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D2.1 Multiple Abstractions
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Multiple Abstractions

» One important practical question is how to come up
with a suitable abstraction mapping «.

> Indeed, there is usually a huge number of possibilities,
and it is important to pick good abstractions
(i.e., ones that lead to informative heuristics).

» However, it is generally not necessary to commit
to a single abstraction.
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Combining Multiple Abstractions

Maximizing several abstractions:
» Each abstraction mapping gives rise to an admissible heuristic.

» By computing the maximum of several admissible heuristics,
we obtain another admissible heuristic which dominates
the component heuristics.

» Thus, we can always compute several abstractions and
maximize over the individual abstract goal distances.

Adding several abstractions:

» In some cases, we can even compute the sum
of individual estimates and still stay admissible.
» Summation often leads to much higher estimates
than maximization, so it is important to understand
under which conditions summation of heuristics is admissible.
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Adding Several Abstractions: Example (1)
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Adding Several Abstractions: Example (2)

he2(LRR) = 2
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Adding Several Abstractions: Example (3)

he2(LRR) = 1
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D2.2 Additivity
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Orthogonality of Abstractions

Definition (Orthogonal)
Let a1 and ap be abstractions of transition system 7.

We say that a; and asp are orthogonal if for all transitions s Lt
of T, we have a;(s) = «;(t) for at least one i € {1,2}.
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Affecting Transition Labels

Definition (Affecting Transition Labels)
Let 7 be a transition system, and let £ be one of its labels.
We say that ¢ affects 7 if T has a transition s L twith s #t.

Theorem (Affecting Labels vs. Orthogonality)
Let a1 and ay be abstractions of transition system T .

If no label of T affects both T and T2,
then oy and « are orthogonal.

(Easy proof omitted.)
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Orthogonality and Additivity

Theorem (Additivity for Orthogonal Abstractions)

Let h*t, ..., h®" be abstraction heuristics of the same transition
system such that a; and o are orthogonal for all i # j.

Then 37, h™i is a safe, goal-aware, admissible and consistent
heuristic for I1.
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Orthogonality and Additivity: Example (1)

ho2(LRR) = 2

h°1(LRR) = 3
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Orthogonality and Additivity: Example (2)

he2(LRR) = 1
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Orthogonality and Additivity: Proof (1)

Proof.
We prove goal-awareness and consistency;
the other properties follow from these two.

Let 7 =(S,L,c, T,so,Ss) be the concrete transition system.
Let h=)"", h%.

Goal-awareness: For goal states s € S,

h(s) =71 h%(s) =i, 0 =0 because all individual
abstraction heuristics are goal-aware.
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Orthogonality and Additivity: Proof (2)

Proof (continued).

Consistency: Let s % t € T. We must prove h(s) < c(o) + h(t).

Because the abstractions are orthogonal, «;(s) # «;(t)
for at most one i € {1,...,n}.

Case 1: aj(s) = «(t) for all i € {1,...,n}.
Then h(s) =>_7_; h%i(s)

= 2it1 hai(@i(s))

= 2i1 e (ai(2))

=271 hi(t)

= h(t) < c(o) + h(t).

Additivity
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Orthogonality and Additivity: Proof (3)

Proof (continued).
Case 2: «j(s) # «aj(t) for exactly one i € {1,...,n}.
Let k € {1,...,n} such that a(s) # a(t).
Then h(s) =>"7_; h%i(s)
= 2ieft,.np\ky rei(ai(s)) + h%(s)
>ic(t,n\fky Mrei (i(t)) 4 c(o) + h*(t)
c(0) + Xoiy h*i(t)
= c(0) + h(1),
where the inequality holds because «(s) = «;(t) for all i # k
and h“ is consistent. 0l
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Using Abstraction Heuristics in Practice

In practice, there are conflicting goals for abstractions:
» we want to obtain an informative heuristic, but

> want to keep its representation small.

Abstractions have small representations if
> there are few abstract states and

> there is a succinct encoding for a.
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Counterexample: ldentity Abstraction

Identity abstraction: a(s) :=s.
+ perfect heuristic and succinct encoding for «
— too many abstract states
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Counterexample: One-State Abstraction
One-state abstraction: «(s) := const.
+ very few abstract states and succinct encoding for «
— completely uninformative heuristic
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Counterexample: Perfect Abstraction
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Perfect abstraction: a(s) := h*(s).
+ perfect heuristic and usually few abstract states
— usually no succinct encoding for «
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Automatically Deriving Good Abstraction Heuristics

Abstraction Heuristics for Planning: Main Research Problem
Automatically derive effective abstraction heuristics
for planning tasks.

~ we will study two state-of-the-art approaches
in Chapters D3-D8
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D2.4 Summary
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Summary

» Often, multiple abstractions are used.
They can always be maximized admissibly.

» Adding abstraction heuristics is not always admissible.
When it is, it leads to a stronger heuristic than maximizing.

» Abstraction heuristics from orthogonal abstractions
can be added without losing admissibility or consistency.

» One sufficient condition for orthogonality is that all
abstractions are affected by disjoint sets of labels.

> Practically useful abstractions are those which give
informative heuristics, yet have a small representation.

» Coming up with good abstractions automatically
is the main research challenge when applying
abstraction heuristics in planning.
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