
Planning and Optimization
D3. Pattern Databases: Introduction
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Pattern Database Heuristics

I The most commonly used abstraction heuristics in search
and planning are pattern database (PDB) heuristics.

I PDB heuristics were originally introduced
for the 15-puzzle (Culberson & Schaeffer, 1996)
and for Rubik’s cube (Korf, 1997).

I The first use for domain-independent planning
is due to Edelkamp (2001).

I Since then, much research has focused on the theoretical
properties of pattern databases, how to use pattern databases
more effectively, how to find good patterns, etc.

I Pattern databases are a very active research area
both in planning and in (domain-specific) heuristic search.

I For many search problems, pattern databases are
the most effective admissible heuristics currently known.
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Pattern Database Heuristics Informally

Pattern Databases: Informally

A pattern database heuristic for a planning task
is an abstraction heuristic where

I some aspects of the task are represented in the abstraction
with perfect precision, while

I all other aspects of the task are not represented at all.

This is achieved by projecting the task onto those variables that
describe the aspects that are represented.
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Example: Transition System
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Logistics problem with one package, two trucks, two locations:

I state variable package: {L,R,A,B}
I state variable truck A: {L,R}
I state variable truck B: {L,R}
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Example: Projection (1)

Abstraction induced by π{package}:
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Example: Projection (2)

Abstraction induced by π{package,truck A}:
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G. Röger, T. Keller (Universität Basel) Planning and Optimization October 31, 2018 10 / 30

D3. Pattern Databases: Introduction Projections and Pattern Database Heuristics

Projections

Formally, pattern database heuristics are abstraction heuristics
induced by a particular class of abstractions called projections.

Definition (Projection)

Let Π be an FDR planning task with variables V and states S .
Let P ⊆ V , and let S ′ be the set of states over P.

The projection πP : S → S ′ is defined as πP(s) := s|P ,
where s|P(v) := s(v) for all v ∈ P.

We call P the pattern of the projection πP .

In other words, πP maps two states s1 and s2 to the same
abstract state iff they agree on all variables in P.
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Pattern Database Heuristics

Abstraction heuristics based on projections are called
pattern database (PDB) heuristics.

Definition (Pattern Database Heuristic)

The abstraction heuristic induced by πP is called
a pattern database heuristic or PDB heuristic.
We write hP as a shorthand for hπP .

Why are they called pattern database heuristics?

I Heuristic values for PDB heuristics are traditionally stored in a
1-dimensional table (array) called a pattern database (PDB).
Hence the name “PDB heuristic”.
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Pattern Databases: Chapter Overview

In the following, we will discuss:

I how to implement PDB heuristics
 this chapter

I how to effectively make use of multiple PDB heuristics
 Chapter D4

I how to find good patterns for PDB heuristics
 Chapter D5
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Pattern Database Implementation

Assume we are given a pattern P for a planning task Π.
How do we implement hP?

1 In a precomputation step, we compute a graph representation
for the abstraction T (Π)πP and compute the abstract goal
distance for each abstract state.

2 During search, we use the precomputed abstract goal
distances in a lookup step.
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D3.2 Implementing PDBs:
Precomputation
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Precomputation Step

Let Π be a planning task and P a pattern.
Let T = T (Π) and T ′ = T πP .

I We want to compute a graph representation of T ′.
I T ′ is defined through an abstraction of T .

I For example, each concrete transition induces
an abstract transition.

I However, we cannot compute T ′ by iterating
over all transitions of T .

I This would take time Ω(‖T ‖).
I This is prohibitively long (so long that we could solve the

task using uniform-cost search or similar techniques).

I Hence, we need a way of computing T ′ in time
which is polynomial only in ‖Π‖ and ‖T ′‖.
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Syntactic Projections

Definition (Syntactic Projection)

Let Π = 〈V , I ,O, γ〉 be an FDR planning task,
and let P ⊆ V be a subset of its variables.
The syntactic projection Π|P of Π to P is the FDR planning task
〈P, I |P , {o|P | o ∈ O}, γ|P〉, where

I ϕ|P for formula ϕ is defined as the formula obtained from ϕ
by replacing all atoms (v = d) with v /∈ P by >, and

I o|P for operator o is defined by replacing all formulas ϕ
occurring in the precondition or effect conditions of o with
ϕ|P and all atomic effects (v := d) with v /∈ P with the
empty effect >.

Put simply, Π|P throws away all information not pertaining
to variables in P.
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Trivially Inapplicable Operators

Definition (Trivially Inapplicable Operator)

An operator o of a SAS+ task is called trivially inapplicable if

I pre(o) contains the atoms (v = d) and (v = d ′)
for some variable v and values d 6= d ′, or

I eff(o) contains the effects (v := d) and (v := d ′)
for some variable v and values d 6= d ′.

Notes:

I Trivially inapplicable operators are never applicable
and can thus be safely omitted from the task.

I Trivially inapplicable operators can be detected in linear time.
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Trivially Unsolvable SAS+ Tasks

Definition (Trivially Unsolvable)

A SAS+ task Π = 〈V , I ,O, γ〉 is called trivially unsolvable
if γ contains the atoms (v = d) and (v = d ′)
for some variable v and values d 6= d ′.

Notes:

I Trivially unsolvable SAS+ tasks have no goal states
and are hence unsolvable.

I Trivially unsolvable SAS+ tasks can be detected in linear time.
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Equivalence Theorem for Syntactic Projections

Theorem (Syntactic Projections vs. Projections)

Let Π be a SAS+ task that is not trivially unsolvable and has no
trivially inapplicable operators, and let P be a pattern for Π.

Then T (Π|P)
G∼ T (Π)πP .

Proof.
 exercises
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PDB Computation

Using the equivalence theorem, we can compute pattern databases
for (not trivially unsolvable) SAS+ tasks Π and patterns P:

Computing Pattern Databases

def compute-PDB(Π, P):
Remove trivially inapplicable operators from Π.
Compute Π′ := Π|P .
Compute T ′ := T (Π′).
Perform a backward uniform-cost search from the goal

states of T ′ to compute all abstract goal distances.
PDB := a table containing all goal distances in T ′
return PDB

The algorithm runs in polynomial time and space
in terms of ‖Π‖+ |PDB|.
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Generalizations of the Equivalence Theorem

I The restrictions to SAS+ tasks and to tasks
without trivially inapplicable operators are necessary.

I We can slightly generalize the result if we allow general
negation-free formulas, but still forbid conditional effects.

I In that case, the weighted graph of T (Π)πP is isomorphic
to a subgraph of the weighted graph of T (Π|P).

I This means that we can use T (Π|P) to derive
an admissible estimate of hP .

I With conditional effects, not even this weaker result holds.
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Going Beyond SAS+ Tasks

I Most practical implementations of PDB heuristics
are limited to SAS+ tasks (or modest generalizations).

I One way to avoid the issues with general FDR tasks
is to convert them to equivalent SAS+ tasks.

I However, most direct conversions can exponentially increase
the task size in the worst case.

 We will only consider SAS+ tasks in the chapters

 

dealing with pattern databases.
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D3.3 Implementing PDBs: Lookup
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Lookup Step: Overview

I During search, the PDB is the only piece of information
necessary to represent hP . (It is not necessary to store
the abstract transition system itself at this point.)

I Hence, the space requirements for PDBs during search
are linear in the number of abstract states S ′:
there is one table entry for each abstract state.

I During search, hP(s) is computed by mapping
πP(s) to a natural number in the range {0, . . . , |S ′| − 1}
using a perfect hash function, then looking up
the table entry for this number.
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Lookup Step: Algorithm

Let P = {v1, . . . , vk} be the pattern.

I We assume that all variable domains are natural numbers
counted from 0, i.e., dom(v) = {0, 1, . . . , |dom(v)| − 1}.

I For all i ∈ {1, . . . , k}, we precompute Ni :=
∏i−1

j=1 |dom(vj)|.

Then we can look up heuristic values as follows:

Computing Pattern Database Heuristics

def PDB-heuristic(s):
index :=

∑k
i=1Ni s(vi )

return PDB[index ]

I This is a very fast operation: it can be performed in O(k).

I For comparison, most relaxation heuristics need time O(‖Π‖)
per state.
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Lookup Step: Example (1)

Abstraction induced by π{package,truck A}:
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Lookup Step: Example (2)

I P = {v1, v2} with v1 = package, v2 = truck A.

I dom(v1) = {L,R,A,B} ≈ {0, 1, 2, 3}
I dom(v2) = {L,R} ≈ {0, 1}

 N1 =
∏0

j=1 |dom(vj)| = 1, N2 =
∏1

j=1 |dom(vj)| = 4

 index(s) = 1 · s(package) + 4 · s(truck A)

Pattern database:
abstract state LL RL AL BL LR RR AR BR

index 0 1 2 3 4 5 6 7
value 2 0 2 1 2 0 1 1
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D3.4 Summary
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Summary

I Pattern database (PDB) heuristics are abstraction heuristics
based on projection to a subset of variables.

I For SAS+ tasks, they can easily be implemented
via syntactic projections of the task representation.

I PDBs are lookup tables that store heuristic values,
indexed by perfect hash values for projected states.

I PDB values can be looked up very fast,
in time O(k) for a projection to k variables.
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