Planning and Optimization
D3. Pattern Databases: Introduction

Gabriele Roger and Thomas Keller

Universitat Basel

October 31, 2018

Content of this Course

—I Tasks |

Progression/

~| Complexity |

= MDPs |

—| Uninformed Search |

— Probabilistic ——

—I Heuristic Search |

Monte-Carlo
Methods

Content of this Course: Heuristics

Abstractions

—{ Delete Relaxation ‘] in General

Pattern
Databases

—{ Abstraction I

L Merge &

Potential
Heuristics

—{ Cost Partitioning

Projections
©000000000

Projections and Pattern Database
Heuristics

Projections

0O@00000000

Pattern Database Heuristics

m The most commonly used abstraction heuristics in search
and planning are pattern database (PDB) heuristics.

m PDB heuristics were originally introduced
for the 15-puzzle (Culberson & Schaeffer, 1996)
and for Rubik’s cube (Korf, 1997).

m The first use for domain-independent planning
is due to Edelkamp (2001).

m Since then, much research has focused on the theoretical
properties of pattern databases, how to use pattern databases
more effectively, how to find good patterns, etc.

m Pattern databases are a very active research area
both in planning and in (domain-specific) heuristic search.

m For many search problems, pattern databases are
the most effective admissible heuristics currently known.

Projections DBs: Precomputation enting PDBs: Lookup

00@0000000

Pattern Database Heuristics Informally

Pattern Databases: Informally

A pattern database heuristic for a planning task
is an abstraction heuristic where

m some aspects of the task are represented in the abstraction
with perfect precision, while

m all other aspects of the task are not represented at all.

This is achieved by projecting the task onto those variables that
describe the aspects that are represented.

Projections
000@000000

Logistics problem with one package, two trucks, two locations:
m state variable package: {L, R, A, B}
m state variable truck A: {L, R}
m state variable truck B: {L, R}

Projections
0000®00000

Example: Projection (1)

Abstraction induced by 7(,ackage}:

LLR

LRL

h{package} (LRR) -9

Example: Projection (2)

Abstraction induced by T{package,truck A}:

h{package,truck A}(LRR) -9

Example: Projection (2)

Abstraction induced by T{package,truck A}:

h{package,truck A}(LRR) -9

Projections DBs: Precomputation

[e]e]e]e]o]e] lolele)

Projections

Formally, pattern database heuristics are abstraction heuristics
induced by a particular class of abstractions called projections.

Definition (Projection)
Let I be an FDR planning task with variables V' and states S.
Let P C V, and let S’ be the set of states over P.

The projection mp : S — S’ is defined as 7p(s) := s|p,
where s|p(v) := s(v) for all v € P.

We call P the pattern of the projection 7p.

In other words, mp maps two states s; and s to the same
abstract state iff they agree on all variables in P.

Projections DBs: Precomputation enting PDBs: Lookup

0000000800

Pattern Database Heuristics

Abstraction heuristics based on projections are called
pattern database (PDB) heuristics.

Definition (Pattern Database Heuristic)

The abstraction heuristic induced by 7p is called
a pattern database heuristic or PDB heuristic.
We write h” as a shorthand for h™.

Why are they called pattern database heuristics?

m Heuristic values for PDB heuristics are traditionally stored in a
1-dimensional table (array) called a pattern database (PDB).
Hence the name “PDB heuristic”.

Projections
0000000080

Pattern Databases: Chapter Overview

In the following, we will discuss:

m how to implement PDB heuristics
~ this chapter

m how to effectively make use of multiple PDB heuristics
~ Chapter D4

m how to find good patterns for PDB heuristics
~> Chapter D5

Projections PDBs: Precomputation enting PDBs: Lookup

000000000 e

Pattern Database Implementation

Assume we are given a pattern P for a planning task [I1.
How do we implement h"?

@ In a precomputation step, we compute a graph representation
for the abstraction 7 ()™ and compute the abstract goal
distance for each abstract state.

@ During search, we use the precomputed abstract goal
distances in a lookup step.

Implementing PDBs: Precomputation

900000000

Implementing PDBs: Precomputation

Implementing PDBs: Precomputation enting PDBs: Lookup

O@0000000

Precomputation Step

Let 1 be a planning task and P a pattern.
Let 7=T7(N) and 7' =T7".
= We want to compute a graph representation of 7.
m 7' is defined through an abstraction of T .
m For example, each concrete transition induces
an abstract transition.
m However, we cannot compute 7" by iterating
over all transitions of T .
m This would take time Q(|| 7).
m This is prohibitively long (so long that we could solve the
task using uniform-cost search or similar techniques).
m Hence, we need a way of computing 7" in time
which is polynomial only in ||[1|| and || 77|

Implementing PDBs: Precomputation Implementing PDBs: Lookup

00@000000

Summary

Syntactic Projections

Definition (Syntactic Projection)
Let M= (V,I,0,v) be an FDR planning task,
and let P C V be a subset of its variables.
The syntactic projection I|p of Il to P is the FDR planning task
(P,1|p,{o|lp | 0 € O},7|p), where
m |p for formula ¢ is defined as the formula obtained from ¢
by replacing all atoms (v = d) with v ¢ P by T, and
m ol|p for operator o is defined by replacing all formulas ¢
occurring in the precondition or effect conditions of o with
©|p and all atomic effects (v := d) with v ¢ P with the
empty effect T.

Put simply, M|p throws away all information not pertaining
to variables in P.

Implementing PDBs: Precomputation
000@00000 00000

Trivially Inapplicable Operators

Definition (Trivially Inapplicable Operator)

An operator o of a SAS™ task is called trivially inapplicable if
m pre(o) contains the atoms (v = d) and (v = d’)
for some variable v and values d # d’, or
m eff(0) contains the effects (v := d) and (v := d’)
for some variable v and values d # d'.

Notes:

m Trivially inapplicable operators are never applicable
and can thus be safely omitted from the task.

m Trivially inapplicable operators can be detected in linear time.

Implementing PDBs: Precomputation hnM menting PDBs
0000®0000

Lookup Summar

Tr|V|aIIy Unsolvable SAS™ Tasks

Definition (Trivially Unsolvable)

A SAST task M= (V, I, 0,~) is called trivially unsolvable
if v contains the atoms (v = d) and (v = d’)
for some variable v and values d # d'.

Notes:
m Trivially unsolvable SAS™ tasks have no goal states
and are hence unsolvable.
m Trivially unsolvable SAS™ tasks can be detected in linear time.

Implementing PDBs: Precomputation
00000@000

Implementing PDBs: Lookup Summar

Equivalence Theorem for Syntactic Projections

Theorem (Syntactic Projections vs. Projections)

Let I be a SAS™ task that is not trivially unsolvable and has no
trivially inapplicable operators, and let P be a pattern for I1.
Then T(N|p) < T(M)™.

~~ exercises] l

Implementing PDBs: Precomputation
000000800

PDB Computation

Using the equivalence theorem, we can compute pattern databases
for (not trivially unsolvable) SAS™ tasks M and patterns P:

def compute-PDB(IM, P):
Remove trivially inapplicable operators from [1.
Compute M :=N|p.
Compute 77 := T(IT").
Perform a backward uniform-cost search from the goal

states of 7’ to compute all abstract goal distances.

PDB := a table containing all goal distances in T’
return PDB

The algorithm runs in polynomial time and space
in terms of ||| + |PDB.

Implementing PDBs: Precomputation
000000080

Generalizations of the Equivalence Theorem

m The restrictions to SAS™ tasks and to tasks
without trivially inapplicable operators are necessary.

m We can slightly generalize the result if we allow general
negation-free formulas, but still forbid conditional effects.

m In that case, the weighted graph of 7()7" is isomorphic
to a subgraph of the weighted graph of T(|p).

m This means that we can use 7(I1|p) to derive
an admissible estimate of h”.

m With conditional effects, not even this weaker result holds.

Implementing PDBs: Precomputation enting PDBs: Lookup

0O0000000e

Going Beyond SAS™ Tasks

m Most practical implementations of PDB heuristics
are limited to SAS™ tasks (or modest generalizations).

m One way to avoid the issues with general FDR tasks
is to convert them to equivalent SAS™ tasks.

m However, most direct conversions can exponentially increase
the task size in the worst case.

~~ We will only consider SAS™ tasks in the chapters
dealing with pattern databases.

Implementing PDBs: Lookup

[Jelele]e}

Implementing PDBs: Lookup

DBs: Precomputation Implementing PDBs: Lookup
0®000

Lookup Step: Overview

m During search, the PDB is the only piece of information
necessary to represent h”. (It is not necessary to store
the abstract transition system itself at this point.)

m Hence, the space requirements for PDBs during search
are linear in the number of abstract states S’
there is one table entry for each abstract state.

m During search, hP(s) is computed by mapping
wp(s) to a natural number in the range {0,...,|S’| — 1}
using a perfect hash function, then looking up
the table entry for this number.

Impl ing PDBs: Precomputation Implementing PDBs: Lookup
0000

Lookup Step: Algorithm

Let P = {v1,..., v} be the pattern.

m We assume that all variable domains are natural numbers
counted from 0, i.e., dom(v) = {0,1,..., |dom(v)| — 1}.

m Forall i € {1,..., k}, we precompute N; := HJ';} |dom(v;)|.

Then we can look up heuristic values as follows:

Computing Pattern Database Heuristics

def PDB-heuristic(s):
index := Zf'(:1 N;s(v;)
return PDB[index]

m This is a very fast operation: it can be performed in O(k).

m For comparison, most relaxation heuristics need time O(||1]])
per state.

Lookup Step: Example (1)

Abstraction induced by T{package,truck A}:

Imp\ menting PDBs: Precomputation Implementing PDBs: Lookup Summary

[e]e]ele] }

Lookup Step: Example (2)

m P ={v, v} with v; = package, vo = truck A.
m dom(v;) = {L,R,A,B} =~ {0,1,2,3}
m dom(w,) = {L,R} =~ {0,1}

= Ny =T, ldom(v))| = 1, No = [Tj_; [dom(v)| = 4
~ index(s) = 1- s(package) + 4 - s(truck A)

Pattern database:

abstract state | LL RL AL BL LR RR AR BR
index 0 1 2 3 4 5 6 7
value 2 0 2 1 2 0 1 1

[Je]

Summary

DBs: Precomputation enting PDBs: Lookup Summary

oe

Summary

m Pattern database (PDB) heuristics are abstraction heuristics
based on projection to a subset of variables.

m For SAS™ tasks, they can easily be implemented
via syntactic projections of the task representation.

m PDBs are lookup tables that store heuristic values,
indexed by perfect hash values for projected states.

m PDB values can be looked up very fast,
in time O(k) for a projection to k variables.

	Projections and Pattern Database Heuristics
	Implementing PDBs: Precomputation
	Implementing PDBs: Lookup
	Summary

