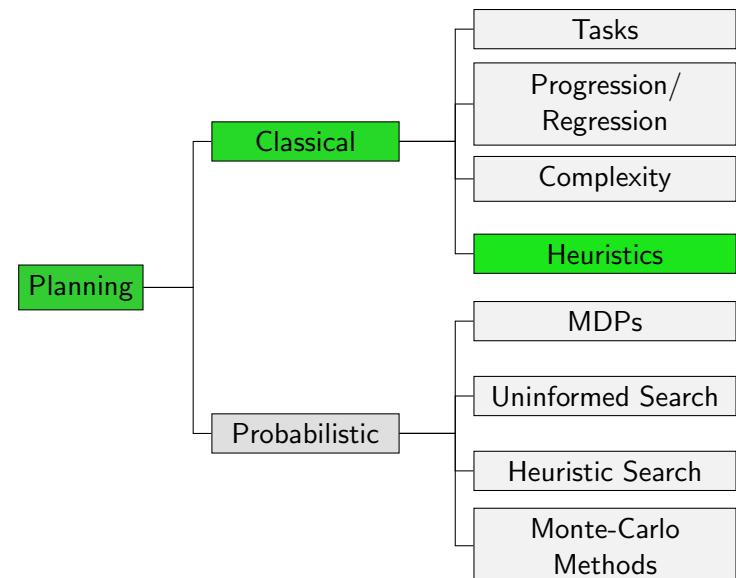
E1.1 Landmarks

E1.2 Minimum Hitting Set Heuristic

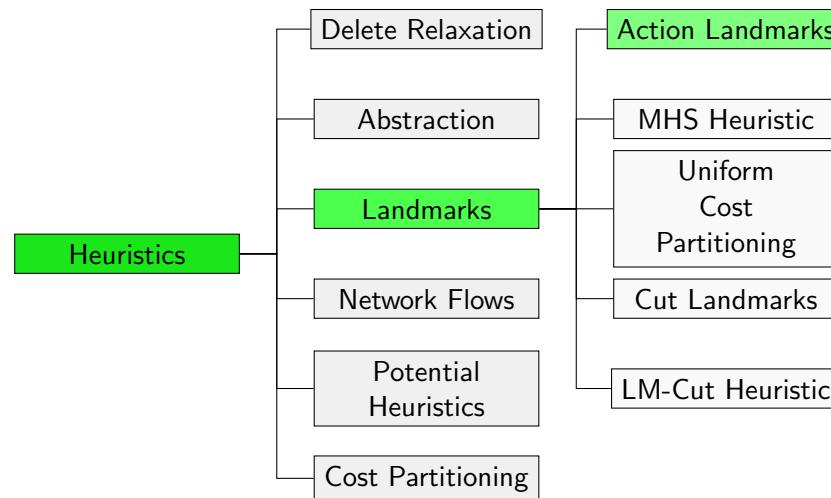
E1.3 Uniform Cost Partitioning

E1.1 Landmarks

Content of this Course



Content of this Course: Heuristics



Disjunctive Action Landmarks

Definition (Disjunctive Action Landmark)

Let s be a state of planning task $\Pi = \langle V, I, O, \gamma \rangle$.

A **disjunctive action landmark** for s is a set of operators $L \subseteq O$ such that every plan for s (= label path from s to a goal state) contains an operator from L .

The **cost** of landmark L is $cost(L) = \min_{o \in L} cost(o)$.

Landmarks

Basic Idea: Something that must happen **in every solution**

For example

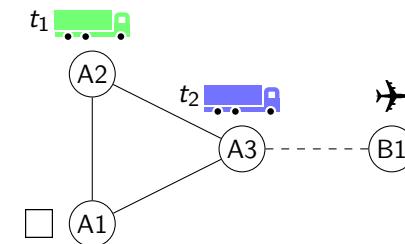
- ▶ some operator must be applied
- ▶ some atom must be true
- ▶ some formula must be true

→ Derive heuristic estimate from this kind of information.

We will only consider **disjunctive action landmarks**.

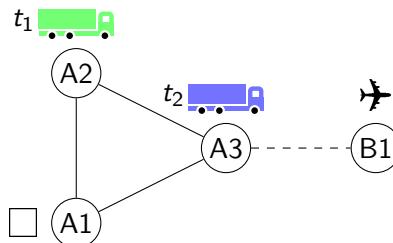
Example Task

- ▶ Two trucks, one airplane
- ▶ Airplane can fly between locations A3 and B1
- ▶ Trucks can drive arbitrarily between locations A1, A2, and A3
- ▶ Package to be transported from A1 to B1
- ▶ Operators
 - ▶ $Load(v, \ell)$ and $Unload(v, \ell)$ for vehicle v and location ℓ
 - ▶ $Drive(t, \ell, \ell')$ for truck t and locations ℓ, ℓ'
 - ▶ $Fly(\ell, \ell')$ for locations ℓ, ℓ'



Example: Disjunctive Action Landmarks

$L_1 = \{Load(Truck1, A1), Load(Truck2, A1)\}$ and
 $L_2 = \{Fly(B1, A3)\}$ are disjunctive action landmarks.



What other disjunctive action landmarks are there?

Exploiting Disjunctive Action Landmarks

How can we exploit a given set \mathcal{L} of disjunctive action landmarks?

- ▶ Sum of costs $\sum_{L \in \mathcal{L}} cost(L)$?
 \rightsquigarrow not admissible!
- ▶ Maximize costs $\max_{L \in \mathcal{L}} cost(L)$?
 \rightsquigarrow usually very weak heuristic
- ▶ better: hitting sets or cost partitioning

Remarks

- ▶ Not every landmark is informative.
 - ▶ For example: If the initial state is not already a goal state then the set of all operators is a disjunctive action landmark.
- ▶ Deciding whether a given operator set is a disjunctive action landmark is as hard as the plan existence problem.

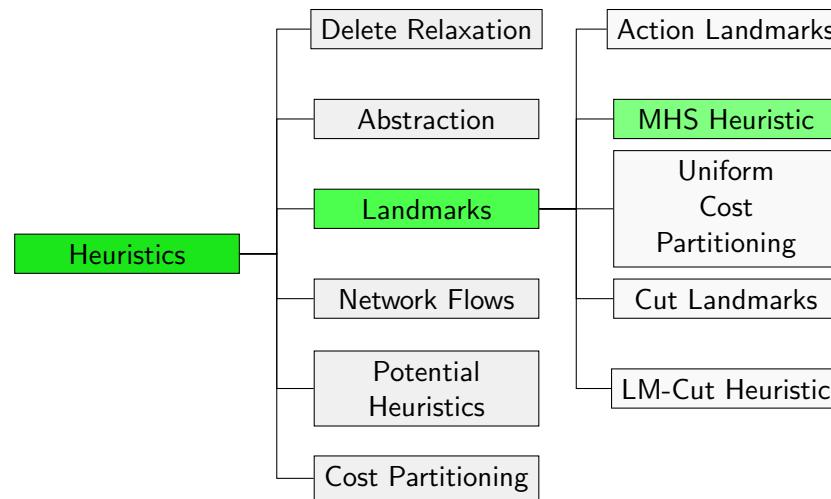
Exploiting Disjunctive Action Landmarks

How can we exploit a given set \mathcal{L} of disjunctive action landmarks?

- ▶ Sum of costs $\sum_{L \in \mathcal{L}} cost(L)$?
 \rightsquigarrow not admissible!
- ▶ Maximize costs $\max_{L \in \mathcal{L}} cost(L)$?
 \rightsquigarrow usually very weak heuristic
- ▶ better: hitting sets or cost partitioning

E1.2 Minimum Hitting Set Heuristic

Content of this Course: Heuristics



Hitting Sets

Definition (Hitting Set)

Let X be a set, $\mathcal{F} = \{F_1, \dots, F_n\} \subseteq 2^X$ be a family of subsets of X and $c : X \rightarrow \mathbb{R}_0^+$ be a cost function for X .

A **hitting set** is a subset $H \subseteq X$ that “hits” all subsets in \mathcal{F} , i.e., $H \cap F \neq \emptyset$ for all $F \in \mathcal{F}$. The **cost** of H is $\sum_{x \in H} c(x)$.

A **minimum hitting set (MHS)** is a hitting set with minimal cost.

MHS is a “classical” NP-complete problem (Karp, 1972)

Example: Hitting Sets

Example

$$X = \{o_1, o_2, o_3, o_4\}$$

$$\mathcal{F} = \{\{o_4\}, \{o_1, o_2\}, \{o_1, o_3\}, \{o_2, o_3\}\}$$

$$c(o_1) = 3, \quad c(o_2) = 4, \quad c(o_3) = 5, \quad c(o_4) = 0$$

minimum hitting set: $\{o_1, o_2, o_4\}$ with cost $3 + 4 + 0 = 7$

Hitting Sets for Disjunctive Action Landmarks

Idea: **disjunctive action landmarks** are interpreted as instance of **minimum hitting set**

Definition (Hitting Set Heuristic)

Let \mathcal{L} be a set of disjunctive action landmarks. The **hitting set heuristic** $h^{\text{MHS}}(\mathcal{L})$ is defined as the cost of a minimum hitting set for \mathcal{L} with $c(o) = \text{cost}(o)$.

Proposition (Hitting Set Heuristic is Admissible)

Let \mathcal{L} be a set of disjunctive action landmarks for state s . Then $h^{\text{MHS}}(\mathcal{L})$ is an admissible estimate for s .

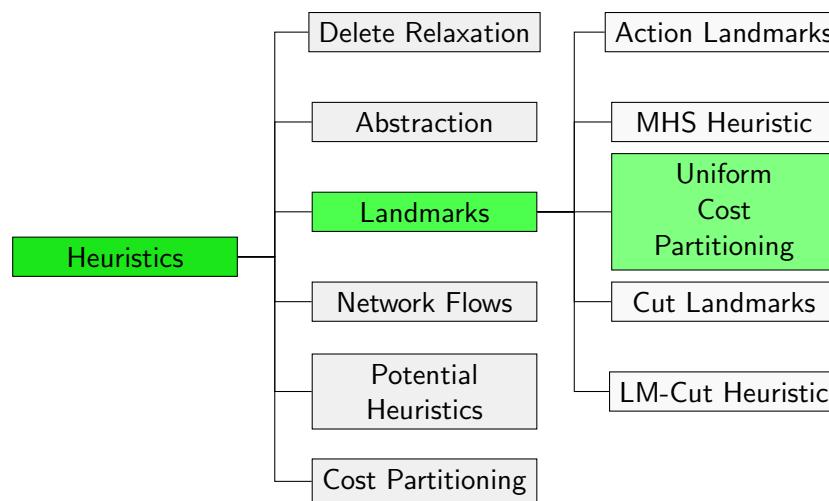
Why?

Hitting Set Heuristic: Discussion

- ▶ The hitting set heuristic is the **best possible** heuristic that only uses the given information...
- ▶ ...but is NP-hard to compute.
- ▶ ↵ Use approximations that can be efficiently computed.
- ▶ Now: [uniform cost partitioning](#)
- ▶ Later in the course: optimal cost partitioning

E1.3 Uniform Cost Partitioning

Content of this Course: Heuristics



Uniform Cost Partitioning (1)

Idea: Distribute cost of operators uniformly among the landmarks.

Definition (Uniform Cost Partitioning Heuristic for Landmarks)

Let \mathcal{L} be a set of disjunctive action landmarks.

The **uniform cost partitioning heuristic** $h^{UCP}(\mathcal{L})$ is defined as

$$h^{UCP}(\mathcal{L}) = \sum_{L \in \mathcal{L}} \min_{o \in L} c'(o) \text{ with}$$

$$c'(o) = \text{cost}(o)/|\{L \in \mathcal{L} \mid o \in L\}|.$$

Uniform Cost Partitioning (2)

Theorem (Uniform Cost Partitioning Heuristic is Admissible)

Let \mathcal{L} be a set of disjunctive action landmarks for state s of Π .
Then $h^{UCP}(\mathcal{L})$ is an **admissible** heuristic estimate for s .

Proof.

Let $\pi = \langle o_1, \dots, o_n \rangle$ be an optimal plan for s . For $L \in \mathcal{L}$ define a new cost function $cost_L$ as $cost_L(o) = c'(o)$ if $o \in L$ and $cost_L(o) = 0$ otherwise. Let Π_L be a modified version of Π , where for all operators o the cost is replaced with $cost_L(o)$. We make three independent observations:

- ① For $L \in \mathcal{L}$ the value $cost'(L) := \min_{o \in L} c'(o)$ is an admissible estimate for s in Π_L .
- ② π is also a plan for s in Π_L , so $h_{\Pi_L}^*(s) \leq \sum_{i=1}^n cost_L(o_i)$.
- ③ $\sum_{L \in \mathcal{L}} cost_L(o) = cost(o)$ for each operator o .

...

Uniform Cost Partitioning (3)

Proof (continued).

Together, this leads to the following inequality (subscripts indicate for which task the heuristic is computed):

$$\begin{aligned} h_{\Pi}^{UCP}(\mathcal{L}) &= \sum_{L \in \mathcal{L}} cost'(L) \stackrel{(1)}{\leq} \sum_{L \in \mathcal{L}} h_{\Pi_L}^*(s) \\ &\stackrel{(2)}{\leq} \sum_{L \in \mathcal{L}} \sum_{i=1}^n cost_L(o_i) = \sum_{i=1}^n \sum_{L \in \mathcal{L}} cost_L(o_i) \\ &\stackrel{(3)}{=} \sum_{i=1}^n cost(o) = h_{\Pi}^*(s) \end{aligned}$$

□

Relationship

Theorem

Let \mathcal{L} be a set of disjunctive action landmarks for state s .

Then $h^{UCP}(\mathcal{L}) \leq h^{MHS}(\mathcal{L}) \leq h^*(s)$.

(Proof omitted.)

Summary

- ▶ **Disjunctive action landmark**: set L of operators such that every plan uses some operator from L
- ▶ The **cost** of the landmark is the cost of its cheapest operator.
- ▶ **Hitting sets** yield the most accurate heuristic for a given set of disjunctive action landmarks, but the computation is NP-hard.
- ▶ **Uniform cost partitioning** is a polynomial approach for the computation of informative heuristics from disjunctive action landmarks.