

Planning and Optimization

D6. Merge-and-Shrink Abstractions: Synchronized Product

Gabriele Röger and Thomas Keller

Universität Basel

November 5, 2018

Planning and Optimization

November 5, 2018 — D6. Merge-and-Shrink Abstractions: Synchronized Product

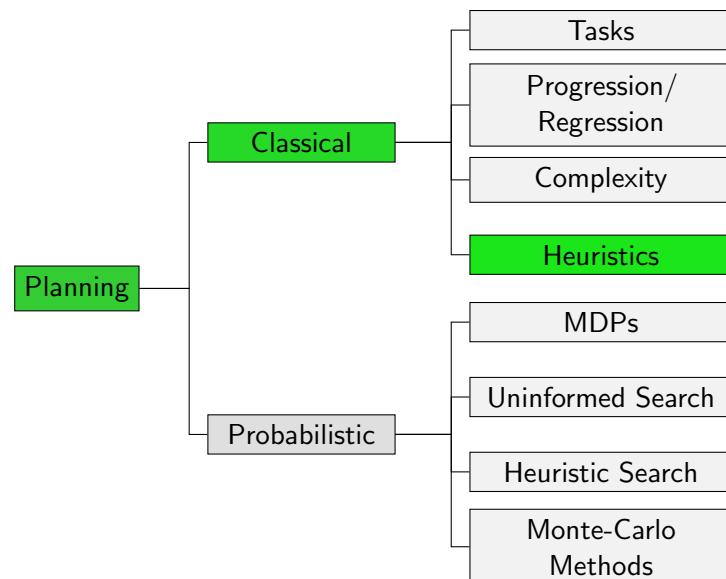
D6.1 Motivation

D6.2 Synchronized Product

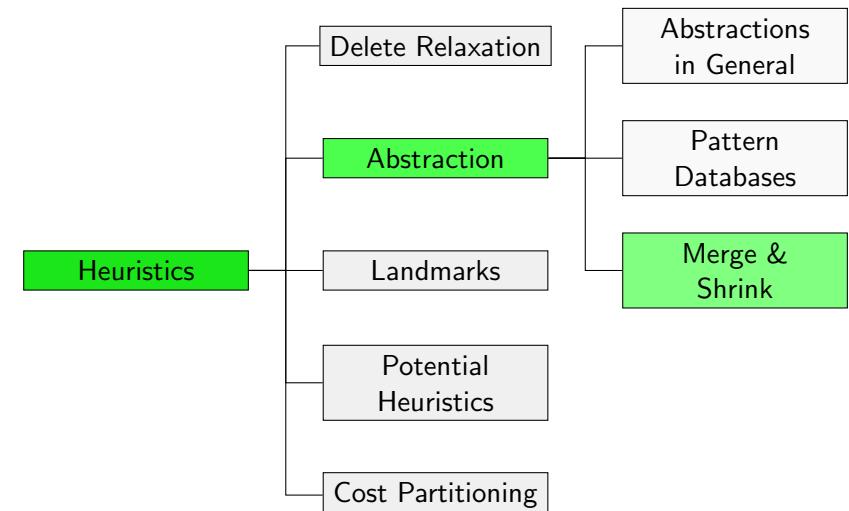
D6.3 Synchronized Products and Abstractions

D6.4 Summary

Content of this Course



Content of this Course: Heuristics

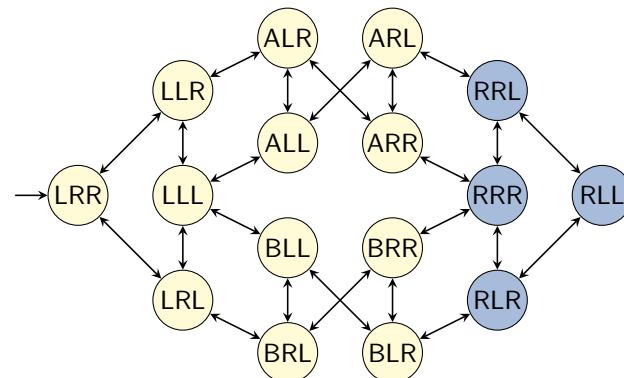


D6.1 Motivation

Beyond Pattern Databases

- ▶ Despite their popularity, pattern databases have some **fundamental limitations** (\rightsquigarrow example on next slides).
- ▶ For the rest of this week, we study a class of abstractions called **merge-and-shrink abstractions**.
- ▶ Merge-and-shrink abstractions can be seen as a **proper generalization** of pattern databases.
 - ▶ They can do everything that pattern databases can do (modulo polynomial extra effort).
 - ▶ They can do some things that pattern databases cannot.

Back to the Running Example

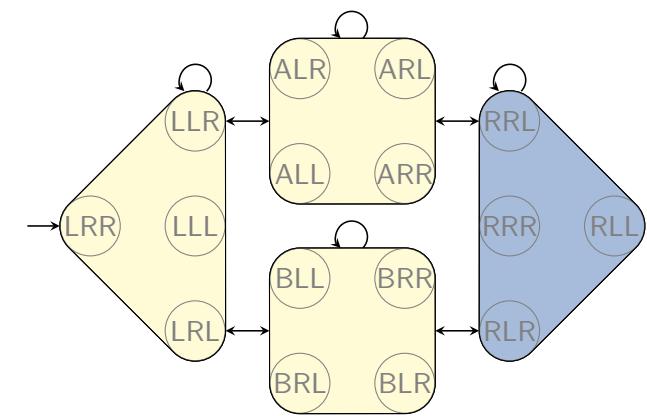


Logistics problem with one package, two trucks, two locations:

- ▶ state variable **package**: $\{L, R, A, B\}$
- ▶ state variable **truck A**: $\{L, R\}$
- ▶ state variable **truck B**: $\{L, R\}$

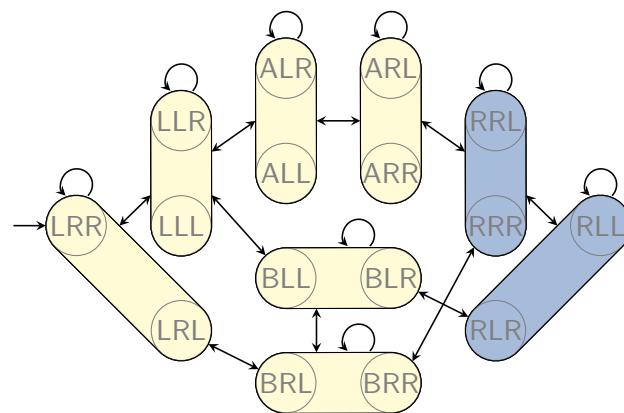
Example: Projection

$\mathcal{T}^{\pi\{\text{package}\}}$:



Example: Projection (2)

$\mathcal{T}^{\pi_{\{\text{package}, \text{truck A}\}}}$:



Limitations of Projections

How accurate is the PDB heuristic?

- ▶ consider **generalization of the example**: N trucks, M locations (fully connected), still one package
- ▶ consider **any** pattern that is a proper subset of variable set V .
- ▶ $h(s_0) \leq 2 \rightsquigarrow$ **no better** than atomic projection to **package**

These values cannot be improved by maximizing over several patterns or using additive patterns.

Merge-and-shrink abstractions can represent heuristics with $h(s_0) \geq 3$ for tasks of this kind of any size.

Time and space requirements are **polynomial** in N and M .

Merge-and-Shrink Abstractions: Main Idea

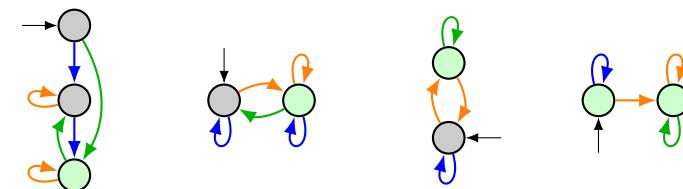
Main Idea of Merge-and-shrink Abstractions

(due to Dräger, Finkbeiner & Podelski, 2006):

Instead of **perfectly** reflecting a **few** state variables, reflect **all** state variables, but in a **potentially lossy** way.

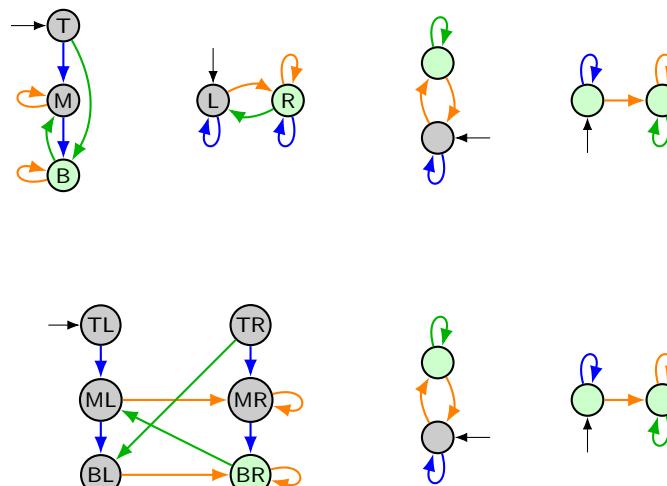
Merge-and-Shrink Abstractions: Idea

Start from projections to single state variables



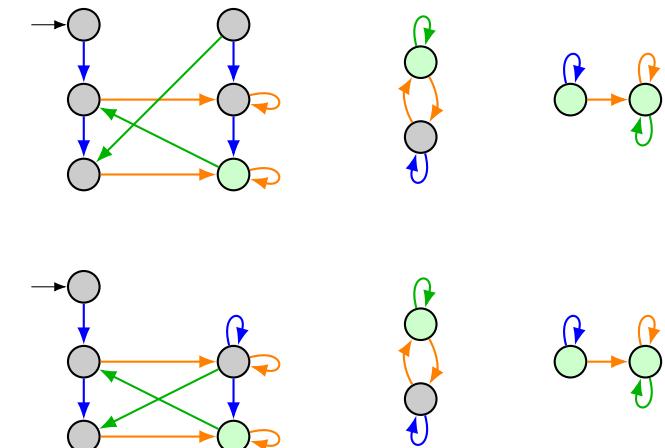
Merge-and-Shrink Abstractions: Idea

Successively replace two transition systems with their product.



Merge-and-Shrink Abstractions: Idea

If too large, replace a transition system with an abstract system.

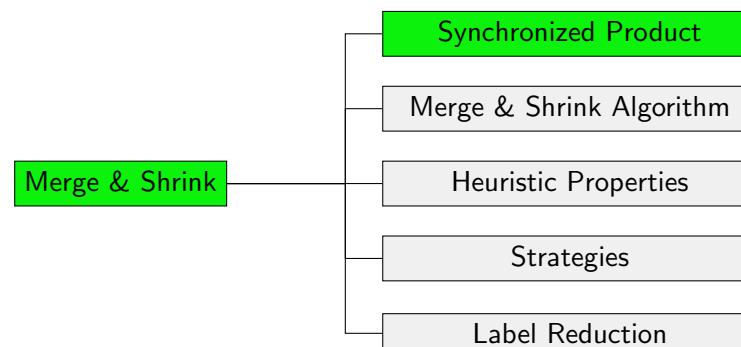


Merge-and-Shrink Abstractions: Idea

- Given two abstract transition systems, we can **merge** them into a new abstract **product transition system**.
- The product transition system **captures all information** of both transition systems and can be **better informed than either**.
- It can even be better informed than their **sum**.
- If merging with another abstract transition system exceeded memory limitations, we can **shrink** an intermediate result using **any abstraction** and then **continue the merging process**.

D6.2 Synchronized Product

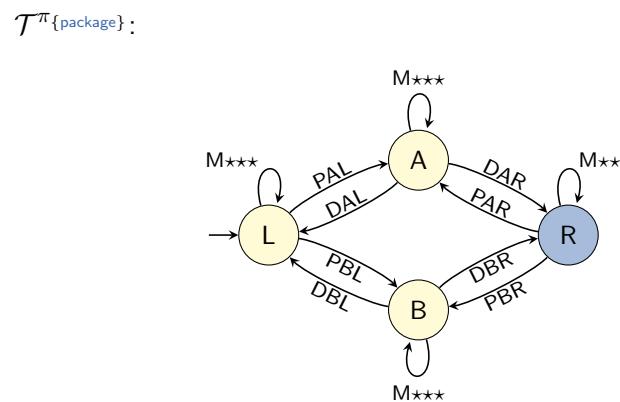
Content of this Course: Merge & Shrink



Running Example: Explanations

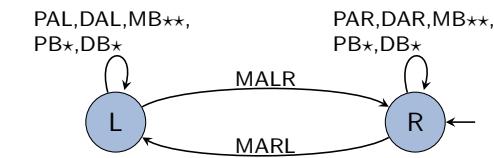
- ▶ **Atomic projections** – projections to a single state variable – play an important role for merge-and-shrink abstractions.
- ▶ Unlike previous chapters, **transition labels** are critically important for this topic.
- ▶ Hence we now look at the transition systems for atomic projections of our example task, including transition labels.
- ▶ We abbreviate operator names as in these examples:
 - ▶ **MALR**: move truck A from **left** to **right**
 - ▶ **DAR**: drop package from truck **A** at **right** location
 - ▶ **PBL**: pick up package with truck **B** at **left** location
- ▶ We abbreviate parallel arcs with **commas** and **wildcards** (*) in the labels as in these examples:
 - ▶ **PAL, DAL**: two parallel arcs labeled **PAL** and **DAL**
 - ▶ **MA****: two parallel arcs labeled **MALR** and **MARL**

Running Example: Atomic Projection for Package

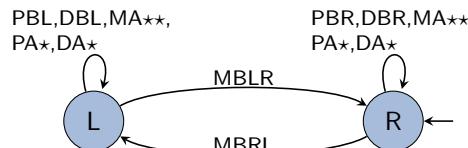


Running Example: Atomic Projection for Truck A

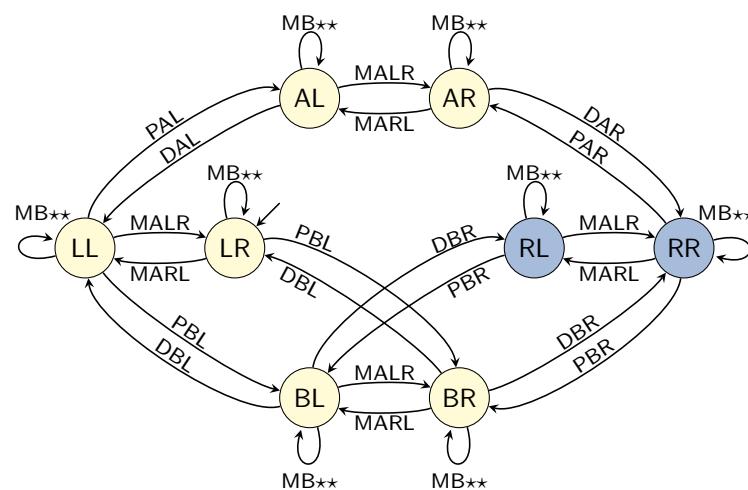
$\mathcal{T}^{\pi_{\{\text{truck A}\}}}:$



Running Example: Atomic Projection for Truck B

 $\mathcal{T}^{\pi_{\{\text{truck B}\}}}$:

Example: Synchronized Product

 $\mathcal{T}^{\pi_{\{\text{package}\}}} \otimes \mathcal{T}^{\pi_{\{\text{truck A}\}}}$:

Synchronized Product of Transition Systems

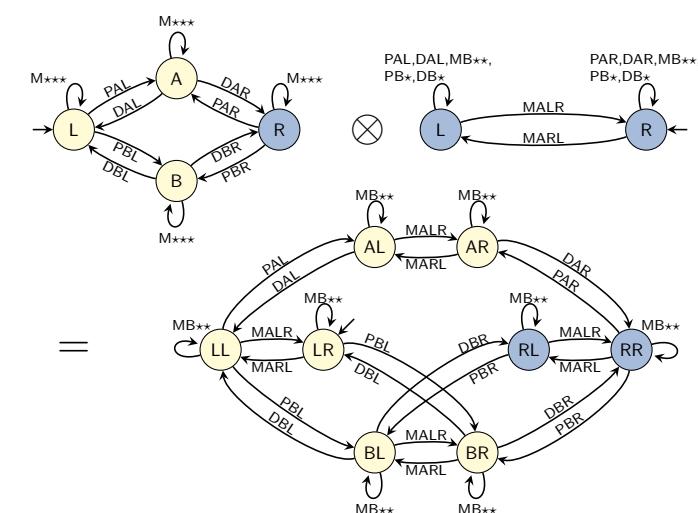
Definition (Synchronized Product of Transition Systems)

For $i \in \{1, 2\}$, let $\mathcal{T}_i = \langle S_i, L, c, T_i, s_{0i}, S_{*i} \rangle$ be transition systems with identical label set and identical label cost function.

The **synchronized product** of \mathcal{T}_1 and \mathcal{T}_2 , in symbols $\mathcal{T}_1 \otimes \mathcal{T}_2$, is the transition system $\mathcal{T}_\otimes = \langle S_\otimes, L, c, T_\otimes, s_{0\otimes}, S_{*\otimes} \rangle$ with

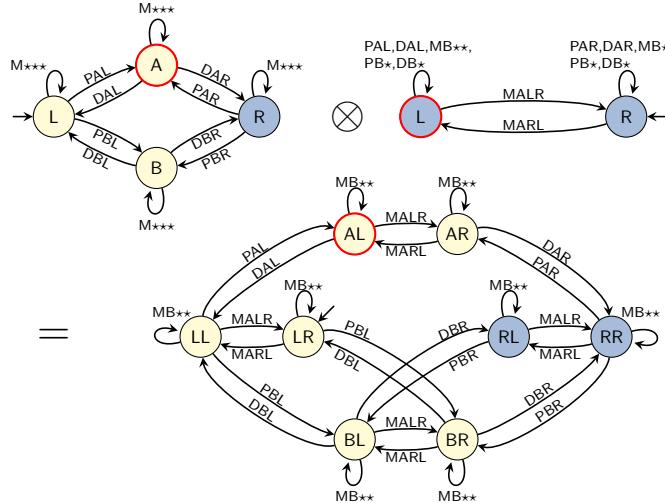
- ▶ $S_\otimes := S_1 \times S_2$
- ▶ $T_\otimes := \{ \langle \langle s_1, s_2 \rangle, l, \langle t_1, t_2 \rangle \rangle \mid \langle s_1, l, t_1 \rangle \in T_1 \text{ and } \langle s_2, l, t_2 \rangle \in T_2 \}$
- ▶ $s_{0\otimes} := \langle s_{01}, s_{02} \rangle$
- ▶ $S_{*\otimes} := S_{*1} \times S_{*2}$

Example: Computation of Synchronized Product

 $\mathcal{T}^{\pi_{\{\text{package}\}}} \otimes \mathcal{T}^{\pi_{\{\text{truck A}\}}}$:

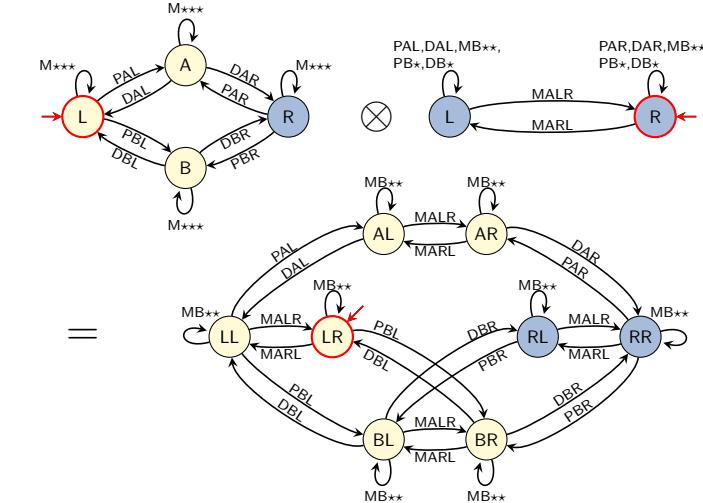
Example: Computation of Synchronized Product

$$\mathcal{T}^{\pi\{\text{package}\}} \otimes \mathcal{T}^{\pi\{\text{truck A}\}}: S_{\otimes} = S_1 \times S_2$$



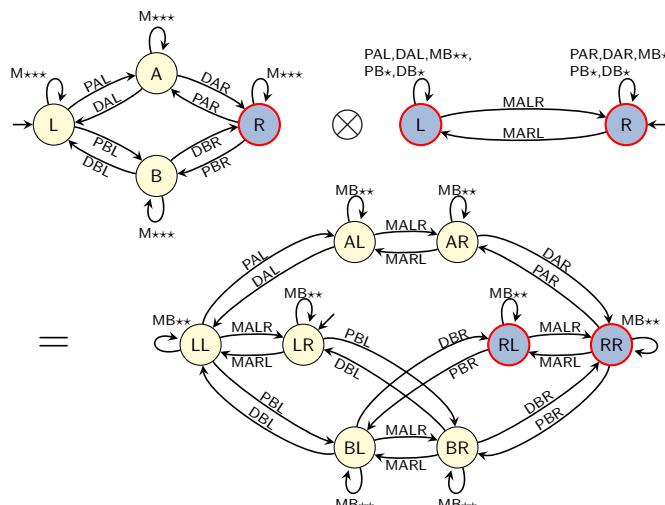
Example: Computation of Synchronized Product

$$\mathcal{T}^{\pi\{\text{package}\}} \otimes \mathcal{T}^{\pi\{\text{truck A}\}}: S_0 \otimes = \langle s_{01}, s_{02} \rangle$$



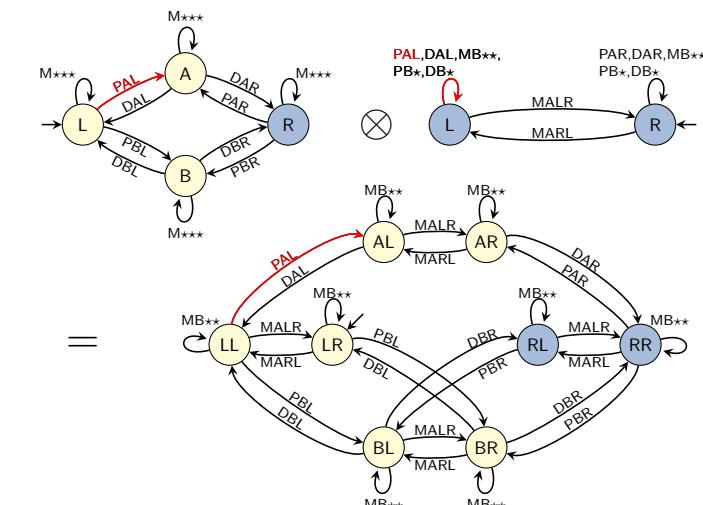
Example: Computation of Synchronized Product

$$\mathcal{T}^{\pi\{\text{package}\}} \otimes \mathcal{T}^{\pi\{\text{truck A}\}}: S_{\star\otimes} = S_{\star 1} \times S_{\star 2}$$



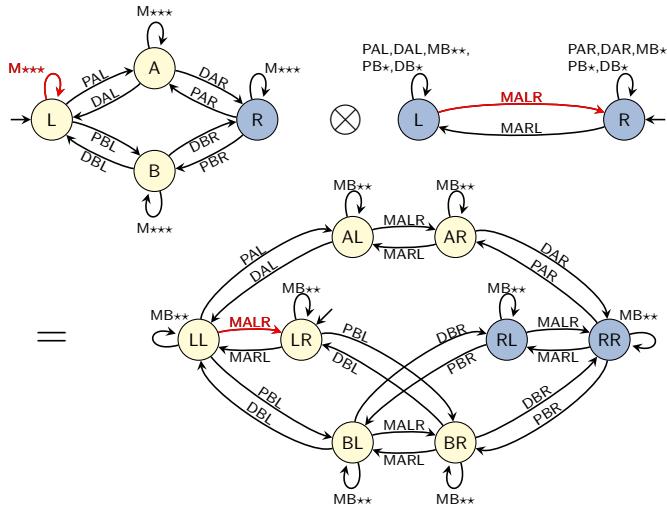
Example: Computation of Synchronized Product

$$\mathcal{T}^{\pi\{\text{package}\}} \otimes \mathcal{T}^{\pi\{\text{truck A}\}}: T_{\otimes} := \{ \langle \langle s_1, s_2 \rangle, I, \langle t_1, t_2 \rangle \rangle \mid \dots \}$$



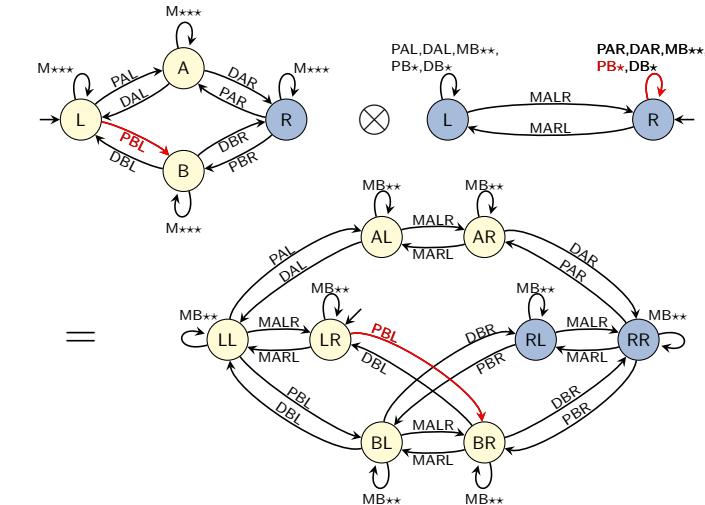
Example: Computation of Synchronized Product

$$\mathcal{T}^{\pi\{\text{package}\}} \otimes \mathcal{T}^{\pi\{\text{truck A}\}}: T_{\otimes} := \{\langle\langle s_1, s_2 \rangle, I, \langle t_1, t_2 \rangle \rangle \mid \dots\}$$



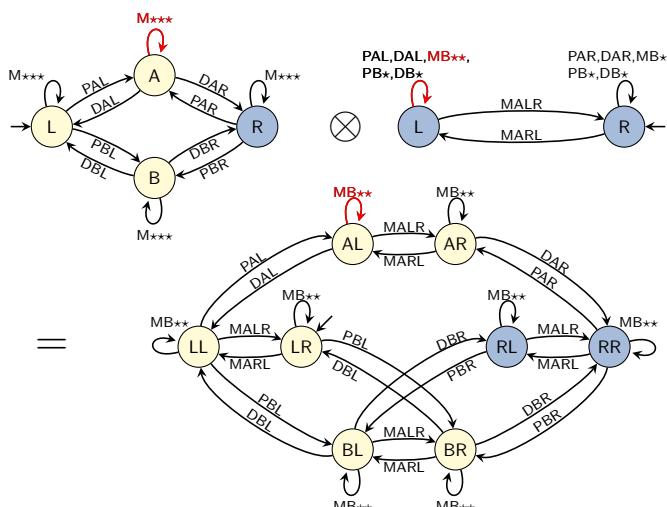
Example: Computation of Synchronized Product

$$\mathcal{T}^{\pi\{\text{package}\}} \otimes \mathcal{T}^{\pi\{\text{truck A}\}}: T_{\otimes} := \{\langle\langle s_1, s_2 \rangle, I, \langle t_1, t_2 \rangle \rangle \mid \dots\}$$



Example: Computation of Synchronized Product

$$\mathcal{T}^{\pi\{\text{package}\}} \otimes \mathcal{T}^{\pi\{\text{truck A}\}}: T_{\otimes} := \{\langle\langle s_1, s_2 \rangle, I, \langle t_1, t_2 \rangle \rangle \mid \dots\}$$



D6.3 Synchronized Products and Abstractions

Synchronized Product of Functions

Definition (Synchronized Product of Functions)

Let $\alpha_1 : S \rightarrow S_1$ and $\alpha_2 : S \rightarrow S_2$ be functions with identical domain.

The **synchronized product** of α_1 and α_2 , in symbols $\alpha_1 \otimes \alpha_2$, is the function $\alpha_{\otimes} : S \rightarrow S_1 \times S_2$ defined as $\alpha_{\otimes}(s) = \langle \alpha_1(s), \alpha_2(s) \rangle$.

Synchronized Product of Abstractions

Theorem

Let α_1 and α_2 be abstractions of transition system \mathcal{T} such that $\alpha_{\otimes} := \alpha_1 \otimes \alpha_2$ is surjective.

Then α_{\otimes} is an abstraction of \mathcal{T} and a refinement of α_1 and α_2 .

Proof.

Abstraction: suitable domain as α_1, α_2 are abstractions of \mathcal{T} , surjective by premise

Refinement: For $i \in \{1, 2\}$, $\alpha_i = \beta_i \circ \alpha_{\otimes}$ with $\beta_i(\langle x_1, x_2 \rangle) = x_i$. \square

Preserving Abstractions

- ▶ It would be very nice if we could prove that if α_1 and α_2 are abstractions of \mathcal{T} then there is an abstraction of \mathcal{T} inducing $\mathcal{T}^{\alpha_1} \otimes \mathcal{T}^{\alpha_2}$.
- ▶ However, this is **not true** in general.
- ▶ It is **not even** true for SAS⁺ tasks.
- ▶ But there is an important **sufficient condition** for preserving the abstraction property.

Synchronized Products and Abstractions

Theorem (Synchronized Products and Abstractions)

Let Π be a SAS⁺ planning task with variable set V , and let V_1 and V_2 be disjoint subsets of V .

For $i \in \{1, 2\}$, let α_i be an abstraction of $\mathcal{T}(\Pi)$ such that α_i is a **coarsening** of π_{V_i} .

Then $\alpha_{\otimes} := \alpha_1 \otimes \alpha_2$ is surjective and $\mathcal{T}^{\alpha_1 \otimes \alpha_2} = \mathcal{T}^{\alpha_1} \otimes \mathcal{T}^{\alpha_2}$.

Synchronized Products and Abstractions

Proof.

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ and

for $i \in \{1, 2\}$ let $\mathcal{T}^{\alpha_i} = \langle S_i, L, c, T_i, s_{0i}, S_{*i} \rangle$ (with $\alpha_i : S \rightarrow S_i$).

$\alpha_1 \otimes \alpha_2$ is surjective:

Since α_i is a coarsening of π_{V_i} , there is a β_i such that $\alpha_i = \beta_i \circ \pi_{V_i}$ with $\beta_i : S|_{V_i} \rightarrow S_i$.

Consider an arbitrary $\langle s_1, s_2 \rangle \in S_1 \times S_2$.

As α_1, α_2 are surjective (because they are abstractions), there are $s'_1, s'_2 \in S$ such that $\alpha_i(s'_i) = s_i$.

As S consists of all valuations of V , also state s with $s|_{V_1} = s'_1|_{V_1}$ and $s|_{V \setminus V_1} = s'_2|_{V \setminus V_1}$ is in S .

Then $\alpha_i(s) = \beta_i \circ \pi_{V_i}(s) = \beta_i \circ \pi_{V_i}(s'_i) = \alpha_i(s'_i) = s_i$ and hence $\alpha_1 \otimes \alpha_2(s) = \langle \alpha_1(s), \alpha_2(s) \rangle = \langle s_1, s_2 \rangle$. \dots

Synchronized Products and Abstractions

Proof (continued).

For equality, we also need to establish that

$\{\langle \alpha_1(s), \alpha_2(s') \rangle \mid s, s' \in S_*\} \subseteq \{\langle \alpha_1(s), \alpha_2(s) \rangle \mid s \in S_*\}$.

Consider arbitrary $s, s' \in S_*$.

Define s'' as $s''|_{V_1} = s|_{V_1}$ and $s''|_{V \setminus V_1} = s'|_{V \setminus V_1}$.

It holds that $\alpha_1(s'') = \alpha_1(s)$ and $\alpha_2(s'') = \alpha_2(s')$ because α_i is a coarsening of π_{V_i} .

Furthermore, $s'' \in S_*$: the goal formula γ of a SAS⁺ task is a conjunction of atoms $v = d$. If $v \in V_1$, then $s''(v) = d$ because $s \in S_*$, otherwise $s''(v) = d$ because $s' \in S_*$. Overall, $s'' \models \gamma$. \dots

Synchronized Products and Abstractions

Proof (continued).

$\mathcal{T}^{\alpha_1 \otimes \alpha_2} = \mathcal{T}^{\alpha_1} \otimes \mathcal{T}^{\alpha_2}$:

$$S_{\alpha_1 \otimes \alpha_2} = S_1 \times S_2 = S_\otimes$$

$$s_{0\alpha_1 \otimes \alpha_2} = \alpha_1 \otimes \alpha_2(s_0) = \langle \alpha_1(s_0), \alpha_2(s_0) \rangle = \langle s_{01}, s_{02} \rangle = s_0$$

$$S_{*\alpha_1 \otimes \alpha_2} = \{\alpha_1 \otimes \alpha_2(s) \mid s \in S_*\}$$

$$= \{\langle \alpha_1(s), \alpha_2(s) \rangle \mid s \in S_*\}$$

$$\subseteq \{\langle \alpha_1(s), \alpha_2(s') \rangle \mid s, s' \in S_*\}$$

$$= \{\langle s_1, s_2 \rangle \mid s_1 \in S_{*1}, s_2 \in S_{*2}\}$$

$$= S_{*1} \times S_{*2}$$

$$= S_\otimes$$

\dots

Synchronized Products and Abstractions

Proof (continued).

For equality, we also need to establish that

$\{\langle \alpha_1(s), \alpha_2(s') \rangle \mid s, s' \in S_*\} \subseteq \{\langle \alpha_1(s), \alpha_2(s) \rangle \mid s \in S_*\}$.

Consider arbitrary $s, s' \in S_*$.

Define s'' as $s''|_{V_1} = s|_{V_1}$ and $s''|_{V \setminus V_1} = s'|_{V \setminus V_1}$.

It holds that $\alpha_1(s'') = \alpha_1(s)$ and $\alpha_2(s'') = \alpha_2(s')$ because α_i is a coarsening of π_{V_i} .

Furthermore, $s'' \in S_*$: the goal formula γ of a SAS⁺ task is a conjunction of atoms $v = d$. If $v \in V_1$, then $s''(v) = d$ because $s \in S_*$, otherwise $s''(v) = d$ because $s' \in S_*$. Overall, $s'' \models \gamma$. \dots

Synchronized Products and Abstractions

Proof (continued).

We still need to show the equality of the sets of transitions.

$$\begin{aligned} T_{\alpha_1 \otimes \alpha_2} &= \{\langle \alpha_1 \otimes \alpha_2(s), o, \alpha_1 \otimes \alpha_2(t) \rangle \mid \langle s, o, t \rangle \in T\} \\ &= \{\langle \langle \alpha_1(s), \alpha_2(s) \rangle, o, \langle \alpha_1(t), \alpha_2(t) \rangle \rangle \mid \langle s, o, t \rangle \in T\} \\ &\subseteq \{\langle \langle \alpha_1(s), \alpha_2(s') \rangle, o, \langle \alpha_1(t), \alpha_2(t') \rangle \rangle \\ &\quad \mid \langle s, o, t \rangle, \langle s', o, t' \rangle \in T\} \\ &= \{\langle \langle s_1, s_2 \rangle, o, \langle t_1, t_2 \rangle \rangle \mid \langle s_1, o, t_1 \rangle \in T_1, \langle s_2, o, t_2 \rangle \in T_2\} \\ &= T_\otimes \end{aligned}$$

For equality, we need to show that for $\langle s, o, t \rangle, \langle s', o, t' \rangle \in T$ there is a transition $\langle s'', o, t'' \rangle \in T$ with $\alpha_1(s) = \alpha_1(s''), \alpha_1(t) = \alpha_1(t''), \alpha_2(s') = \alpha_2(s''), \alpha_2(t') = \alpha_2(t'')$. \dots

Synchronized Products and Abstractions

Proof (continued).

Consider $s'' \in S$ with $s''|_{V_1} = s|_{V_1}$ and $s''|_{V \setminus V_1} = s'|_{V \setminus V_1}$ and $t'' \in S$ with $t''|_{V_1} = t|_{V_1}$ and $t''|_{V \setminus V_1} = t'|_{V \setminus V_1}$.

Since $\text{pre}(o)$ is a conjunction of atoms and $\text{consist}(\text{eff}(o)) \equiv \top$, o is applicable in s'' by an analogous argument as for the goal.

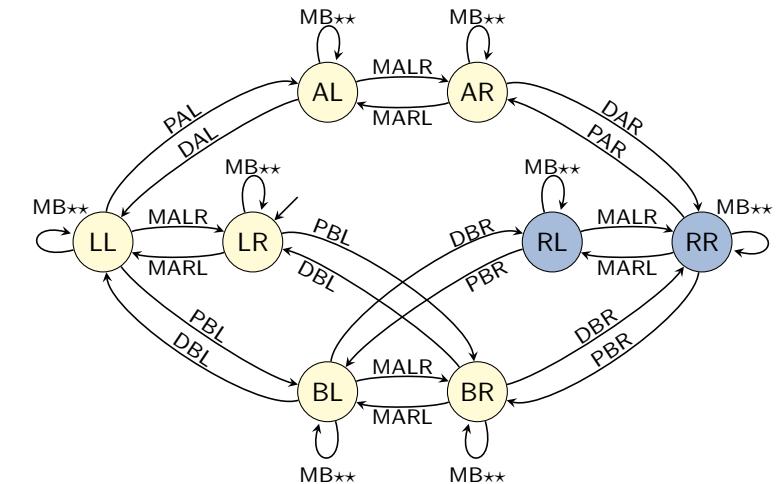
As $t = s[\![o]\!]$, we have $t|_{V \setminus \text{vars}(\text{eff}(o))} = s|_{V \setminus \text{vars}(\text{eff}(o))}$, analogously for t' and s' . Hence $t''|_{V \setminus \text{vars}(\text{eff}(o))} = s''|_{V \setminus \text{vars}(\text{eff}(o))}$.

As $\text{eff}(o)$ contains no conditional effect, it holds for all atomic effects $v := d$ in $\text{eff}(o)$ that $t(v) = t'(v) = d$ and hence $t''(v) = d$. Overall, $t'' = s''[\![o]\!]$ and $\langle s'', \ell, t'' \rangle \in T$.

The requirements on the abstractions are again satisfied by the construction of s'' and t'' and α_i being coarsenings of π_{V_i} . \square

Example: Product for Disjoint Projections

$$\mathcal{T}^{\pi\{\text{package}\}} \otimes \mathcal{T}^{\pi\{\text{truck A}\}} \sim \mathcal{T}^{\pi\{\text{package, truck A}\}}:$$



Synchronized Products of Projections

Corollary (Synchronized Products of Projections)

Let Π be a SAS⁺ planning task with variable set V , and let V_1 and V_2 be disjoint subsets of V .

Then $\mathcal{T}^{\pi_{V_1}} \otimes \mathcal{T}^{\pi_{V_2}} \sim \mathcal{T}^{\pi_{V_1 \cup V_2}}$.

(Proof omitted.)

By repeated application of the corollary, we can recover **all pattern database heuristics** of a SAS⁺ planning task from the abstract transition systems induced by atomic projections.

Recovering $\mathcal{T}(\Pi)$ from the Atomic Projections

Moreover, by computing the product of **all** atomic projections, we can recover the **identity abstraction** $\text{id} = \pi_V$.

Corollary (Recovering $\mathcal{T}(\Pi)$ from the Atomic Projections)

Let Π be a SAS⁺ planning task with variable set V .

Then $\mathcal{T}(\Pi) \sim \bigotimes_{v \in V} \mathcal{T}^{\pi_{\{v\}}}$.

This is an important result because it shows that the transition systems induced by atomic projections **contain all information** of a SAS⁺ task.

D6.4 Summary

Summary

- ▶ The **synchronized product** of two transition systems captures “what we can do” in both systems “in parallel”.
- ▶ With suitable abstractions, the synchronized product of the induced transition systems is induced by the synchronized product of the abstractions.
- ▶ We can **recover** the original **transition system** from the abstract transition systems induced by the **atomic projections**.