Planning and Optimization
D7. M&S: Generic Algorithm and Heuristic Properties

Gabriele Roger and Thomas Keller

Universitat Basel

November 7, 2018

Content of this Course

—I Tasks |

Progression/

~| Complexity |

= MDPs |

—| Uninformed Search |

— Probabilistic ——

—I Heuristic Search |

Monte-Carlo
Methods

Content of this Course: Heuristics

Abstractions

—{ Delete Relaxation ‘] in General

Pattern
Databases

—{ Abstraction I

L Merge &

Potential
Heuristics

—{ Cost Partitioning

Generic Algorithm
©000000000000

Generic Algorithm

Generic Algorithm
0000000000000

Content of this Course: Merge & Shrink

—| Synchronized Product |

_7—| Heuristic Properties |
_{ Strategies |

—| Label Reduction |

Generic Algorithm
00®0000000000

Generic Merge-and-shrink Abstractions: Outline

Using the results from the previous chapter, we can develop the
ideas of a generic abstraction computation procedure that takes all
state variables into account:
m Initialization step: Compute all abstract transition systems for
atomic projections to form the initial abstraction collection.

m Merge steps: Combine two abstract systems in the collection
by replacing them with their synchronized product. (Stop
once only one transition system is left.)

m Shrink steps: If the abstractions in the collection are too large
to compute their synchronized product, make them smaller by
abstracting them further (applying an arbitrary abstraction to
them).

We explain these steps with our running example.

Generic Algorithm Heuristic Properties Summary
000@000000000

Back to the Running Example

Logistics problem with one package, two trucks, two locations:
m state variable package: {L, R, A, B}
m state variable truck A: {L, R}
m state variable truck B: {L, R}

Generic Algorithm

Summar
0O000@00000000

Initialization Step: Atomic Projection for Package

Tﬂ{package} :

Generic Algorithm
00000@0000000

Initialization Step: Atomic Projection for Truck A

Tﬂ-{truck A} -

PAL,DAL,MBxx, PAR,DAR,MBxx,
PBx%,DBx PB*,DBx

MALR

Generic Algorithm
0000008000000

Initialization Step: Atomic Projection for Truck B

Tﬂ-{truck B} -

PBL,DBL,MAxx, PBR,DBR,MAxx,
PAx, DA% PAx,DAx

MBLR

current collection: {7 ™{packagey T {truck A} T T {truck B} 1

Generic Algorithm 2 Summary

0O000000@00000

First Merge Step
71 = ’Tﬂ—{package} X Tﬂ-{truck A} -

MBx*x MBx*

current collection: {77, 7 ™{truek B} }

Generic Algorithm

0000000080000

Need to Simplify?

m If we have sufficient memory available, we can now compute
T1 ® T ™k B} which would recover the complete transition
system of the task.

m However, to illustrate the general idea, let us assume that we
do not have sufficient memory for this product.

m More specifically, we will assume that after each product
operation we need to reduce the result transition system to
four states to obey memory constraints.

m So we need to reduce 7; to four states. We have a lot of
leeway in deciding how exactly to abstract 77.

m In this example, we simply use an abstraction that leads to a
good result in the end.

Generic Algorithm 2 Summary

0000000008000

First Shrink Step

7> := some abstraction of 71

Generic Algorithm 2 Summary

0000000008000

First Shrink Step

7> := some abstraction of 71

Generic Algorithm 2 Summary

0000000008000

First Shrink Step

7> := some abstraction of 71

Generic Algorithm 2 Summary

0000000008000

First Shrink Step

7> := some abstraction of 71

Generic Algorithm

0000000008000

First Shrink Step

7> := some abstraction of 71

Generic Algorithm

0000000008000

First Shrink Step

7> := some abstraction of 71

Generic Algorithm

0000000008000

First Shrink Step

7> := some abstraction of 71

Generic Algorithm

0000000008000

First Shrink Step

7> := some abstraction of 71

Generic Algorithm Heuristic e Summar

0000000008000

First Shrink Step

7> := some abstraction of 71

Generic Algorithm Heuristic e Summar

0000000008000

First Shrink Step

7> := some abstraction of 71

current collection: {75, 7 ™{truek 8} }

Generic Algorithm

0000000000800

Second Merge Step

73 = 7'2 X Tﬂ-{truck B} -

MALR

current collection: {73}

Generic Algorithm

000000000000

Another Shrink Step?

m Normally we could stop now and use the distances in the final
abstract transition system as our heuristic function.

m However, if there were further state variables to integrate, we
would simplify further, e.g. leading to the following
abstraction (again with four states):

m We get a heuristic value of 3 for the initial state, better than
any PDB heuristic that is a proper abstraction.

m The example generalizes to more locations and trucks, even if
we stick to the size limit of 4 (after merging).

Generic Algorithm
0000000000000

Generic Algorithm Template

abs :={T™ |ve V}

while abs contains more than one abstract transition system:
select Ay, Ay from abs
shrink A3 and/or A until size(A;) - size(Az) < N
abs := abs \ {A1, A2} U{A; ® As}

return the remaining abstract transition system in abs

N: parameter bounding number of abstract states

Questions for practical implementation:
m Which abstractions to select? ~~ merging strategy
m How to shrink an abstraction? ~» shrinking strategy

m How to choose N7 ~~ usually: as high as memory allows

Heuristic Properties
©0000000000000

Heuristic Properties

Heuristic Properties
0®000000000000

Content of this Course: Merge & Shrink

—| Synchronized Product |

—| Merge & Shrink Algorithm |

[Merge & Shrink | ————{ _Heuristic Properties |
—{ Strategies |

—| Label Reduction |

Heuristic Properties

0000000000000

Heuristic Properties

m Each iteration of the algorithm corresponds to a
transformation of the collection abs of transition systems.

m The exact transformation depends on the specific
instantiation of the generic algorithm
(e.g. of the merging and the shrinking strategy).

m For analyzing the properties of the resulting heuristic,
we analyze properties of the individual transformations.

Heuristic Properties

000@0000000000

Collections of Transition Systems

Definition (Collection of Transition Systems)

A set X of transition systems is a collection of transition systems if
all 7 € X have the same set of labels and the same cost function.
The combined system is Tx := Q7cx T

Remark: Strictly speaking, the combined system is not well-defined
as the Cartesian product is neither commutative nor associative.

For our purpose it is sufficient that the results of all possible
combination orders are isomorphic.

Heuristic Properties
0000@000000000

Safe Transformations

Definition (Safe Transformation)
Let X and X’ be collections of transition systems with label sets L
and L’ and cost functions ¢ and ¢/, respectively.

The transformation from X to X’ is safe if there exist functions o
and A mapping the states and labels of Tx to the states and labels
of Txs such that

m c'(N0)) < c(f) forall £ € L,

m if (s, ¢, t) is a transition of Tx then (o(s), A(¢),o(t)) is a
transition of Txs, and

m if s is a goal state of Tx then o(s) is a goal state of Tx:.

Generic Algorithm

Heuristic Properties Summar
00000@00000000

Examples

X: Collection of transition systems

Replacement with Synchronized Product is Safe

Let 71,72 € X with 71 # 7. The transformation from X to
X' = (X\{T1, T2}) U{T1 ® T2} is safe with o = id and \ = id.

Abstraction is Safe

Let o« be an abstraction for 7; € X. The transformation from X to
X' = (X\{Ti}) U{T*} is safe with A = id and
o({st,...,Sn)) = (S1,---,Si—1,(Si), Sit1s---,Sn)-

| A\

N,

(Proofs omitted.)

Heuristic Properties
00000080000000

Heuristic Properties (1)

Let X and X' be collections of transition systems. If the
transformation from X to X' is safe with functions o and \ then
h(s) = h*TX/(U(S)) is a safe, goal-aware, admissible, and consistent
heuristic for Tx.

We prove goal-awareness and consistency, the other properties
follow from these two.

Goal-awareness: For all goal states s, of Tx, state o(s,) is a goal
state of 7x/ and therefore h(s,) = h7. (o(s.)) = 0.

Heuristic Properties Summary

0O000000@000000

Heuristic Properties (2)

Proof (continued).

Consistency: Let ¢ and ¢’ be the label cost functions of X and X/,
respectively. Consider state s of Tx and transition (s, ¢, t).
As Tx: has a transition (o(s), A(£),o(t)), it holds that

h(s) = b7, (a(s))
< J(A(0) + b, (o(1))
= c/(A(€)) + h(t)
< c(f) + h(t)

The second inequality holds due to the requirement on the label
costs. []

v

Heuristic Properties
00000000800000

Exact Transformations

Definition (Exact Transformation)
Let X and X’ be collections of transition systems with label sets L
and L’ and cost functions ¢ and ¢/, respectively.
The transformation from X to X’ is exact if there exist functions o
and A mapping the states and labels of Tx to the states and labels
of Tx/ such that
@ o and X satisfy the requirements of safe transformations,
Q if (s/,¢',t') is a transition of Tx: then (s, ¢, t) is a transition of
Tx for all s € 071(s'), t € 01(t') and some £ € A\~1(¢),
© if s’ is a goal state of Tx then all states s € 0~1(s’) are goal
states of 7x, and
Q c(¥) = (\¥)) for all £ € L.

~> no “new” transitions and goal states, no cheaper labels

Heuristic Properties
000000000e0000

Examples

Replacement with Synchronized Product is Exact

Let 71,72 € X with 71 # T,. The transformation from X to
X' = (X\{T1,T2}) U{T1 ® T2} is exact with 0 =id and A = id.

(Proof omitted.)

More examples will follow.

Heuristic Properties Summary

0000000000 e000

Heuristic Properties with Exact Transformations (1)

Theorem

Let X and X' be collections of transition systems. If the
transformation from X to X' is exact with functions o and)\ then

i, (s) = H_ (a(s)).

| A\

Proof.

As the transformation is safe, h7- (o(s)) is admissible for Tx and

therefore h7 (s) > hi}x/(a(s)).

For the other direction, we show that for every state s’ of Txs and
goal path 7’ for s’, there is for each s € 071(s’) a goal path in Tx
that has the same cost.

N,

Generic Algorithm Heuristic Properties Summary

0000000000 0e00

Heuristic Properties with Exact Transformations (2)

Proof (continued).

Proof via induction over the length of 7.

17/| = 0: If s’ is a goal state of Tx: then each s € 071(s’) is a goal
state of 7x and the empty path is a goal path for s in Tx.

7| =i+ 1: Let 7’ = (¢', ¢, t')7},, where 7}, is a goal path of
length i from t’. Then there is for each t € c~1(t') a goal path 7;
of the same cost in Tx. Furthermore, for all s € 0~1(s’) there is a
label £ € A=1(¢') such that Tx has a transition (s, ¢, t) with

t € o71(t'). The path m = (s, £, t)m; is a solution for s in T. As ¢
and ¢’ must have the same cost and 7; and 7}, have the same
cost, has the same cost as 7.]

y

Heuristic Properties

000000000000 e0

Sequences of Transformations

Theorem (Sequences of Transformations)

Let Xi,...,X, be collections of transition systems.
If fori € {1,...,n— 1} the transformation from X; to Xj;1 is safe
(exact) then the transformation from X to X, is safe (exact).

Proof idea: The composition of the o and A functions of each step
satisfy the required conditions.

Heuristic Properties

0000000000000

Consequences

abs == {T™ |ve V} =X

while abs contains more than one abstract transition system:
select Aj, Ap from abs
shrink A3 and/or A until size(A;) - size(Az) < N
abs := abs \ {A1, A2} U{A; ® As}

return the remaining abstract transition system in abs

m Initially T,ps is the concrete transition system.

m Each iteration performs a safe transformation of abs.
— the corresponding abstraction heuristic is safe, goal-aware,
consistent, and admissible.

m If shrinking is exact, the corresponding heuristic is perfect.

[Je]

Summary

Summary

oe

Summary

m Projections perfectly reflect a few state variables.
Merge-and-shrink abstractions are a generalization that can
reflect all state variables, but in a potentially lossy way.

m The merge steps combine two abstract transition systems by
replacing them with their synchronized product.

m The shrink steps make an abstract system smaller by
abstracting it further.

m As we only use safe transformations, the resulting heuristic is
always admissible.

m If we use only exact transformations, the resulting heuristic is
perfect.

	Generic Algorithm
	Heuristic Properties
	Summary

