Planning and Optimization D8. M&S: Strategies and Label Reduction

Gabriele Röger and Thomas Keller

Universität Basel

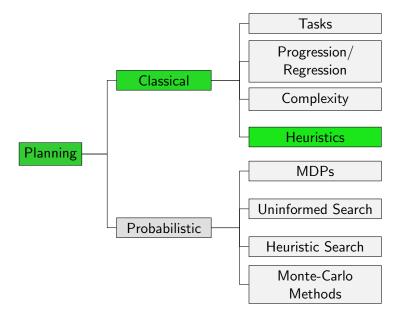
November 7, 2018

Label Reduction

Summary

Literature 0000

Content of this Course



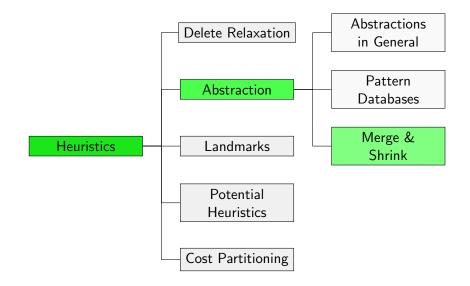
Shrinking Strategies

Label Reduction

Summary

Literature 0000

Content of this Course: Heuristics



Shrinking Strategies

abel Reduction

Summary 00 Literature 0000

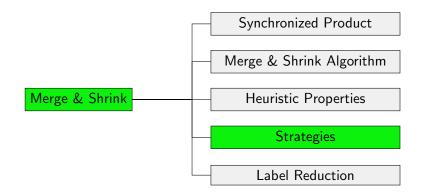
Merging Strategies

Label Reduction

Summary

Literature 0000

Content of this Course: Merge & Shrink



Label Reduction

Summary 00 Literature 0000

Generic Algorithm Template

Generic M&S computation algorithm

 $abs := \{\mathcal{T}^{\pi_{\{v\}}} \mid v \in V\}$

while abs contains more than one abstract transition system:

 $\begin{array}{l} \text{select } \mathcal{A}_1, \ \mathcal{A}_2 \ \text{from } abs \\ \text{shrink } \mathcal{A}_1 \ \text{and/or } \mathcal{A}_2 \ \text{until } \textit{size}(\mathcal{A}_1) \cdot \textit{size}(\mathcal{A}_2) \leq N \\ abs := abs \setminus \{\mathcal{A}_1, \mathcal{A}_2\} \cup \{\mathcal{A}_1 \otimes \mathcal{A}_2\} \end{array}$

return the remaining abstract transition system in abs

Remaining question:

■ Which abstractions to select? ~> merging strategy

Label Reduction

Summary 00 Literature 0000

Linear Merging Strategies

Linear Merging Strategy

In each iteration after the first, choose the abstraction computed in the previous iteration as $\mathcal{A}_{1}.$

Rationale: only maintains one "complex" abstraction at a time

 \rightsquigarrow Fully defined by an ordering of atomic projections.

Linear Merging Strategies: Choosing the Ordering

Use similar causal graph criteria as for growing patterns.

Example: Strategy of h_{HHH}

*h*_{HHH}: Ordering of atomic projections

- Start with a goal variable.
- Add variables that appear in preconditions of operators affecting previous variables.
- If that is not possible, add a goal variable.

Rationale: increases h quickly

Non-linear Merging Strategies

- Non-linear merging strategies only recently gained more interest in the planning community.
- One reason: Better label reduction techniques (later in this chapter) enabled a more efficient computation.
- Examples:
 - DFP: preferrably merge transition systems that must synchronize on labels that occur close to a goal state.
 - UMC and MIASM: Build clusters of variables with strong interactions and first merge variables within each cluster.
- Each merge-and-shrink heuristic computed with a non-linear merging strategy can also be computed with a linear merging strategy.
- However, linear merging can require a super-polynomial blow-up of the final representation size.

Shrinking Strategies

abel Reduction

Summary 00 Literature 0000

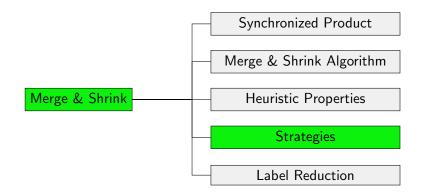
Shrinking Strategies

Label Reduction

Summary

Literature 0000

Content of this Course: Merge & Shrink



Label Reduction

Summary 00 Literature 0000

Generic Algorithm Template

Generic M&S computation algorithm

 $\begin{array}{l} abs := \{\mathcal{T}^{\pi_{\{v\}}} \mid v \in V\}\\ \textbf{while } abs \text{ contains more than one abstraction:}\\ & \text{select } \mathcal{A}_1, \, \mathcal{A}_2 \text{ from } abs\\ & \text{shrink } \mathcal{A}_1 \text{ and/or } \mathcal{A}_2 \text{ until } \textit{size}(\mathcal{A}_1) \cdot \textit{size}(\mathcal{A}_2) \leq N\\ & abs := abs \setminus \{\mathcal{A}_1, \mathcal{A}_2\} \cup \{\mathcal{A}_1 \otimes \mathcal{A}_2\}\\ \textbf{return the remaining abstraction in } abs\end{array}$

N: parameter bounding number of abstract states

Remaining Questions:

- Which abstractions to select? ~→ merging strategy
- How to shrink an abstraction? ~→ shrinking strategy

Label Reduction

Summary 00 Literature 0000

Shrinking Strategies

How to shrink an abstraction?

We cover two common approaches:

- *f*-preserving shrinking
- bisimulation-based shrinking

Label Reduction

Summary 00 Literature 0000

f-preserving Shrinking Strategy

f-preserving Shrinking Strategy

Repeatedly combine abstract states with identical abstract goal distances (*h* values) and identical abstract initial state distances (*g* values).

Rationale: preserves heuristic value and overall graph shape

Tie-breaking Criterion

Prefer combining states where g + h is high. In case of ties, combine states where h is high.

Rationale: states with high g + h values are less likely to be explored by A^{*}, so inaccuracies there matter less

Shrinking Strategies

_abel Reduction

Summary 00 Literature 0000

Bisimulation

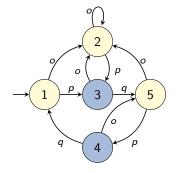
Definition (Bisimulation)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ be a transition system. An equivalence relation \sim on S is a bisimulation for \mathcal{T} if for every $\langle s, \ell, s' \rangle \in T$ and every $t \sim s$ there is a transition $\langle t, \ell, t' \rangle \in T$ with $t' \sim s'$. A bisimulation \sim is goal-respecting if $s \sim t$ implies that either $s, t \in S_*$ or $s, t \notin S_*$.

Shrinking Strategies

Label Reduction 000000000000000 Summary 00 Literature 0000

Bisimulation: Example



 \sim with equivalence classes $\{\{1,2,5\},\{3,4\}\}$ is a goal-respecting bisimulation.

Label Reduction

Summary 00 Literature 0000

Bisimulations as Abstractions

Theorem (Bisimulations as Abstractions)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$ be a transition system and \sim be a bisimulation for \mathcal{T} . Then $\alpha_{\sim} : S \to \{[s]_{\sim} \mid s \in S\}$ with $\alpha_{\sim}(s) = [s]_{\sim}$ is an abstraction of \mathcal{T} .

Note: $[s]_{\sim}$ denotes the equivalence class of *s*.

Note: Surjectivity follows from the definition of the codomain as the image of α_{\sim} .

Label Reduction

Summary 00 Literature 0000

Abstractions as Bisimulations

Definition (Abstraction as Bisimulation)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_\star \rangle$ be a transition system and $\alpha : S \to S'$ be an abstraction of \mathcal{T} . The abstraction induces the equivalence relation \sim_{α} as $s \sim_{\alpha} t$ iff $\alpha(s) = \alpha(t)$. We say that α is a (goal-respecting) bisimulation for \mathcal{T} if \sim_{α} is a (goal-respecting) bisimulation for \mathcal{T} .

Label Reduction

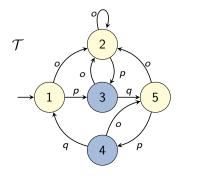
Summary

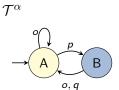
Literature 0000

Abstraction as Bisimulations: Example

Abstraction α with

 $\alpha(1) = \alpha(2) = \alpha(5) = A$ and $\alpha(3) = \alpha(4) = B$ is a goal-respecting bisimulation for \mathcal{T} .





Goal-respecting Bisimulations are Exact (1)

Theore<u>m</u>

Let X be a collection of transition systems. Let α be an abstraction for $\mathcal{T}_i \in X$. If α is a goal-respecting bisimulation then the transformation from X to $X' := (X \setminus {\mathcal{T}_i}) \cup {\mathcal{T}_i^{\alpha}}$ is exact.

Proof.

Let $\mathcal{T}_X = \mathcal{T}_1 \otimes \cdots \otimes \mathcal{T}_n = \langle S, L, c, T, s_0, S_* \rangle$ and w.l.o.g. $\mathcal{T}_{X'} = \mathcal{T}_1 \otimes \cdots \otimes \mathcal{T}_{i-1} \otimes \mathcal{T}_i^{\alpha} \otimes \mathcal{T}_{i+1} \otimes \cdots \otimes \mathcal{T}_n = \langle S', L', c', T', s'_0, S'_* \rangle$. Consider $\sigma(\langle s_1, \ldots, s_n \rangle) = \langle s_1, \ldots, s_{i-1}, \alpha(s_i), s_{i+1}, \ldots, s_n \rangle$ for the mapping of states and $\lambda = id$ for the mapping of labels.

 Mappings σ and λ satisfy the requirements of safe transformations because α is an abstraction and we have chosen the mapping functions as before.

Label Reduction

Goal-respecting Bisimulations are Exact (2)

Proof (continued).

2 If $\langle s', \ell, t' \rangle \in T'$ with $s' = \langle s'_1, \ldots, s'_n \rangle$ and $t' = \langle t'_1, \ldots, t'_n \rangle$, then for $j \neq i$ transition system \mathcal{T}_i has transition $\langle s'_i, \ell, t'_i \rangle$ (*) and \mathcal{T}_i^{α} has transition $\langle s'_i, \ell, t'_i \rangle$. This implies that \mathcal{T}_i has a transition $\langle s''_i, \ell, t''_i \rangle$ for some $s''_i \in \alpha^{-1}(s'_i)$ and $t''_i \in \alpha^{-1}(t'_i)$. As α is a bisimulation, there must be such a transition for all such s''_i and t''_i (**). Each $s \in \sigma^{-1}(s')$ has the form $s = \langle s_1, \ldots, s_n \rangle$ with $s_j = s'_j$ for $j \neq i$ and $s_i \in \alpha^{-1}(s'_i)$. Analogously for each $t = \langle t_1, \ldots, t_n \rangle \in \sigma^{-1}(t')$. From (*) and (**) follows that \mathcal{T}_i has a transition $\langle s_i, \ell, t_i \rangle$ for all $j \in \{1, \ldots, n\}$, so for each such s and t, T contains the transition $\langle s, \ell, t \rangle$.

. . .

Label Reduction

Goal-respecting Bisimulations are Exact (3)

Proof (continued).

- For s'_k = ⟨s'₁,...,s'_n⟩ ∈ S'_k, each s'_j with j ≠ i must be a goal state of T_j (*) and s'_i must be a goal state of T_i^α. The latter implies that at least on s''_i ∈ α⁻¹(s'_i) is a goal state of T_i. As α is goal-respecting, all states from α⁻¹(s'_i) are goal states of T_i (**). Consider s_k = ⟨s₁,...,s_n⟩ ∈ σ⁻¹(s'_k). By the definition of σ, s_j = s'_j for j ≠ i and s_i ∈ α⁻¹(s'_i). From (*) and (**), each s_j (j ∈ {1,...,n}) is a goal state of T_j and, hence, s_k a goal state of T_X.
- As $\lambda = \text{id}$ and the transformation does not change the label cost function, $c(\ell) = c'(\lambda(\ell))$ for all $\ell \in L$.

Bisimulations: Discussion

- As all bisimulations preserve all relevant information, we are interested in the coarsest such abstraction (to shrink as much as possible).
- There is always a unique coarsest bisimulation for T and it can be computed efficiently (from the explicit representation).
- In some cases, computing the bisimulation is still too expensive or it cannot sufficiently shrink a transition system.

Label Reduction 000000000000000 Summary 00 Literature 0000

Greedy Bisimulations

Definition (Greedy Bisimulation)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ be a transition system. An equivalence relation \sim on S is a greedy bisimulation for \mathcal{T} if it is a bisimulation for the system $\langle S, L, c, T^G, s_0, S_* \rangle$, where $\mathcal{T}^G = \{ \langle s, \ell, t \rangle \mid \langle s, \ell, t \rangle \in \mathcal{T}, h^*(s) = h^*(t) + c(\ell) \}.$

Greedy bisimulation only considers transitions that are used in an optimal solution of some state of \mathcal{T} .

Label Reduction

Summary

Literature 0000

Greedy Bisimulation is *h*-preserving

Theorem

Let \mathcal{T} be a transition system and let α be an abstraction of \mathcal{T} . If \sim_{α} is a goal-respecting greedy bisimulation for \mathcal{T} then $h_{\mathcal{T}^{\alpha}}^* = h_{\mathcal{T}}^*$.

(Proof omitted.)

Note: This does not mean that replacing \mathcal{T} with \mathcal{T}^{α} in a collection of transition systems is a safe transformation! Abstraction α preserves solution costs "locally" but not "globally".

hrinking Strategies

 Summary 00 Literature 0000

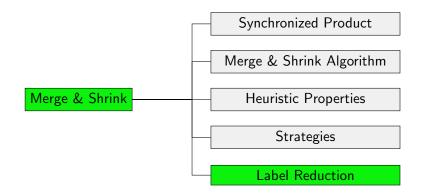
Label Reduction

Label Reduction

Summary

Literature 0000

Content of this Course: Merge & Shrink



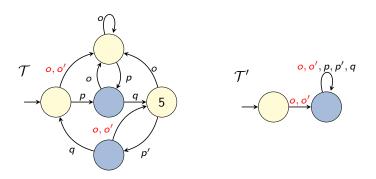
Shrinking Strategies

Label Reduction

Summary

Literature 0000

Label Reduction: Motivation (1)



Whenever there is a transition with label o' there is also a transition with label o. If o' is not cheaper than o, we can always use the transition with o.

Idea: Replace o and o' with label o'' with cost of o

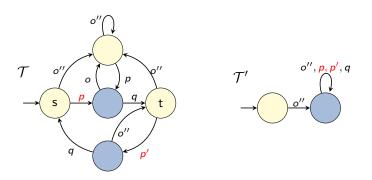
Shrinking Strategies

Label Reduction

Summary

Literature 0000

Label Reduction: Motivation (2)



States s and t are not bisimilar due to labels p and p'. In \mathcal{T}' they label the same (parallel) transitions. If p and p' have the same cost, in such a situation there is no need for distinguishing them.

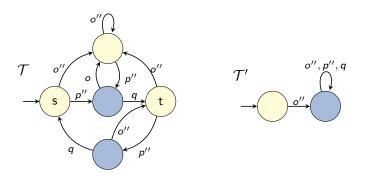
Idea: Replace p and p' with label p'' with same cost.

Shrinking Strategies

Label Reduction

Summary 00 Literature 0000

Label Reduction: Motivation (3)



Label reductions reduce the time and memory requirement for merge and shrink steps and enable coarser bisimulation abstractions.

When is label reduction a safe transformation?

Label Reduction

Summary 00 Literature 0000

Label Reduction: Definition

Definition (Label Reduction)

Let X be a collection of transition systems with label set L and label cost function c. A label reduction $\langle \lambda, c' \rangle$ for X is given by a function $\lambda : L \to L'$, where L' is an arbitrary set of labels, and a label cost function c' on L' such that for all $\ell \in L$, $c'(\lambda(\ell)) \leq c(\ell)$.

For $\mathcal{T} = \langle S, L, c, T, s_0, S_\star \rangle \in X$ the label-reduced transition system is $\mathcal{T}^{\langle \lambda, c' \rangle} = \langle S, L', c', \{ \langle s, \lambda(\ell), t \rangle \mid \langle s, \ell, t \rangle \in T \}, s_0, S_\star \rangle.$

The label-reduced collection is $X^{\langle \lambda, c' \rangle} = \{ \mathcal{T}^{\langle \lambda, c' \rangle} \mid \mathcal{T} \in X \}.$

 $L' \cap L \neq \emptyset$ and L' = L are allowed.

Label Reduction

Summary 00 Literature 0000

. . .

Label Reduction is Safe (1)

Theorem (Label Reduction is Safe)

Let X be a collection of transition systems and $\langle \lambda, c' \rangle$ be a label-reduction for X. The transformation from X to $X^{\langle \lambda, c' \rangle}$ is safe.

Proof.

We show that the transformation is safe, using $\sigma = \text{id}$ for the mapping of states and λ for the mapping of labels.

The label cost function of $\mathcal{T}_{X^{\langle \lambda, c' \rangle}}$ is c' and has the required property by the definition of label reduction.

Label Reduction

Summary 00 Literature 0000

Label Reduction is Safe (2)

Theorem (Label Reduction is Safe)

Let X be a collection of transition systems and $\langle \lambda, c' \rangle$ be a label-reduction for X. The transformation from X to $X^{\langle \lambda, c' \rangle}$ is safe.

Proof (continued).

By the definition of synchronized products, \mathcal{T}_X has a transition $\langle \langle s_1, \ldots, s_{|X|} \rangle, \ell, \langle t_1, \ldots, t_{|X|} \rangle \rangle$ if for all $i, \mathcal{T}_i \in X$ has a transition $\langle s_i, \ell, t_i \rangle$. By the definition of label-reduced transition systems, this implies that $\mathcal{T}^{\langle \lambda, c' \rangle}$ has a corresponding transition $\langle s_i, \lambda(\ell), t_i \rangle$, so $\mathcal{T}_{X^{\langle \lambda, c' \rangle}}$ has a transition $\langle s, \lambda(\ell), t \rangle = \langle \sigma(s), \lambda(\ell), \sigma(t) \rangle$ (definition of synchronized products).

For each goal state s_{\star} of \mathcal{T}_X , state $\sigma(s_{\star}) = s_{\star}$ is a goal state of $\mathcal{T}_{X^{(\lambda,c')}}$ because the transformation replaces each transition system with a system that has the same goal states.

More Terminology

Let X be a collection of transition systems with labels L. Let $\ell, \ell' \in L$ be labels and let $\mathcal{T} \in X$.

- Label ℓ is alive in X if all $\mathcal{T}' \in X$ have some transition labelled with ℓ . Otherwise, ℓ is dead.
- Label ℓ locally subsumes label ℓ' in \mathcal{T} if for all transitions $\langle s, \ell', t \rangle$ of \mathcal{T} there is also a transition $\langle s, \ell, t \rangle$ in \mathcal{T} .
- ℓ globally subsumes ℓ' if it locally subsumes ℓ' in all $\mathcal{T}' \in X$.
- ℓ and ℓ' are locally equivalent in T if they label the same transitions in T, i.e. ℓ locally subsumes ℓ' in T and vice versa.
- ℓ and ℓ' are \mathcal{T} -combinable if they are locally equivalent in all transition systems $\mathcal{T}' \in X \setminus \{\mathcal{T}\}.$

Exact Label Reduction

Theorem (Criteria for Exact Label Reduction)

Let X be a collection of transition systems with cost function c and label set L that contains no dead labels.

Let $\langle \lambda, c' \rangle$ be a label-reduction for X such that λ combines labels ℓ_1 and ℓ_2 and leaves other labels unchanged. The transformation from X to $X^{\langle \lambda, c' \rangle}$ is exact iff $c(\ell_1) = c(\ell_2)$, $c'(\lambda(\ell)) = c(\ell)$ for all $\ell \in L$, and

- ℓ_1 globally subsumes ℓ_2 , or
- ℓ_2 globally subsumes ℓ_1 , or
- ℓ_1 and ℓ_2 are \mathcal{T} -combinable for some $\mathcal{T} \in X$.

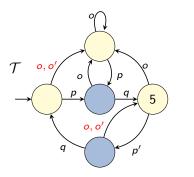
(Proof omitted.)

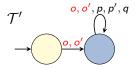
Shrinking Strategies

Label Reduction

Summary 00 Literature 0000

Back to Example (1)





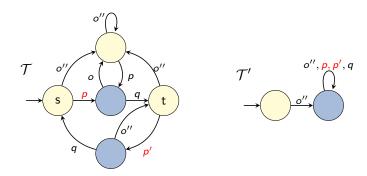
Label o globally subsumes label o'.

Shrinking Strategies

Label Reduction

Summary 00 Literature 0000

Back to Example (2)



Labels p and p' are \mathcal{T} -combinable.

Computation of Exact Label Reduction (1)

- For given labels ℓ_1, ℓ_2 , the criteria can be tested in low-order polynomial time.
- Finding globally subsumed labels involves finding subset relationsships in a set family.
 - \rightsquigarrow no linear-time algorithms known
- The following algorithm exploits only \mathcal{T} -combinability.

Summary

Literature 0000

Computation of Exact Label Reduction (2)

 $eq_i :=$ set of label equivalence classes of $\mathcal{T}_i \in X$

Label-reduction based on \mathcal{T}_i -combinability

```
eq := \{L\}
for j \in \{1, ..., |X|\} \setminus \{i\}
      Refine eq with eq_i
// two labels are in the same set of eq
// iff they are locally equivalent in all \mathcal{T}_i \neq \mathcal{T}_i.
\lambda = id
for B \in eq
      samecost := {[\ell]_{\sim_c} \mid \ell \in B, \ell' \sim_c \ell'' iff c(\ell') = c(\ell'')}
      for L' \in same cost
          \ell_{new} := new |abe|
          c'(\ell_{\text{new}}) := \text{cost of labels in } L'
          for \ell \in I'
               \lambda(\ell) = \ell_{new}
```

Application in Merge-and-Shrink Algorithm

Generic M&S Computation Algorithm with Label Reduction

 $\begin{array}{l} abs := \{\mathcal{T}^{\pi_{\{v\}}} \mid v \in V\} \\ \textbf{while } abs \mbox{ contains more than one abstract transition system:} \\ select \ensuremath{\mathcal{T}_1}, \ensuremath{\mathcal{T}_2} \mbox{ from } abs \\ \mbox{ possibly label-reduce all } \ensuremath{\mathcal{T} \in abs} \\ \mbox{ (e.g. based on \ensuremath{\mathcal{T}_1} - and/or \ensuremath{\mathcal{T}_2} - combinability).} \\ shrink \ensuremath{\mathcal{T}_1} \mbox{ and/or \ensuremath{\mathcal{T}_2} \mbox{ until } size(\ensuremath{\mathcal{T}_1}) \cdot size(\ensuremath{\mathcal{T}_2}) \leq N \\ \mbox{ possibly label-reduce all } \ensuremath{\mathcal{T} \in abs} \\ \mbox{ abs } := \mbox{ abs } \setminus \{\ensuremath{\mathcal{T}_1, \ensuremath{\mathcal{T}_2}\}} \cup \{\ensuremath{\mathcal{T}_1 \otimes \ensuremath{\mathcal{T}_2}\} \\ \mbox{ return the remaining abstract transition system in } abs \end{array}$

hrinking Strategies

abel Reduction

Summary •0 Literature 0000

Summary

Summary

- Bisimulation is an exact shrinking method.
- There is a wide range of merging strategies. We only covered some important ones.
- Label reduction is crucial for the performance of the merge-and-shrink algorithm, especially when using bisimilarity for shrinking.

hrinking Strategies

abel Reduction

Summary 00 Literature ●000

Literature

Literature (1)

References on merge-and-shrink abstractions:

Klaus Dräger, Bernd Finkbeiner and Andreas Podelski. Directed Model Checking with Distance-Preserving Abstractions.

Proc. SPIN 2006, pp. 19-34, 2006.

Introduces merge-and-shrink abstractions (for model-checking) and DFP merging strategy.

Malte Helmert, Patrik Haslum and Jörg Hoffmann. Flexible Abstraction Heuristics for Optimal Sequential Planning.

Proc. ICAPS 2007, pp. 176–183, 2007.

Introduces merge-and-shrink abstractions for planning.

Literature (2)

- Raz Nissim, Jörg Hoffmann and Malte Helmert.
 Computing Perfect Heuristics in Polynomial Time: On Bisimulation and Merge-and-Shrink Abstractions in Optimal Planning.
 Proc. IJCAI 2011, pp. 1983–1990, 2011.
 Introduces bisimulation-based shrinking.
- Malte Helmert, Patrik Haslum, Jörg Hoffmann and Raz Nissim.

Merge-and-Shrink Abstraction: A Method for Generating Lower Bounds in Factored State Spaces.

Journal of the ACM 61 (3), pp. 16:1–63, 2014. Detailed journal version of the previous two publications.

Literature (3)

- Silvan Sievers, Martin Wehrle and Malte Helmert.
 Generalized Label Reduction for Merge-and-Shrink Heuristics.
 Proc. AAAI 2014, pp. 2358–2366, 2014.
 Introduces label reduction as covered in these slides (there has been a more complicated version before).
- Gaojian Fan, Martin Müller and Robert Holte. Non-linear merging strategies for merge-and-shrink based on variable interactions.

Proc. AAAI 2014, pp. 2358–2366, 2014. Introduces UMC and MIASM merging strategies