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Generic Algorithm Template

abs .= {T™} |ve V}

while abs contains more than one abstract transition system:
select Az, Ay from abs
shrink Ay and/or A; until size(A;) - size(A2) < N
abs := abs \ {A1, A2} U {A1 ® A2}

return the remaining abstract transition system in abs

Remaining question:

m Which abstractions to select? ~» merging strategy
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Linear Merging Strategies

Linear Merging Strategy

In each iteration after the first, choose the abstraction computed
in the previous iteration as Aj.

Rationale: only maintains one “complex” abstraction at a time

~> Fully defined by an ordering of atomic projections.
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Linear Merging Strategies: Choosing the Ordering

Use similar causal graph criteria as for growing patterns.

Example: Strategy of hypn

hynny: Ordering of atomic projections

m Start with a goal variable.

m Add variables that appear in preconditions of operators
affecting previous variables.

m If that is not possible, add a goal variable.

Rationale: increases h quickly
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Non-linear Merging Strategies

m Non-linear merging strategies only recently gained more
interest in the planning community.

m One reason: Better label reduction techniques (later in this
chapter) enabled a more efficient computation.
m Examples:
m DFP: preferrably merge transition systems that must
synchronize on labels that occur close to a goal state.
m UMC and MIASM: Build clusters of variables with strong
interactions and first merge variables within each cluster.
m Each merge-and-shrink heuristic computed with a non-linear
merging strategy can also be computed with a linear merging
strategy.

m However, linear merging can require a super-polynomial
blow-up of the final representation size.
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Generic Algorithm Template

abs .= {T™ |ve V}

while abs contains more than one abstraction:
select A;, Ay from abs
shrink A; and/or Ay until size(A;) - size(Az) < N
abs := abs \ {A1, A2} U {A1 ® A2}

return the remaining abstraction in abs

N: parameter bounding number of abstract states

Remaining Questions:
m Which abstractions to select? ~~ merging strategy

m How to shrink an abstraction? ~- shrinking strategy
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Shrinking Strategies

How to shrink an abstraction?

We cover two common approaches:
m f-preserving shrinking

m bisimulation-based shrinking
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f-preserving Shrinking Strategy

f-preserving Shrinking Strategy

Repeatedly combine abstract states with
identical abstract goal distances (h values) and
identical abstract initial state distances (g values).

Rationale: preserves heuristic value and overall graph shape

Tie-breaking Criterion

Prefer combining states where g + h is high.
In case of ties, combine states where h is high.

Rationale: states with high g + h values are less likely to be
explored by A*, so inaccuracies there matter less
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Bisimulation

Definition (Bisimulation)

Let 7 =(S,L,c, T,so, Si) be a transition system. An equivalence
relation ~ on S is a bisimulation for 7 if for every (s, ¢,s') € T
and every t ~ s there is a transition (t, ¢, t') € T with t' ~ &’

A bisimulation ~ is goal-respecting if s ~ t implies that either
s,te S, ors, tegS,.
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Bisimulation: Example

~ with equivalence classes
{{1,2,5},{3,4}} is a
goal-respecting
bisimulation.
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Bisimulations as Abstractions

Theorem (Bisimulations as Abstractions)

Let T =(S,L,c, T,so,Ss) be a transition system and ~ be a
bisimulation for T. Then a. : S — {[s]~ | s € S} with
a~(s) = [s]~ is an abstraction of T .

Note: [s]. denotes the equivalence class of s.

Note: Surjectivity follows from the definition of the codomain
as the image of a...
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Abstractions as Bisimulations

Definition (Abstraction as Bisimulation)

Let T =(S,L,c, T,sp,Ss) be a transition system and « : S — S’
be an abstraction of 7. The abstraction induces the equivalence

relation ~, as s ~ t iff a(s) = a(t).

We say that « is a (goal-respecting) bisimulation for 7 if ~ is a
(goal-respecting) bisimulation for 7.
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Abstraction as Bisimulations: Example

Abstraction « with
a(l)=a(2) =a(b) =Aand o(3) = a(4) =B
is a goal-respecting bisimulation for 7.

'7'0(

(W®

o, q




Strategies Shrinking Strategies

Summary
0000000000 e00000 ole

Goal-respecting Bisimulations are Exact (1)

Theorem

Let X be a collection of transition systems. Let o be an
abstraction for T; € X. If a is a goal-respecting bisimulation then
the transformation from X to X' := (X \ {7T:}) U{T,*} is exact.

Proof.

Let Tx =Th® - ®T,=(S,L,c, T,s,S:) and w.l.o.g.

Txr =Th® - QTi-19T*®Tit1®--- T = (S, L', ', T', s, S.).
Consider o({s1,...,5n)) = (s1,...,Si—1,(Si), Si+1,- - -, Sn) for the
mapping of states and A = id for the mapping of labels.

@ Mappings o and X satisfy the requirements of safe
transformations because « is an abstraction and we have
chosen the mapping functions as before.
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Goal-respecting Bisimulations are Exact (2)

Proof (continued).

Q If (s, 0,t") € T'with s’ = (s],...,s,) and t' = (t],...,t),
then for j # i transition system 7; has transition (s, £, t;) (*)
and 7% has transition (s/, ¢, t/). This implies that 7; has a
transition (s”, ¢, t') for some s/’ € a~1(s!) and t! € a71(t)).
As « is a bisimulation, there must be such a transition for all
such s/ and t!" (**).

Each s € 071(s') has the form s = (sq,...,s,) with sj = st

for j # i and s; € a~1(s!). Analogously for each

t = (t1,...,tn) € o~ (t'). From (*) and (**) follows that T}
has a transition (s;, ¢, t;) for all j € {1,...,n}, so for each
such s and t, T contains the transition (s, ¢, t).
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Goal-respecting Bisimulations are Exact (3)

Proof (continued).

@ For s, = (si,...,s,) € S, each s/ with j # i must be a goal
state of 7; (*) and s/ must be a goal state of 7,*. The latter
implies that at least on s/’ € a~1(s!) is a goal state of T;. As
« is goal-respecting, all states from ofl(s,f) are goal states of
Tr (*%).

Consider s, = (s1,...,s,) € 071(s.). By the definition of o,
sj=s; forj#iands; € a~Y(s!). From (*) and (**), each s;
(€ {1,...,n}) is a goal state of 7} and, hence, s, a goal
state of Tx.

@ As )\ = id and the transformation does not change the label
cost function, ¢(¢) = ¢'(\(¥)) for all £ € L.
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Bisimulations: Discussion

m As all bisimulations preserve all relevant information, we are
interested in the coarsest such abstraction (to shrink as much
as possible).

m There is always a unique coarsest bisimulation for 7 and it
can be computed efficiently (from the explicit representation).

® In some cases, computing the bisimulation is still too
expensive or it cannot sufficiently shrink a transition system.
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Greedy Bisimulations

Definition (Greedy Bisimulation)

Let 7 =(S,L,c, T,so, Si) be a transition system. An equivalence
relation ~ on S is a greedy bisimulation for 7 if it is a bisimulation
for the system (S, L,c, T®, s, S,), where

TC = {(s,4,t) | (s,4,t) € T,h*(s) = h*(t) + c(£)}.

Greedy bisimulation only considers transitions that are used in an
optimal solution of some state of 7.
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Greedy Bisimulation is h-preserving

Let T be a transition system and let o be an abstraction of T. If
~q is a goal-respecting greedy bisimulation for T then hi. = hr.

(Proof omitted.)

Note: This does not mean that replacing 7 with 7 in a collection
of transition systems is a safe transformation! Abstraction «
preserves solution costs “locally” but not “globally”.
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Label Reduction: Motivation (1)

T 0,0 ,p,p',q

Whenever there is a transition with label o’ there is also a

transition with label o. If 0/ is not cheaper than o, we can always
use the transition with o.

Idea: Replace o and o’ with label o” with cost of o
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Label Reduction: Motivation (2)

o",p,p'q

7'/

States s and t are not bisimilar due to labels p and p’. In 77 they
label the same (parallel) transitions. If p and p’ have the same
cost, in such a situation there is no need for distinguishing them.

Idea: Replace p and p’ with label p” with same cost.
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1" /!
oL,p,q

T’

Label reductions reduce the time and memory requirement for
merge and shrink steps and enable coarser bisimulation
abstractions.

When is label reduction a safe transformation?

Lit

ature
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Label Reduction: Definition

Definition (Label Reduction)

Let X be a collection of transition systems with label set L and
label cost function c. A label reduction (X, c’) for X is given by a
function A\ : L — L', where L’ is an arbitrary set of labels, and a
label cost function ¢’ on L’ such that for all £ € L, ¢/(A\(¢)) < c(¥).

For T =(S,L,c, T,sp,S«) € X the label-reduced transition system
is TO) = (S, L'/, {(s,\(£), t) | (s,£,t) € T}, s0,5,).

The label-reduced collection is X{4¢) = {7 | T e X}.

L'NL#0and L' =L are allowed.
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Label Reduction is Safe (1)

Theorem (Label Reduction is Safe)

Let X be a collection of transition systems and (A, c’) be a
label-reduction for X. The transformation from X to X*<') s safe. |

Proof.

We show that the transformation is safe, using o = id for the
mapping of states and A for the mapping of labels.

The label cost function of 7;«“/) is ¢’ and has the required
property by the definition of label reduction.
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Label Reduction is Safe (2)

Theorem (Label Reduction is Safe)

Let X be a collection of transition systems and (A, c’) be a
label-reduction for X. The transformation from X to X*<) js safe. |

Proof (continued).

By the definition of synchronized products, Tx has a transition
((s15---»8x)), &5 (t1, - - -, tyx)) if for all i, T; € X has a transition
(si, £, t;). By the definition of label-reduced transition systems, this
implies that 7" has a corresponding transition (s, A(¢), t;), so
Txxey has a transition (s, \(¢), t) = (o(s), A(£),o(t)) (definition
of synchronized products).

For each goal state s, of Tx, state o(s,) = s, is a goal state of

Tx ey because the transformation replaces each transition system
with a system that has the same goal states. O

v




Strategies S S Label Reduction Summary

0000000 0e000000

More Terminology

Let X be a collection of transition systems with labels L. Let
0,0 € L be labels and let 7 € X.

m Label £ is alive in X if all 77 € X have some transition
labelled with ¢. Otherwise, ¢ is dead.

m Label / locally subsumes label ¢ in T if for all transitions
(s,0',t) of T there is also a transition (s, ¢, t) in T.

m / globally subsumes ¢ if it locally subsumes ¢ in all 7' € X.

m ¢ and ¢ are locally equivalent in T if they label the same
transitions in 7T, i.e. £ locally subsumes ¢’ in T and vice versa.

m / and ¢’ are T-combinable if they are locally equivalent in all
transition systems 7' € X \ {T}.
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Exact Label Reduction

Theorem (Criteria for Exact Label Reduction)

Let X be a collection of transition systems with cost function c
and label set L that contains no dead labels.

Let (X, c’) be a label-reduction for X such that A combines labels

{1 and {5 and leaves other labels unchanged. The transformation
from X to XMV s exact iff c(€y) = c(£2), (M(¥)) = c(¥) for all
te L, and

m V1 globally subsumes {5, or

m V5 globally subsumes {1, or

m /1 and > are T -combinable for some T € X.

(Proof omitted.)
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0,0 ,p,p',q

T

Label o globally subsumes label o’



Label Reduction Summary Literature

00000000000 e000

o".p,p'q

T’

1

Labels p and p’ are T-combinable.
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Computation of Exact Label Reduction (1)

m For given labels /1, /5, the criteria can be tested in low-order
polynomial time.

m Finding globally subsumed labels involves finding subset
relationsships in a set family.
~> no linear-time algorithms known

m The following algorithm exploits only 7-combinability.




Label Reduction Summary
0000000000000 e0

Computation of Exact Label Reduction (2)

eq; := set of label equivalence classes of 7; € X

eq:={L}
forje {1,..., X[} \{i}
Refine eq with eq;
// two labels are in the same set of eq
// iff they are locally equivalent in all 7; # 7;.
A=id
for B € eq
samecost := {[{]~. | £ € B,/ ~c 0" iff c(¢') = c(¢")}
for L' € samecost
lhew = new label
¢’ (lnew) := cost of labels in L’
for 0 € L'
)\(e) = gnew
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Appllcatlon in I\/Ierge and-Shrink Algorithm

abs .= {T™ |ve V}
while abs contains more than one abstract transition system:
select 71, 7> from abs
possibly label-reduce all 7 € abs
(e.g. based on T1- and/or Tr-combinability).
shrink 71 and/or T3 until size(T1) - size(T2) < N
possibly label-reduce all 7 € abs
abs := abs \ {T1, T2} U{T1 ® T2}

return the remaining abstract transition system in abs
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Summary

m Bisimulation is an exact shrinking method.

m There is a wide range of merging strategies. We only covered
some important ones.

m Label reduction is crucial for the performance of the
merge-and-shrink algorithm, especially when using bisimilarity
for shrinking.
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Literature (1)

References on merge-and-shrink abstractions:

@ Klaus Drager, Bernd Finkbeiner and Andreas Podelski.
Directed Model Checking with Distance-Preserving
Abstractions.

Proc. SPIN 2006, pp. 19-34, 2006.
Introduces merge-and-shrink abstractions (for model-checking)
and DFP merging strategy.

@ Malte Helmert, Patrik Haslum and Jorg Hoffmann.
Flexible Abstraction Heuristics for Optimal Sequential
Planning.

Proc. ICAPS 2007, pp. 176-183, 2007.
Introduces merge-and-shrink abstractions for planning.
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@ Raz Nissim, Jorg Hoffmann and Malte Helmert.
Computing Perfect Heuristics in Polynomial Time: On
Bisimulation and Merge-and-Shrink Abstractions in Optimal
Planning.
Proc. IJCAI 2011, pp. 1983-1990, 2011.
Introduces bisimulation-based shrinking.

@ Malte Helmert, Patrik Haslum, Jorg Hoffmann and Raz
Nissim.
Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces.
Journal of the ACM 61 (3), pp. 16:1-63, 2014,
Detailed journal version of the previous two publications.
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@ Silvan Sievers, Martin Wehrle and Malte Helmert.
Generalized Label Reduction for Merge-and-Shrink Heuristics.
Proc. AAAI 2014, pp. 2358-2366, 2014.

Introduces label reduction as covered in these slides
(there has been a more complicated version before).

[@ Gaojian Fan, Martin Miiller and Robert Holte.
Non-linear merging strategies for merge-and-shrink based on
variable interactions.
Proc. AAAI 2014, pp. 2358-2366, 2014.
Introduces UMC and MIASM merging strategies
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