

Planning and Optimization

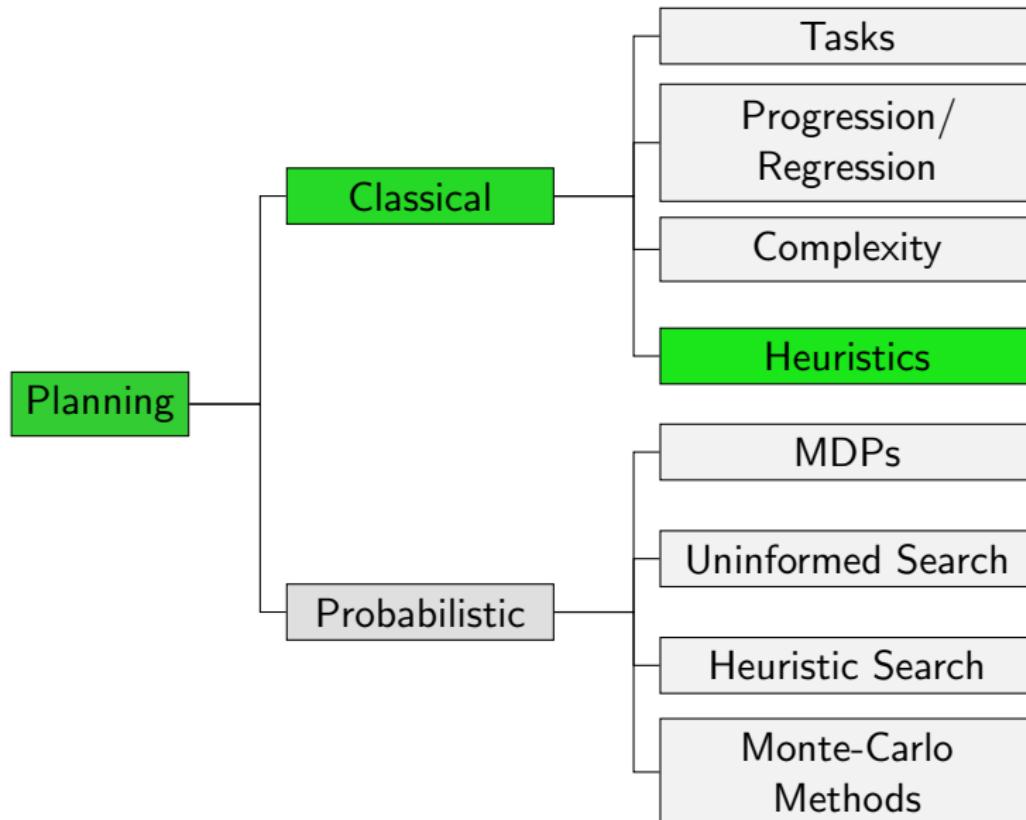
D6. Merge-and-Shrink Abstractions: Synchronized Product

Gabriele Röger and Thomas Keller

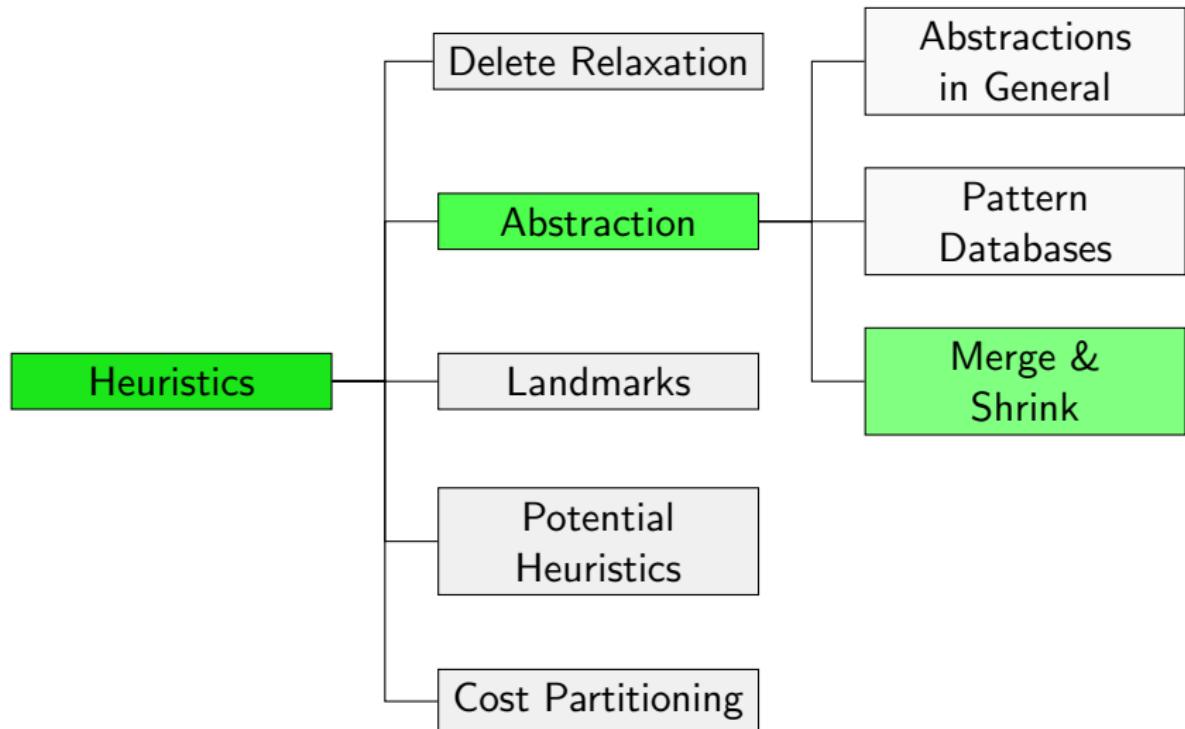
Universität Basel

November 5, 2018

Content of this Course



Content of this Course: Heuristics



Motivation
●oooooooooooo

Synchronized Product
oooooooooooo

Synchronized Products and Abstractions
oooooooooooooooooooo

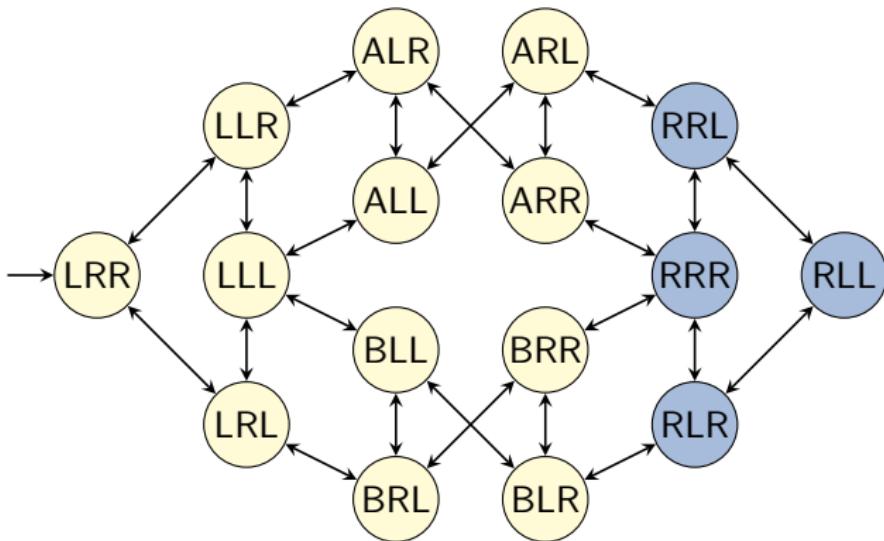
Summary
oo

Motivation

Beyond Pattern Databases

- Despite their popularity, pattern databases have some **fundamental limitations** (\rightsquigarrow example on next slides).
- For the rest of this week, we study a class of abstractions called **merge-and-shrink abstractions**.
- Merge-and-shrink abstractions can be seen as a **proper generalization** of pattern databases.
 - They can do everything that pattern databases can do (modulo polynomial extra effort).
 - They can do some things that pattern databases cannot.

Back to the Running Example

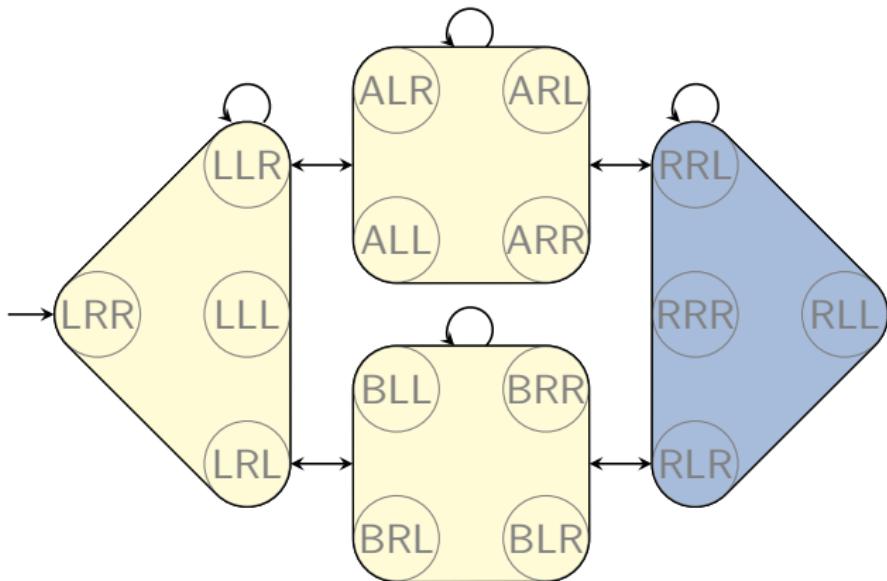


Logistics problem with one package, two trucks, two locations:

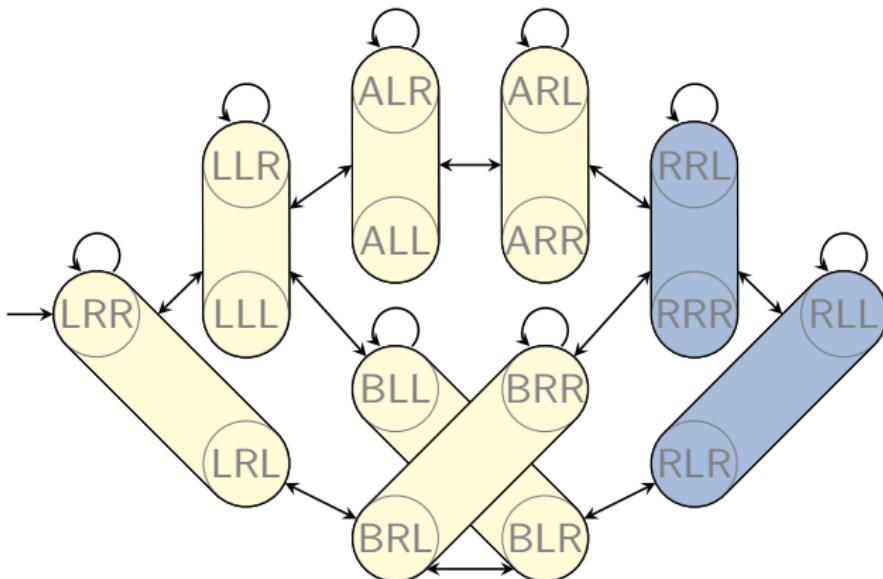
- state variable **package**: $\{L, R, A, B\}$
- state variable **truck A**: $\{L, R\}$
- state variable **truck B**: $\{L, R\}$

Example: Projection

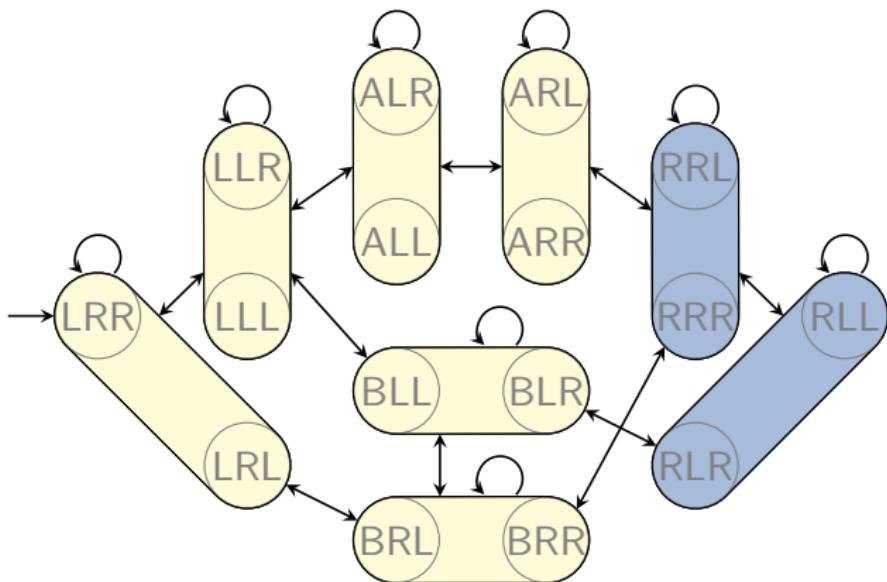
$\mathcal{T}^{\pi_{\{\text{package}\}}} :$



Example: Projection (2)

 $\mathcal{T}^{\pi_{\{\text{package, truck A}\}}}$:

Example: Projection (2)

 $\mathcal{T}^{\pi_{\{\text{package, truck A}\}}}$:

Limitations of Projections

How accurate is the PDB heuristic?

- consider **generalization of the example**:
 N trucks, M locations (fully connected), still one package
- consider **any** pattern that is a proper subset of variable set V .
- $h(s_0) \leq 2 \rightsquigarrow$ **no better** than atomic projection to **package**

These values cannot be improved by maximizing over several patterns or using additive patterns.

Merge-and-shrink abstractions can represent heuristics with $h(s_0) \geq 3$ for tasks of this kind of any size.

Time and space requirements are **polynomial in N and M** .

Merge-and-Shrink Abstractions: Main Idea

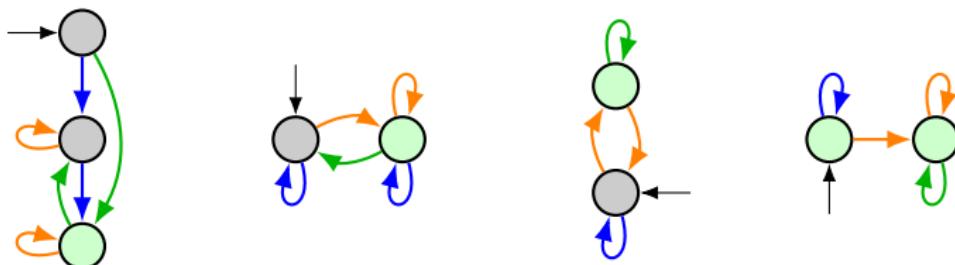
Main Idea of Merge-and-shrink Abstractions

(due to Dräger, Finkbeiner & Podelski, 2006):

Instead of **perfectly** reflecting **a few** state variables,
reflect **all** state variables, but in a **potentially lossy** way.

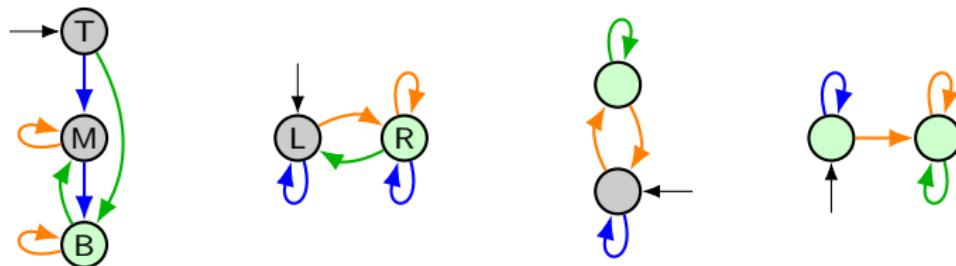
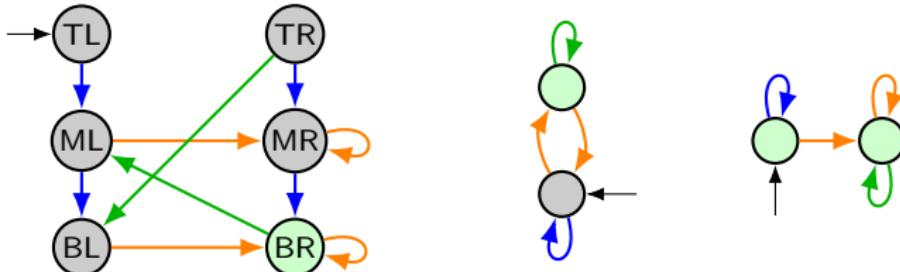
Merge-and-Shrink Abstractions: Idea

Start from projections to single state variables



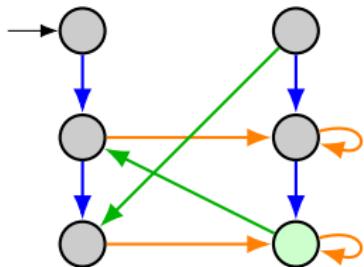
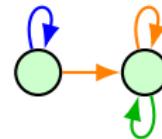
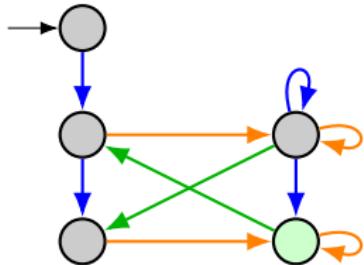
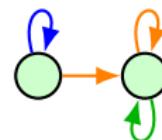
Merge-and-Shrink Abstractions: Idea

Successively replace two transition systems with their product.



Merge-and-Shrink Abstractions: Idea

If too large, replace a transition system with an abstract system.

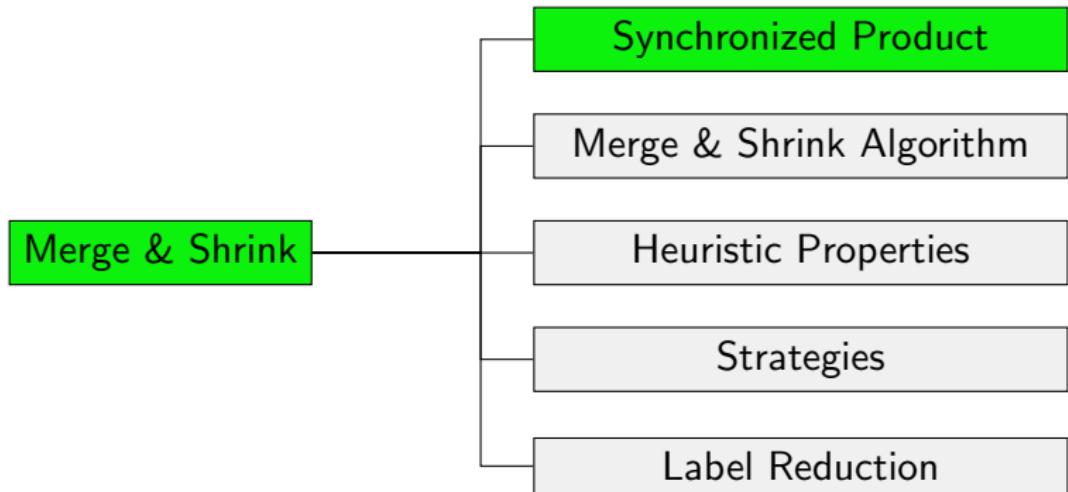


Merge-and-Shrink Abstractions: Idea

- Given two abstract transition systems, we can **merge** them into a new abstract **product transition system**.
- The product transition system **captures all information** of both transition systems and can be **better informed than either**.
- It can even be better informed than their **sum**.
- If merging with another abstract transition system exceeded memory limitations, we can **shrink** an intermediate result using **any abstraction** and then **continue the merging process**.

Synchronized Product

Content of this Course: Merge & Shrink

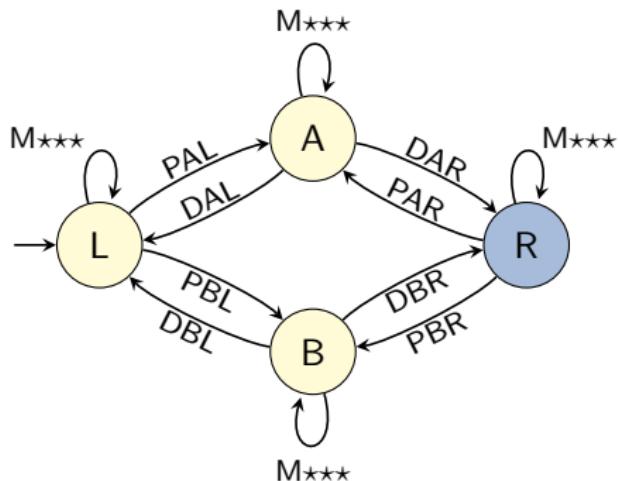


Running Example: Explanations

- **Atomic projections** – projections to a single state variable – play an important role for merge-and-shrink abstractions.
- Unlike previous chapters, **transition labels** are critically important for this topic.
- Hence we now look at the transition systems for atomic projections of our example task, including transition labels.
- We abbreviate operator names as in these examples:
 - **MALR**: move truck **A** from **left** to **right**
 - **DAR**: drop package from truck **A** at **right** location
 - **PBL**: pick up package with truck **B** at **left** location
- We abbreviate parallel arcs with **commas** and **wildcards (*)** in the labels as in these examples:
 - **PAL, DAL**: two parallel arcs labeled **PAL** and **DAL**
 - **MA★**: two parallel arcs labeled **MALR** and **MARL**

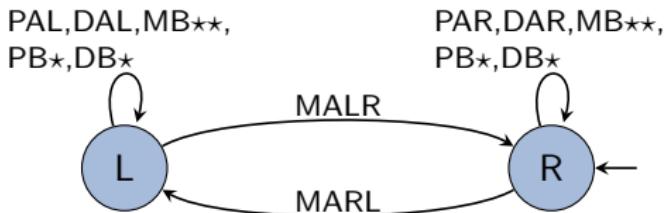
Running Example: Atomic Projection for Package

$\mathcal{T}^{\pi_{\{\text{package}\}}} :$



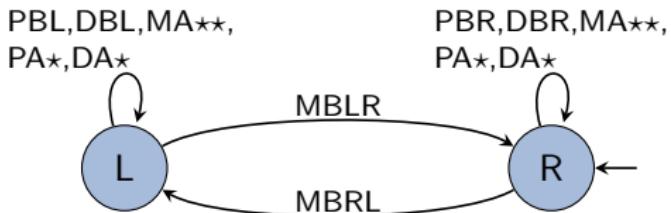
Running Example: Atomic Projection for Truck A

$\mathcal{T}^{\pi_{\{\text{truck A}\}}}:$



Running Example: Atomic Projection for Truck B

$\mathcal{T}^{\pi_{\{\text{truck B}\}}}:$



Synchronized Product of Transition Systems

Definition (Synchronized Product of Transition Systems)

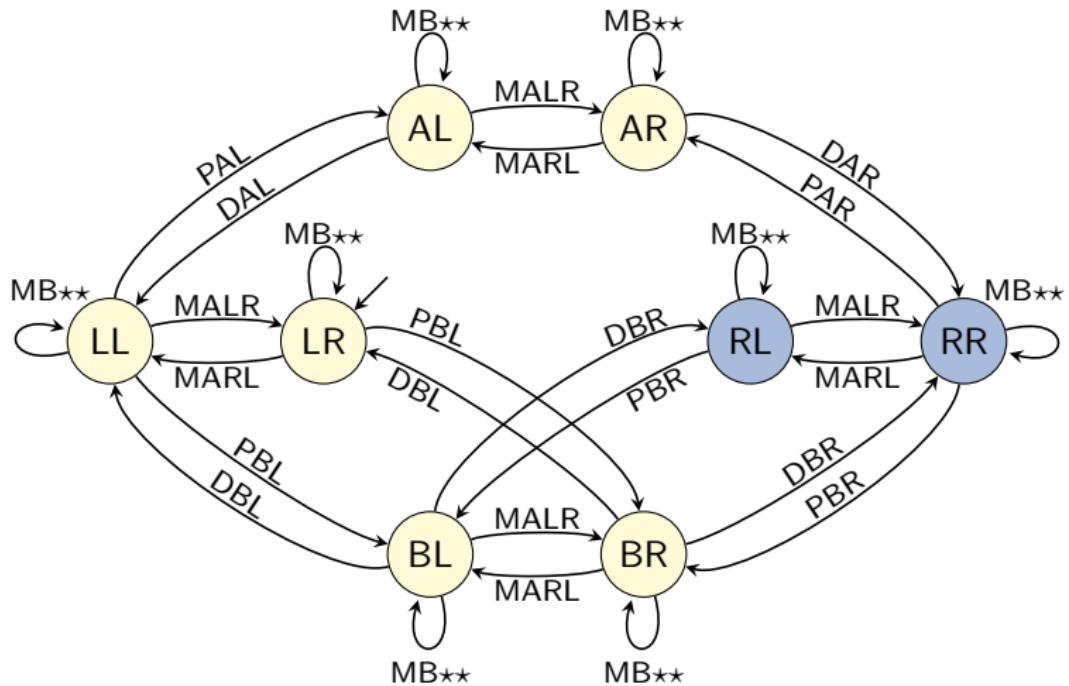
For $i \in \{1, 2\}$, let $\mathcal{T}_i = \langle S_i, L, c, T_i, s_{0i}, S_{\star i} \rangle$ be transition systems with identical label set and identical label cost function.

The **synchronized product** of \mathcal{T}_1 and \mathcal{T}_2 , in symbols $\mathcal{T}_1 \otimes \mathcal{T}_2$, is the transition system $\mathcal{T}_\otimes = \langle S_\otimes, L, c, T_\otimes, s_{0\otimes}, S_{\star\otimes} \rangle$ with

- $S_\otimes := S_1 \times S_2$
- $T_\otimes := \{ \langle \langle s_1, s_2 \rangle, l, \langle t_1, t_2 \rangle \rangle \mid \langle s_1, l, t_1 \rangle \in T_1 \text{ and } \langle s_2, l, t_2 \rangle \in T_2 \}$
- $s_{0\otimes} := \langle s_{01}, s_{02} \rangle$
- $S_{\star\otimes} := S_{\star 1} \times S_{\star 2}$

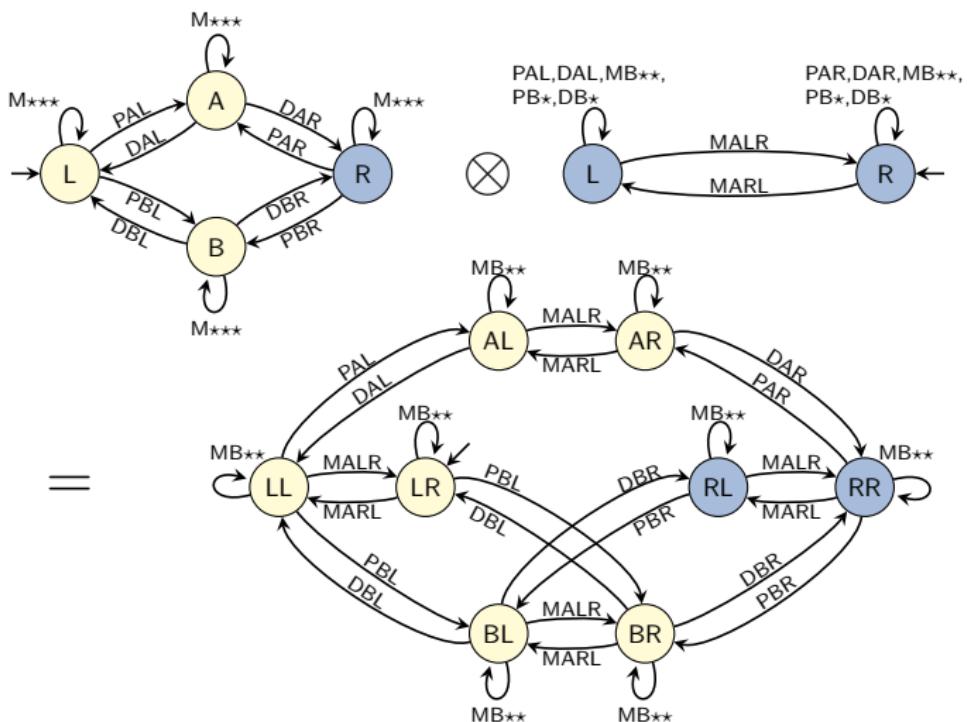
Example: Synchronized Product

$\mathcal{T}^{\pi\{\text{package}\}} \otimes \mathcal{T}^{\pi\{\text{truck A}\}} :$



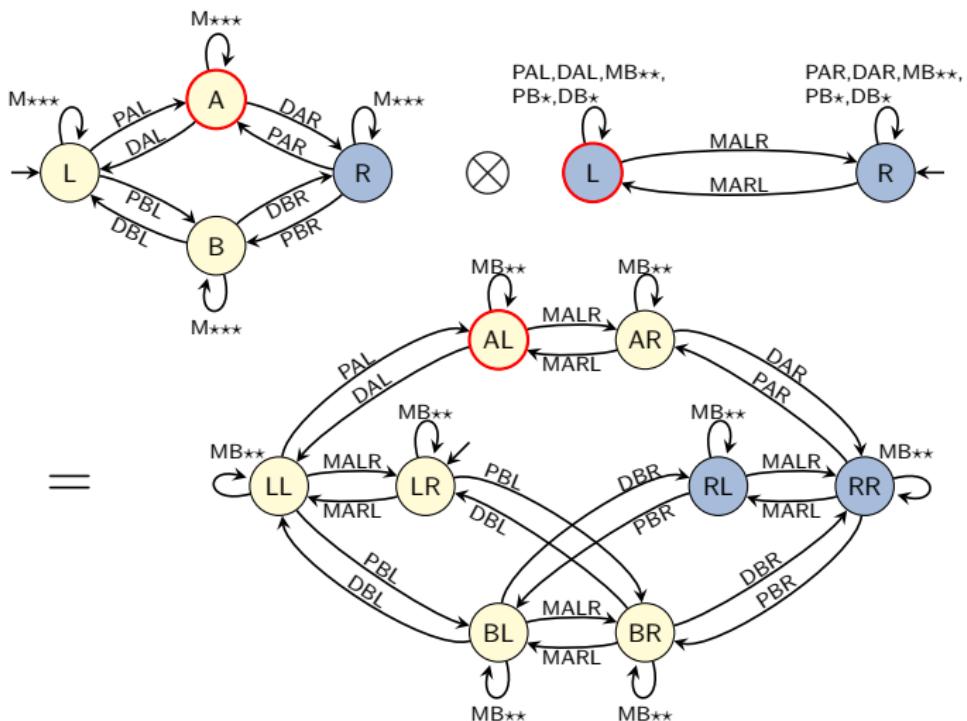
Example: Computation of Synchronized Product

$\mathcal{T}^{\pi_{\{\text{package}\}}} \otimes \mathcal{T}^{\pi_{\{\text{truck A}\}}} :$



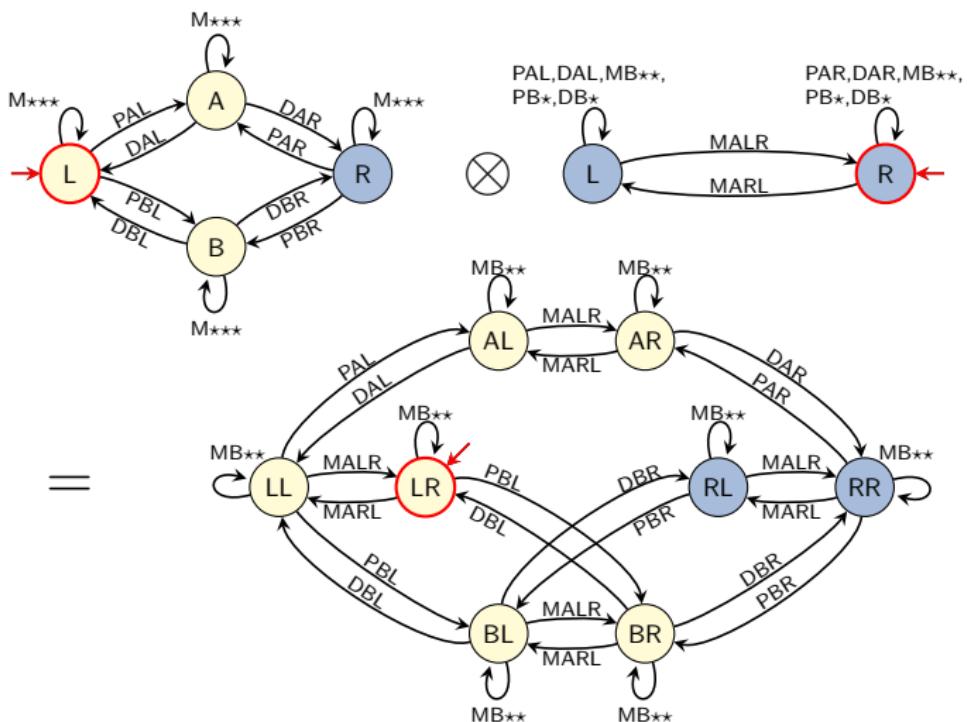
Example: Computation of Synchronized Product

$$\mathcal{T}^{\pi_{\{\text{package}\}}} \otimes \mathcal{T}^{\pi_{\{\text{truck A}\}}} : S_{\otimes} = S_1 \times S_2$$



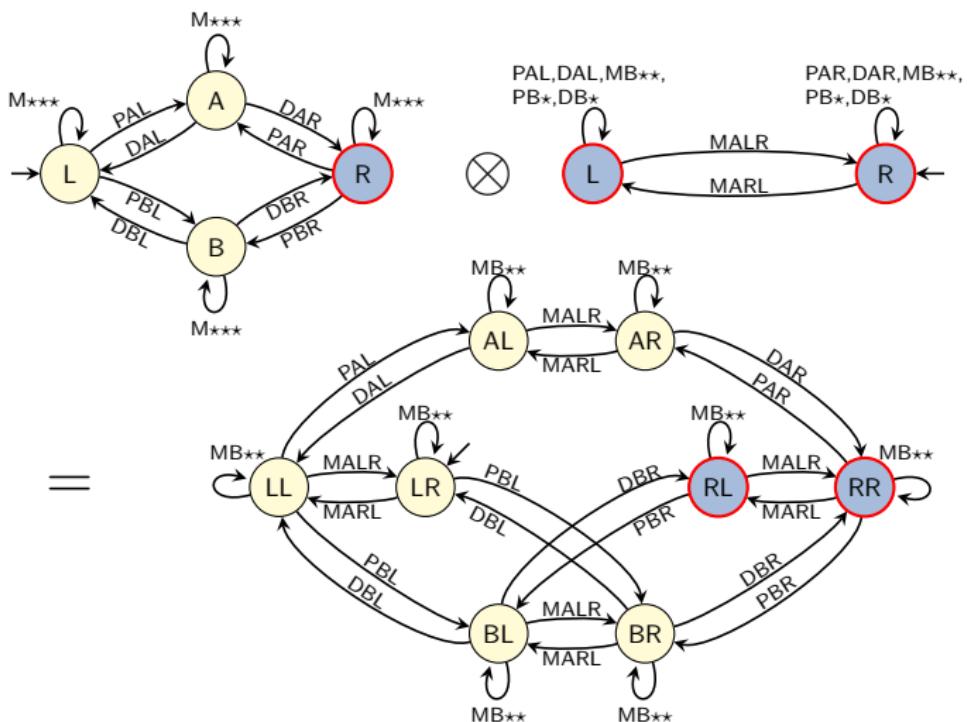
Example: Computation of Synchronized Product

$$\mathcal{T}^{\pi_{\{\text{package}\}}} \otimes \mathcal{T}^{\pi_{\{\text{truck A}\}}} : s_0 \otimes = \langle s_{01}, s_{02} \rangle$$



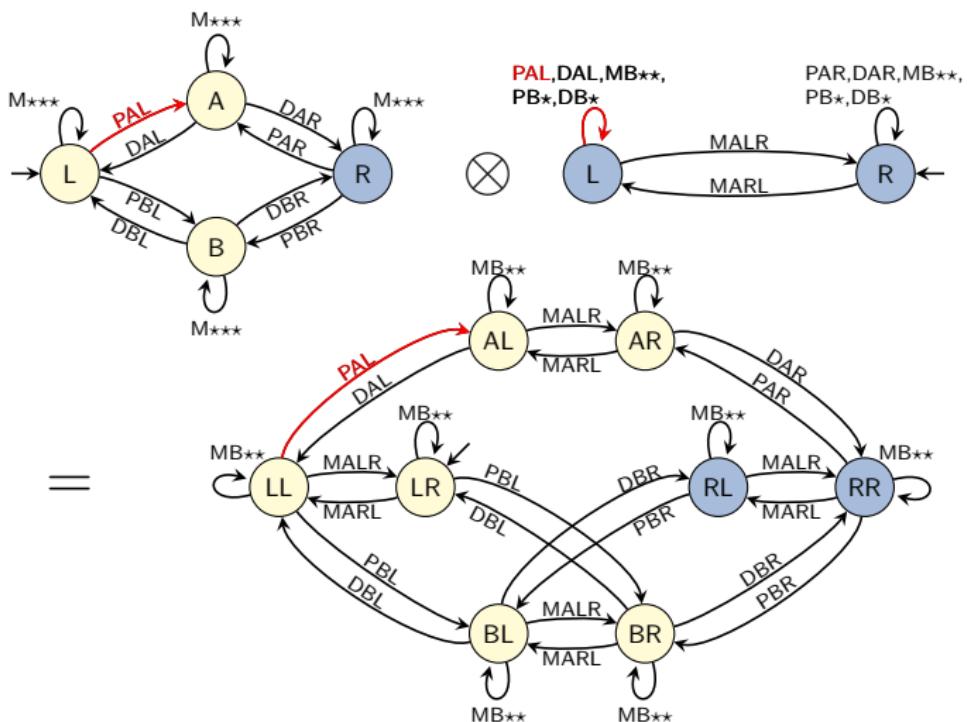
Example: Computation of Synchronized Product

$$\mathcal{T}^{\pi\{\text{package}\}} \otimes \mathcal{T}^{\pi\{\text{truck A}\}}: S_{\star\otimes} = S_{\star 1} \times S_{\star 2}$$



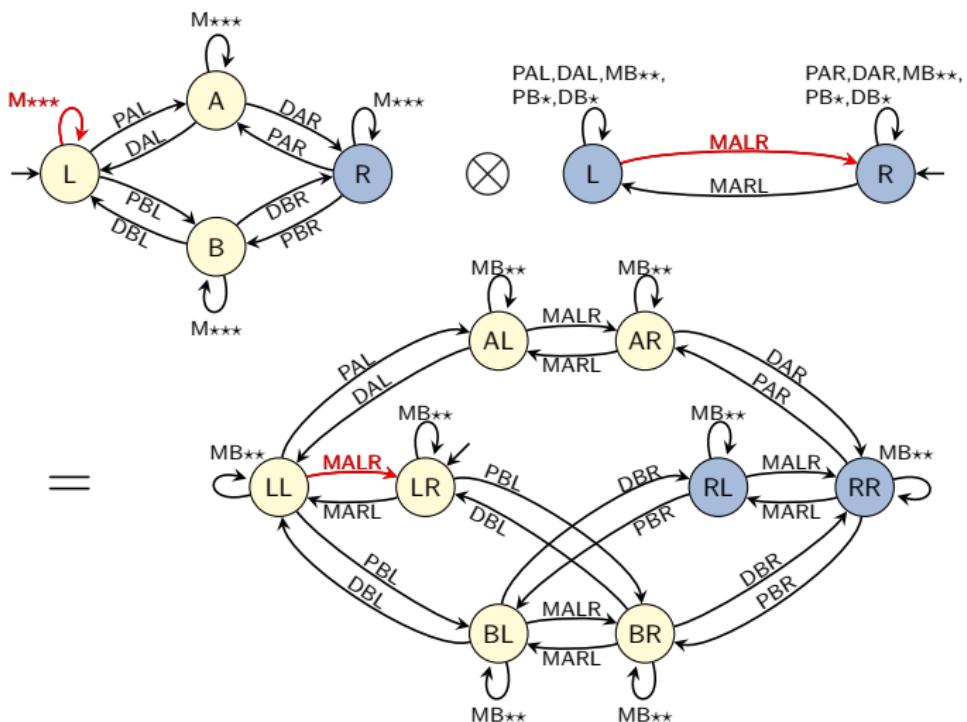
Example: Computation of Synchronized Product

$$\mathcal{T}^{\pi_{\{\text{package}\}}} \otimes \mathcal{T}^{\pi_{\{\text{truck A}\}}} : T_{\otimes} := \{ \langle \langle s_1, s_2 \rangle, l, \langle t_1, t_2 \rangle \rangle \mid \dots \}$$



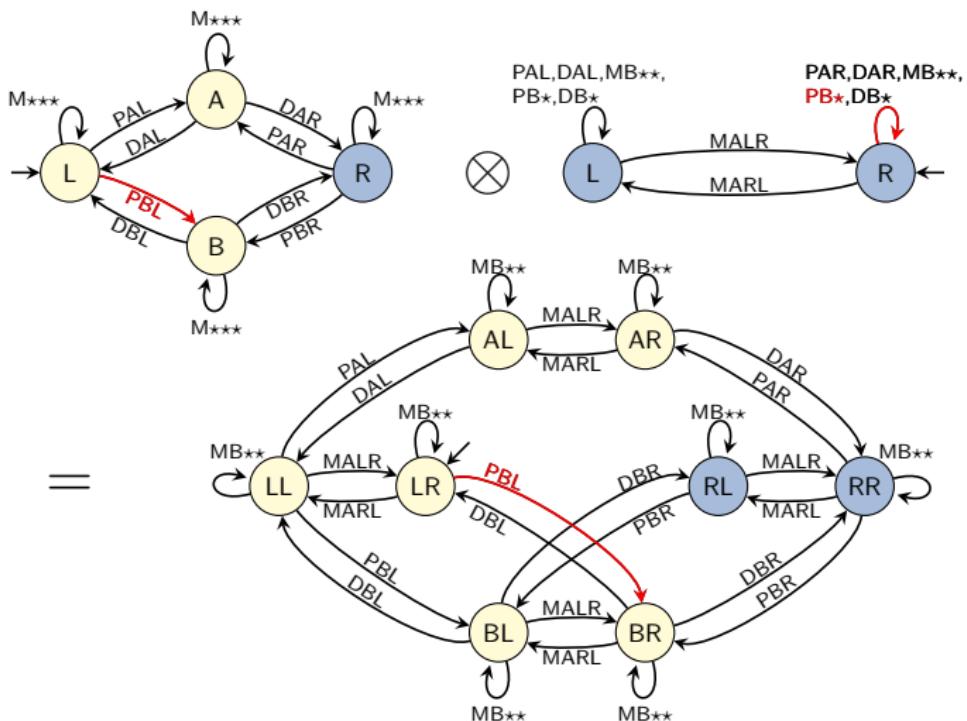
Example: Computation of Synchronized Product

$$\mathcal{T}^{\pi_{\{\text{package}\}}} \otimes \mathcal{T}^{\pi_{\{\text{truck A}\}}} : T_{\otimes} := \{ \langle \langle s_1, s_2 \rangle, l, \langle t_1, t_2 \rangle \rangle \mid \dots \}$$



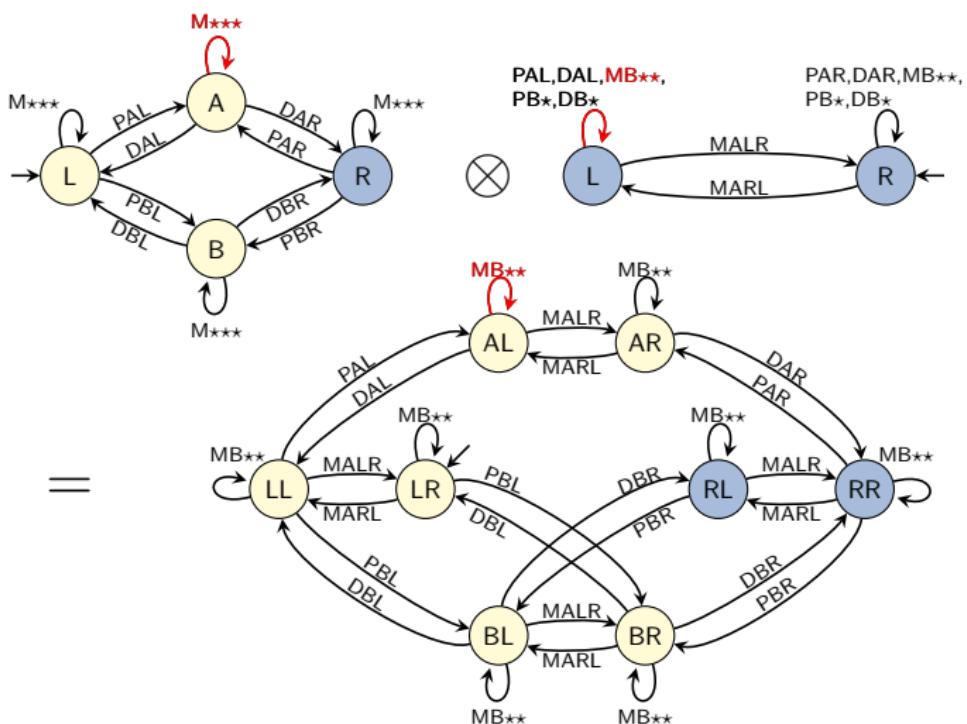
Example: Computation of Synchronized Product

$$\mathcal{T}^{\pi_{\{\text{package}\}}} \otimes \mathcal{T}^{\pi_{\{\text{truck A}\}}} : T_{\otimes} := \{ \langle \langle s_1, s_2 \rangle, l, \langle t_1, t_2 \rangle \rangle \mid \dots \}$$



Example: Computation of Synchronized Product

$$\mathcal{T}^{\pi_{\{\text{package}\}}} \otimes \mathcal{T}^{\pi_{\{\text{truck A}\}}} : \mathcal{T}_{\otimes} := \{ \langle \langle s_1, s_2 \rangle, l, \langle t_1, t_2 \rangle \rangle \mid \dots \}$$



Synchronized Products and Abstractions

Synchronized Product of Functions

Definition (Synchronized Product of Functions)

Let $\alpha_1 : S \rightarrow S_1$ and $\alpha_2 : S \rightarrow S_2$ be functions with identical domain.

The **synchronized product** of α_1 and α_2 , in symbols $\alpha_1 \otimes \alpha_2$, is the function $\alpha_{\otimes} : S \rightarrow S_1 \times S_2$ defined as $\alpha_{\otimes}(s) = \langle \alpha_1(s), \alpha_2(s) \rangle$.

Synchronized Product of Abstractions

Theorem

Let α_1 and α_2 be abstractions of transition system \mathcal{T} such that $\alpha_{\otimes} := \alpha_1 \otimes \alpha_2$ is surjective.

Then α_{\otimes} is an abstraction of \mathcal{T} and a refinement of α_1 and α_2 .

Proof.

Abstraction: suitable domain as α_1, α_2 are abstractions of \mathcal{T} ,
surjective by premise

Refinement: For $i \in \{1, 2\}$, $\alpha_i = \beta_i \circ \alpha_{\otimes}$ with $\beta_i(\langle x_1, x_2 \rangle) = x_i$. □

Preserving Abstractions

- It would be very nice if we could prove that if α_1 and α_2 are abstractions of \mathcal{T} then there is an abstraction of \mathcal{T} inducing $\mathcal{T}^{\alpha_1} \otimes \mathcal{T}^{\alpha_2}$.
- However, this is **not true** in general.
- It is **not even** true for SAS⁺ tasks.
- But there is an important **sufficient condition** for preserving the abstraction property.

Synchronized Products and Abstractions

Theorem (Synchronized Products and Abstractions)

Let Π be a *SAS⁺ planning task* with variable set V , and let V_1 and V_2 be disjoint subsets of V .

For $i \in \{1, 2\}$, let α_i be an abstraction of $\mathcal{T}(\Pi)$ such that α_i is a coarsening of π_{V_i} .

Then $\alpha_{\otimes} := \alpha_1 \otimes \alpha_2$ is surjective and $\mathcal{T}^{\alpha_1 \otimes \alpha_2} = \mathcal{T}^{\alpha_1} \otimes \mathcal{T}^{\alpha_2}$.

Synchronized Products and Abstractions

Proof.

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_\star \rangle$ and
for $i \in \{1, 2\}$ let $\mathcal{T}^{\alpha_i} = \langle S_i, L, c, T_i, s_{0i}, S_{\star i} \rangle$ (with $\alpha_i : S \rightarrow S_i$).

$\alpha_1 \otimes \alpha_2$ is surjective:

Since α_i is a coarsening of π_{V_i} there is a β_i such that $\alpha_i = \beta_i \circ \pi_{V_i}$
with $\beta_i : S|_{V_i} \rightarrow S_i$.

Consider an arbitrary $\langle s_1, s_2 \rangle \in S_1 \times S_2$.

As α_1, α_2 are surjective (because they are abstractions), there are
 $s'_1, s'_2 \in S$ such that $\alpha_i(s'_i) = s_i$.

As S consists of all valuations of V , also state s with $s|_{V_1} = s'_1|_{V_1}$
and $s|_{V \setminus V_1} = s'_2|_{V \setminus V_1}$ is in S .

Then $\alpha_i(s) = \beta_i \circ \pi_{V_i}(s) = \beta_i \circ \pi_{V_i}(s'_i) = \alpha_i(s'_i) = s_i$ and hence
 $\alpha_1 \otimes \alpha_2(s) = \langle \alpha_1(s), \alpha_2(s) \rangle = \langle s_1, s_2 \rangle$.

...

Synchronized Products and Abstractions

Proof (continued).

$$\mathcal{T}^{\alpha_1 \otimes \alpha_2} = \mathcal{T}^{\alpha_1} \otimes \mathcal{T}^{\alpha_2}:$$

$$S_{\alpha_1 \otimes \alpha_2} = S_1 \times S_2 = S_{\otimes}$$

$$s_{0\alpha_1 \otimes \alpha_2} = \alpha_1 \otimes \alpha_2(s_0) = \langle \alpha_1(s_0), \alpha_2(s_0) \rangle = \langle s_{01}, s_{02} \rangle = s_0 \otimes$$

$$S_{\star\alpha_1 \otimes \alpha_2} = \{ \alpha_1 \otimes \alpha_2(s) \mid s \in S_{\star} \}$$

$$= \{ \langle \alpha_1(s), \alpha_2(s) \rangle \mid s \in S_{\star} \}$$

$$\subseteq \{ \langle \alpha_1(s), \alpha_2(s') \rangle \mid s, s' \in S_{\star} \}$$

$$= \{ \langle s_1, s_2 \rangle \mid s_1 \in S_{\star 1}, s_2 \in S_{\star 2} \}$$

$$= S_{\star 1} \times S_{\star 2}$$

$$= S_{\star \otimes}$$

Synchronized Products and Abstractions

Proof (continued).

For equality, we also need to establish that

$$\{\langle \alpha_1(s), \alpha_2(s') \rangle \mid s, s' \in S_*\} \subseteq \{\langle \alpha_1(s), \alpha_2(s) \rangle \mid s \in S_*\}.$$

Consider arbitrary $s, s' \in S_*$.

Define s'' as $s''|_{V_1} = s|_{V_1}$ and $s''|_{V \setminus V_1} = s'|_{V \setminus V_1}$.

It holds that $\alpha_1(s'') = \alpha_1(s)$ and $\alpha_2(s'') = \alpha_2(s')$ because α_i is a coarsening of π_{V_i} .

Furthermore, $s'' \in S_*$: the goal formula γ of a SAS⁺ task is a conjunction of atoms $v = d$. If $v \in V_1$, then $s''(v) = d$ because $s \in S_*$, otherwise $s''(v) = d$ because $s' \in S_*$. Overall, $s'' \models \gamma$.

...

Synchronized Products and Abstractions

Proof (continued).

We still need to show the equality of the sets of transitions.

$$\begin{aligned} T_{\alpha_1 \otimes \alpha_2} &= \{ \langle \alpha_1 \otimes \alpha_2(s), o, \alpha_1 \otimes \alpha_2(t) \rangle \mid \langle s, o, t \rangle \in T \} \\ &= \{ \langle \langle \alpha_1(s), \alpha_2(s) \rangle, o, \langle \alpha_1(t), \alpha_2(t) \rangle \rangle \mid \langle s, o, t \rangle \in T \} \\ &\subseteq \{ \langle \langle \alpha_1(s), \alpha_2(s') \rangle, o, \langle \alpha_1(t), \alpha_2(t') \rangle \rangle \\ &\quad \mid \langle s, o, t \rangle, \langle s', o, t' \rangle \in T \} \\ &= \{ \langle \langle s_1, s_2 \rangle, o, \langle t_1, t_2 \rangle \rangle \mid \langle s_1, o, t_1 \rangle \in T_1, \langle s_2, o, t_2 \rangle \in T_2 \} \\ &= T_{\otimes} \end{aligned}$$

For equality, we need to show that for $\langle s, o, t \rangle, \langle s', o, t' \rangle \in T$ there is a transition $\langle s'', o, t'' \rangle \in T$ with $\alpha_1(s) = \alpha_1(s''), \alpha_1(t) = \alpha_1(t''), \alpha_2(s') = \alpha_2(s''), \alpha_2(t') = \alpha_2(t'')$.

...

Synchronized Products and Abstractions

Proof (continued).

Consider $s'' \in S$ with $s''|_{V_1} = s|_{V_1}$ and $s''|_{V \setminus V_1} = s'|_{V \setminus V_1}$ and $t'' \in S$ with $t''|_{V_1} = t|_{V_1}$ and $t''|_{V \setminus V_1} = t'|_{V \setminus V_1}$.

Since $pre(o)$ is a conjunction of atoms and $consist(eff(o)) \equiv \top$, o is applicable in s'' by an analogous argument as for the goal.

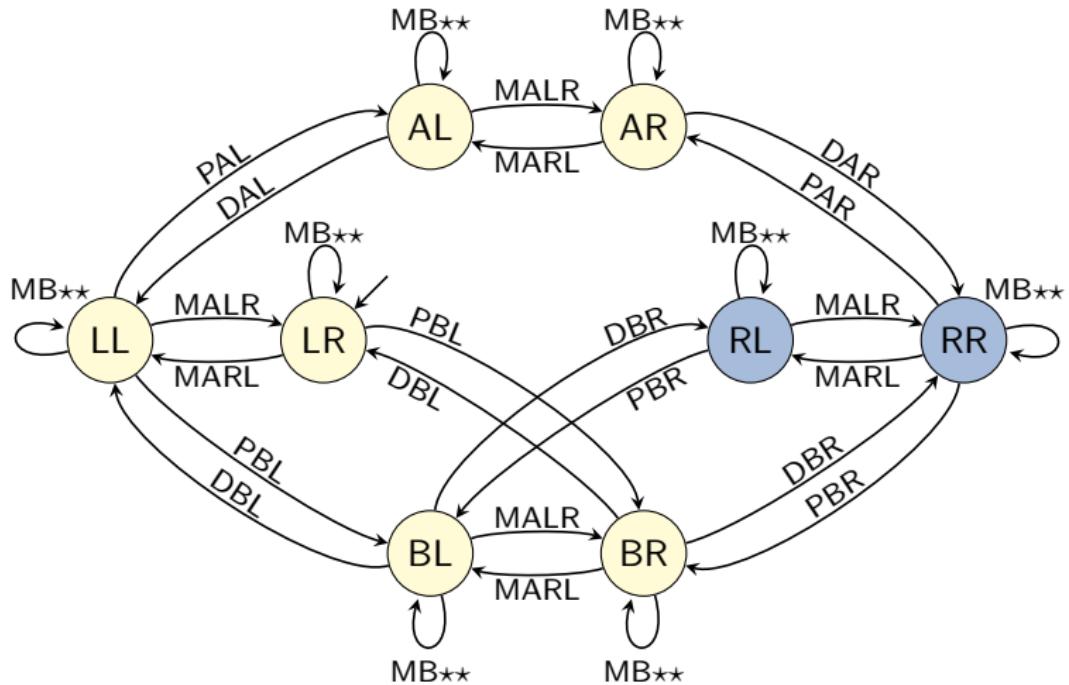
As $t = s\llbracket o \rrbracket$, we have $t|_{V \setminus vars(eff(o))} = s|_{V \setminus vars(eff(o))}$, analogously for t' and s' . Hence $t''|_{V \setminus vars(eff(o))} = s''|_{V \setminus vars(eff(o))}$.

As $eff(o)$ contains no conditional effect, it holds for all atomic effects $v := d$ in $eff(o)$ that $t(v) = t'(v) = d$ and hence $t''(v) = d$. Overall, $t'' = s''\llbracket o \rrbracket$ and $\langle s'', \ell, t'' \rangle \in T$.

The requirements on the abstractions are again satisfied by the construction of s'' and t'' and α_i being coarsenings of π_{V_i} . □

Example: Product for Disjoint Projections

$$\mathcal{T}^{\pi\{\text{package}\}} \otimes \mathcal{T}^{\pi\{\text{truck A}\}} \sim \mathcal{T}^{\pi\{\text{package, truck A}\}}:$$



Synchronized Products of Projections

Corollary (Synchronized Products of Projections)

Let Π be a SAS^+ planning task with variable set V , and let V_1 and V_2 be disjoint subsets of V . Then $\mathcal{T}^{\pi_{V_1}} \otimes \mathcal{T}^{\pi_{V_2}} \sim \mathcal{T}^{\pi_{V_1 \cup V_2}}$.

(Proof omitted.)

By repeated application of the corollary, we can recover **all pattern database heuristics** of a SAS^+ planning task from the abstract transition systems induced by atomic projections.

Recovering $\mathcal{T}(\Pi)$ from the Atomic Projections

Moreover, by computing the product of **all** atomic projections, we can recover the **identity abstraction** $\text{id} = \pi_V$.

Corollary (Recovering $\mathcal{T}(\Pi)$ from the Atomic Projections)

Let Π be a SAS^+ planning task with variable set V .

Then $\mathcal{T}(\Pi) \sim \bigotimes_{v \in V} \mathcal{T}^{\pi_{\{v\}}}$.

This is an important result because it shows that the transition systems induced by atomic projections **contain all information** of a SAS^+ task.

Motivation
oooooooooooo

Synchronized Product
oooooooooooo

Synchronized Products and Abstractions
oooooooooooooooooooo

Summary
●○

Summary

Summary

- The **synchronized product** of two transition systems captures “what we can do” in both systems “in parallel”.
- With suitable abstractions, the synchronized product of the induced transition systems is induced by the synchronized product of the abstractions.
- We can **recover** the original **transition system** from the abstract transition systems induced by the **atomic projections**.