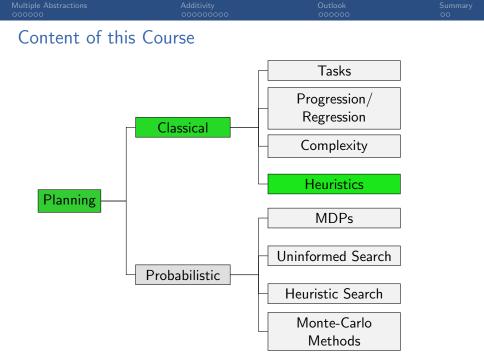
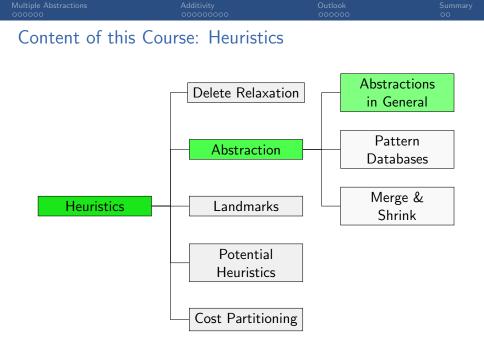
Planning and Optimization D2. Abstractions: Additive Abstractions

Gabriele Röger and Thomas Keller

Universität Basel

October 29, 2018





Multiple Abstractions	Outlook	Summary
00000		00

Multiple Abstractions

Multiple Abstractions		Outlook	
00000	00000000	000000	00

Multiple Abstractions

- One important practical question is how to come up with a suitable abstraction mapping α.
- Indeed, there is usually a huge number of possibilities, and it is important to pick good abstractions (i.e., ones that lead to informative heuristics).
- However, it is generally not necessary to commit to a single abstraction.

Combining Multiple Abstractions

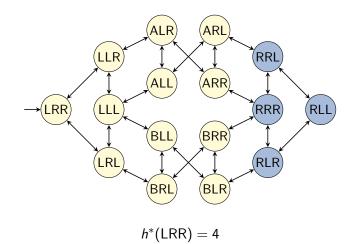
Maximizing several abstractions:

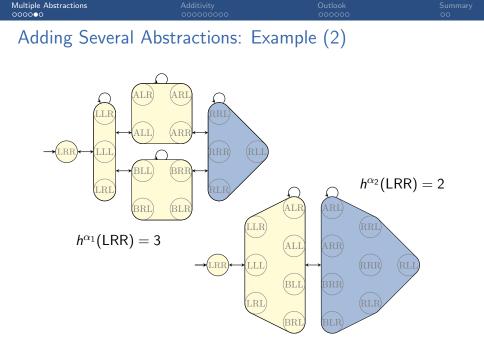
- Each abstraction mapping gives rise to an admissible heuristic.
- By computing the maximum of several admissible heuristics, we obtain another admissible heuristic which dominates the component heuristics.
- Thus, we can always compute several abstractions and maximize over the individual abstract goal distances.

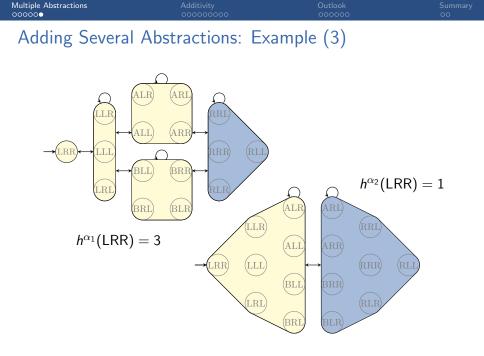
Adding several abstractions:

- In some cases, we can even compute the sum of individual estimates and still stay admissible.
- Summation often leads to much higher estimates than maximization, so it is important to understand under which conditions summation of heuristics is admissible.

Adding Several Abstractions: Example (1)







Additivity	Outlook	Summary
0000000		00

Additivity

Additivity	Outlook	
00000000		

Orthogonality of Abstractions

Definition (Orthogonal)

Let α_1 and α_2 be abstractions of transition system \mathcal{T} .

We say that α_1 and α_2 are orthogonal if for all transitions $s \xrightarrow{\ell} t$ of \mathcal{T} , we have $\alpha_i(s) = \alpha_i(t)$ for at least one $i \in \{1, 2\}$.

Additivity	Outlook	Summary
00000000		00

Affecting Transition Labels

Definition (Affecting Transition Labels)

Let \mathcal{T} be a transition system, and let ℓ be one of its labels.

We say that ℓ affects \mathcal{T} if \mathcal{T} has a transition $s \xrightarrow{\ell} t$ with $s \neq t$.

Theorem (Affecting Labels vs. Orthogonality)

Let α_1 and α_2 be abstractions of transition system \mathcal{T} . If no label of \mathcal{T} affects both \mathcal{T}^{α_1} and \mathcal{T}^{α_2} , then α_1 and α_2 are orthogonal.

(Easy proof omitted.)

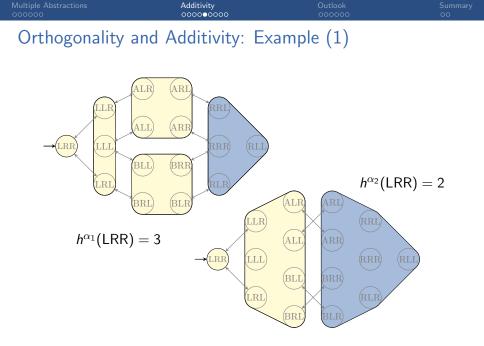
Additivity	Outlook	Summary
0000000		00

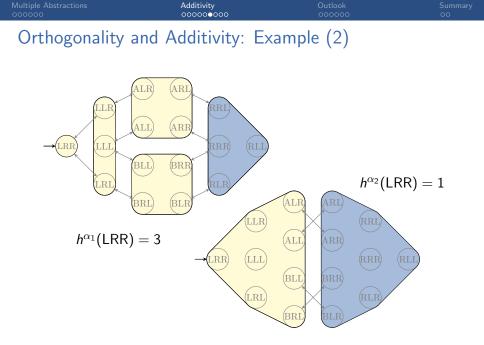
Orthogonality and Additivity

Theorem (Additivity for Orthogonal Abstractions)

Let $h^{\alpha_1}, \ldots, h^{\alpha_n}$ be abstraction heuristics of the same transition system such that α_i and α_j are orthogonal for all $i \neq j$.

Then $\sum_{i=1}^{n} h^{\alpha_i}$ is a safe, goal-aware, admissible and consistent heuristic for Π .





Proof.

We prove goal-awareness and consistency;

the other properties follow from these two.

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_\star \rangle$ be the concrete transition system. Let $h = \sum_{i=1}^n h^{\alpha_i}$.

Proof.

We prove goal-awareness and consistency;

the other properties follow from these two.

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ be the concrete transition system. Let $h = \sum_{i=1}^n h^{\alpha_i}$. Goal-awareness: For goal states $s \in S_*$, $h(s) = \sum_{i=1}^n h^{\alpha_i}(s) = \sum_{i=1}^n 0 = 0$ because all individual

. . .

abstraction heuristics are goal-aware.

Additivity ooooooo●o	Outlook 000000	

Proof (continued).

Consistency: Let $s \xrightarrow{o} t \in T$. We must prove $h(s) \leq c(o) + h(t)$.

Additivity	Outlook	
00000000		

Proof (continued).

Consistency: Let $s \xrightarrow{o} t \in T$. We must prove $h(s) \leq c(o) + h(t)$. Because the abstractions are orthogonal, $\alpha_i(s) \neq \alpha_i(t)$ for at most one $i \in \{1, ..., n\}$.

Proof (continued).

Consistency: Let $s \xrightarrow{o} t \in T$. We must prove $h(s) \leq c(o) + h(t)$. Because the abstractions are orthogonal, $\alpha_i(s) \neq \alpha_i(t)$ for at most one $i \in \{1, ..., n\}$.

Case 1: $\alpha_i(s) = \alpha_i(t)$ for all $i \in \{1, \ldots, n\}$.

Proof (continued).

Consistency: Let $s \xrightarrow{o} t \in T$. We must prove $h(s) \leq c(o) + h(t)$. Because the abstractions are orthogonal, $\alpha_i(s) \neq \alpha_i(t)$ for at most one $i \in \{1, ..., n\}$.

. . .

Case 1: $\alpha_i(s) = \alpha_i(t)$ for all $i \in \{1, \dots, n\}$. Then $h(s) = \sum_{i=1}^n h^{\alpha_i}(s)$ $= \sum_{i=1}^n h^*_{\mathcal{T}^{\alpha_i}}(\alpha_i(s))$ $= \sum_{i=1}^n h^*_{\mathcal{T}^{\alpha_i}}(\alpha_i(t))$ $= \sum_{i=1}^n h^{\alpha_i}(t)$ $= h(t) \le c(o) + h(t)$.

Additivity	Outlook	Summary
00000000		00

Proof (continued).

Case 2: $\alpha_i(s) \neq \alpha_i(t)$ for exactly one $i \in \{1, ..., n\}$. Let $k \in \{1, ..., n\}$ such that $\alpha_k(s) \neq \alpha_k(t)$.

Proof (continued).

Case 2:
$$\alpha_i(s) \neq \alpha_i(t)$$
 for exactly one $i \in \{1, ..., n\}$.
Let $k \in \{1, ..., n\}$ such that $\alpha_k(s) \neq \alpha_k(t)$.
Then $h(s) = \sum_{i=1}^n h^{\alpha_i}(s)$
 $= \sum_{i \in \{1, ..., n\} \setminus \{k\}} h^*_{T^{\alpha_i}}(\alpha_i(s)) + h^{\alpha_k}(s)$
 $\leq \sum_{i \in \{1, ..., n\} \setminus \{k\}} h^*_{T^{\alpha_i}}(\alpha_i(t)) + c(o) + h^{\alpha_k}(t)$
 $= c(o) + \sum_{i=1}^n h^{\alpha_i}(t)$
 $= c(o) + h(t)$,

where the inequality holds because $\alpha_i(s) = \alpha_i(t)$ for all $i \neq k$ and h^{α_k} is consistent.

	Outlook	
	00000	

Outlook

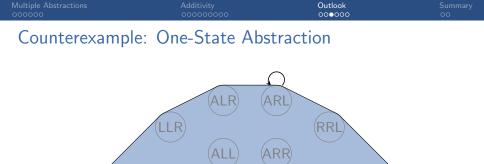
Using Abstraction Heuristics in Practice

In practice, there are conflicting goals for abstractions:

- we want to obtain an informative heuristic, but
- want to keep its representation small.

Abstractions have small representations if

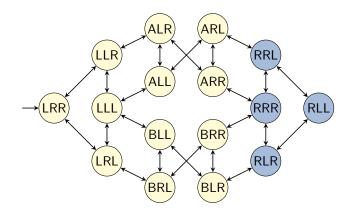
- there are few abstract states and
- there is a succinct encoding for α .



One-state abstraction: $\alpha(s) := \text{const.}$

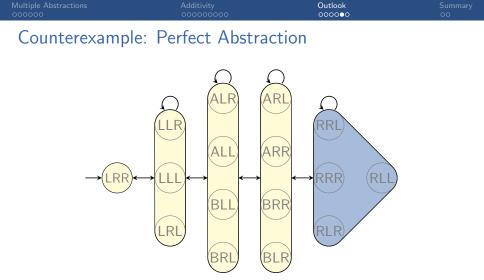
- $+\,$ very few abstract states and succinct encoding for α
- completely uninformative heuristic

Counterexample: Identity Abstraction



Identity abstraction: $\alpha(s) := s$.

- $+\,$ perfect heuristic and succinct encoding for α
- too many abstract states



Perfect abstraction: $\alpha(s) := h^*(s)$.

- + perfect heuristic and usually few abstract states
- usually no succinct encoding for α

Multiple Abstractions	Additivity	Outlook	
		000000	

Automatically Deriving Good Abstraction Heuristics

Abstraction Heuristics for Planning: Main Research Problem

Automatically derive effective abstraction heuristics for planning tasks.

 we will study two state-of-the-art approaches in Chapters D3–D8

	Outlook	Summary
		00

Summary

	Outlook 000000	Summary ○●

Summary

- Often, multiple abstractions are used. They can always be maximized admissibly.
- Adding abstraction heuristics is not always admissible.
 When it is, it leads to a stronger heuristic than maximizing.
- Abstraction heuristics from orthogonal abstractions can be added without losing admissibility or consistency.
- One sufficient condition for orthogonality is that all abstractions are affected by disjoint sets of labels.
- Practically useful abstractions are those which give informative heuristics, yet have a small representation.
- Coming up with good abstractions automatically is the main research challenge when applying abstraction heuristics in planning.