Planning and Optimization
B5. Computational Complexity of Planning: Background

Gabriele Roger and Thomas Keller

Universitat Basel

October 15, 2018



Content of this Course

—I Tasks |

Progression/

—I Heuristics |

= MDPs |

—| Uninformed Search |

— Probabilistic ——

—I Heuristic Search |

Monte-Carlo
Methods




Motivation
®00

Motivation



Motivation
o] Yo}

$

$

How Difficult is Planning?

Plan Existence S CE-Completeness Complexity Results

Using progression and a state-space search algorithm like
breadth-first search, planning can be solved in polynomial time
in the size of the transition system (i.e., the number of states).

However, the number of states is exponential in the number
of state variables, and hence in general exponential
in the size of the input to the planning algorithm.

Do non-exponential planning algorithms exist?

What is the precise computational complexity of planning?
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Why Computational Complexity?

m understand the problem
m know what is not possible
m find interesting subproblems that are easier to solve

m distinguish essential features from syntactic sugar

m Is STRIPS planning easier than general planning?
m Is planning for FDR tasks harder than for propositional tasks?
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Background: Complexity Theory
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Reminder: Complexity Theory

Need to Catch Up?

m We assume knowledge of complexity theory:
m languages and decision problems
m Turing machines: NTMs and DTMs;
polynomial equivalence with other models of computation
m complexity classes: P and NP
m polynomial reductions
m If you are not familiar with these topics, we recommend
Chapters C8, E1, E2 of the Theory of Computer Science
course at https://dmi.unibas.ch/de/studium/
computer-science-informatik/fs18/
main-lecture-theory-of-computer-science/

Note: the space complexity classes (DSPACE, NSPACE, PSPACE,
NPSPACE) go beyond the content of the prerequisite course.


https://dmi.unibas.ch/de/studium/computer-science-informatik/fs18/main-lecture-theory-of-computer-science/
https://dmi.unibas.ch/de/studium/computer-science-informatik/fs18/main-lecture-theory-of-computer-science/
https://dmi.unibas.ch/de/studium/computer-science-informatik/fs18/main-lecture-theory-of-computer-science/
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Turing Machines: Conceptually

infinite tape
~-|0jgg]plalclalcfallc[alaja] |-

- |—>
read-write head
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Turing Machines

Definition (Nondeterministic Turing Machine)

A nondeterministic Turing machine (NTM) is a 6-tuple
(X,0, Q, qo, gy, ) with the following components:
m input alphabet X and blank symbol O ¢ X
m alphabets always nonempty and finite
m tape alphabet ¥ =X U {00}
m finite set @ of internal states with initial state gp € Q
and accepting state gy € Q
m nonterminal states Q' := Q \ {gv}

m transition relation ¢ : (Q' x Xg) — 2@xTox{-1,+1}
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Turing Machines

Definition (Nondeterministic Turing Machine)

A nondeterministic Turing machine (NTM) is a 6-tuple
(X,0, Q, qo, gy, ) with the following components:
m input alphabet X and blank symbol O ¢ X
m alphabets always nonempty and finite
m tape alphabet ¥ =X U {00}
m finite set @ of internal states with initial state gp € Q
and accepting state gy € Q
m nonterminal states Q' := Q \ {gv}

m transition relation § : (@ x Xg) — 29xTox{-1+1}

Deterministic Turing machine (DTM):
10(g,s)] <1 forall (q,5) € Q x X
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Turlng Machines: Accepted Words

m Initial configuration
m state qo
m input word on tape, all other tape cells contain [
m head on first symbol of input word
m Step
m If in state g, reading symbol s, and (q’,s’, d) € 4(g, s) then
m the NTM can transition to state ¢’, replacing s with s’ and
moving the head one cell to the left/right (d =-1/+1).
m Input word (€ X*) is accepted if some sequence of transitions
brings the NTM from the initial configuration into state sy.
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Acceptance in Time and Space

Definition (Acceptance of a Language in Time/Space)
Let f : Ng — Np.

A NTM accepts language L C * in time f if it accepts each w € L
within f(Jw|) steps and does not accept any w ¢ L (in any time).

It accepts language L C X* in space f if it accepts each w € L
using at most f(|w|) tape cells and does not accept any w ¢ L.
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Time and Space Complexity Classes

Definition (DTIME, NTIME, DSPACE, NSPACE)
Let f: Ng — Np.

Complexity class DTIME(f) contains all languages
accepted in time f by some DTM.

Complexity class NTIME(f) contains all languages
accepted in time f by some NTM.

Complexity class DSPACE(f) contains all languages
accepted in space f by some DTM.

Complexity class NSPACE(f) contains all languages
accepted in space f by some NTM.

Summary
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Polynomial Time and Space Classes

Let P be the set of polynomials p : Ng — Np
whose coefficients are natural numbers.

Definition (P, NP, PSPACE, NPSPACE)

More Complexity Results

Summar

P = U,cp DTIME(p)

NP = ,cp NTIME(p)
PSPACE = (J,,.» DSPACE(p)
NPSPACE = J . » NSPACE(p)
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Polynomial Complexity Class Relationships

Theorem (Complexity Class Hierarchy)
P € NP € PSPACE = NPSPACE

Proof.

P C NP and PSPACE C NPSPACE are obvious because
deterministic Turing machines are a special case of
nondeterministic ones.

NP C NPSPACE holds because a Turing machine can only visit
polynomially many tape cells within polynomial time.

PSPACE = NPSPACE is a special case of a classical result known
as Savitch's theorem (Savitch 1970). O

v




(Bounded-Cost) Plan Existence
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The Propositional Planning Problem

Definition (Plan Existence)

The plan existence problem (PLANEX)

is the following decision problem:

GIVEN: propositional planning task [1
QUESTION: s there a plan for 17

~> decision problem analogue of satisficing planning

Definition (Bounded-Cost Plan Existence)

The bounded-cost plan existence problem (BCPLANEX)

is the following decision problem:

GIVEN: propositional planning task [1, cost bound K € Ny
QUESTION: s there a plan for I with cost at most K?

~ decision problem analogue of optimal planning
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Plan Existence vs. Bounded-Cost Plan Existence

Theorem (Reduction from PLANEX to BCPLANEX)

PLANEX <, BCPLANEX

Proof.

Consider a propositional planning task 1 with n state variables.
Let cmax be the maximal cost of all actions of T1.

I is solvable iff there is solution with cost at most Cmax - (27 — 1)
because a solution need not visit any state twice.

~» map instance [N of PLANEX to instance (I, cmax - (2" — 1))
of BCPLANEX

~» polynomial reduction O
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PSPACE-Completeness of Planning
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I\/Iembershlp in PSPACE

BCPLANEX € PSPACE I

Proof

Show BCPLANEX € NPSPACE and use Savitch's theorem.
Nondeterministic algorithm:
def plan((V, 1, 0,~), K):
s.=1
k=K
loop forever:
if s |=: accept
guess o0 € O
if s [~ pre(o): fail
if cost(o) > k: fail
s :=s[o]
k := k — cost(o) O
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PSPACE-Hardness

Idea: generic reduction

m For an arbitrary fixed DTM M with space bound polynomial p
and input w, generate planning task which is solvable iff
M accepts w in space p(|w]).

m For simplicity, restrict to TMs which never move to the left
of the initial head position (no loss of generality).
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Reduction: State Variables

Let M = (¥,00,Q, qo, gv,J) be the fixed DTM,
and let p be its space-bound polynomial.

Given input wy ... w,, define relevant tape positions
X :={1,...,p(n)}.

State Variables

m stateq forall g € Q
m head; for all i € X U {0, p(n) + 1}
m content; , forall i € X, a€ ¥
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Reduction: Initial State

Let M = (¥X,00, Q, qo, gv,9) be the fixed DTM,
and let p be its space-bound polynomial.

Given input wy ... w,, define relevant tape positions
X :={1,...,p(n)}.

Initial State

Initially true:

B stateg,

m head;

m content;,, forall i€ {1,...,n}

m content; for all i € X\ {1,...,n}
Initially false:

m all others
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Reduction: Operators

Let M = (¥,00,Q, qo, gv,d) be the fixed DTM,
and let p be its space-bound polynomial.

Given input wy ... w,, define relevant tape positions
X :={1,...,p(n)}.

Operators

One operator for each transition rule §(g,a) = (¢’,d’, d)
and each cell position i € X:

m precondition: state; A head; A content; ,

m effect: —state; A —head; A —content; ,
N statey A head; 4 A content;
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Reduction: Goal

Let M = (¥,00,Q, qo, gv,9) be the fixed DTM,
and let p be its space-bound polynomial.

Given input wy ... w,, define relevant tape positions
X :={1,...,p(n)}.

stateqy I
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PSPACE Completeness of STRIPS Plan Existence

Theorem (PSPACE-Completeness; Bylander, 1994)

PrLAaNEX and BCPLANEX are PSPACE-complete.
This is true even if only STRIPS tasks are allowed.

Proof

Membership for BCPLANEX was already shown.

Hardness for PLANEX follows because we just presented a
polynomial reduction from an arbitrary problem in PSPACE to
PLANEX. (Note that the reduction only generates STRIPS tasks.)

Membership for PLANEX and hardness for BCPLANEX follow
from the polynomial reduction from PLANEX to BCPLANEX. [

v
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More Complexity Results

In addition to the basic complexity result presented in this chapter,
there are many special cases, generalizations, variations and related
problems studied in the literature:

m different planning formalisms

m e.g., finite-domain representation, nondeterministic effects,
partial observability, schematic operators, numerical state
variables

m syntactic restrictions of planning tasks

m e.g., without preconditions, without conjunctive effects,
STRIPS without delete effects

m semantic restrictions of planning task

m e.g., restricting variable dependencies ( “causal graphs”)
m particular planning domains

m e.g., Blocksworld, Logistics, FreeCell
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Complexity Results for Different Planning Formalisms

Some results for different planning formalisms:
m FDR tasks:

m same complexity as for propositional tasks (“folklore”)
m also true for the SAS™ special case

m nondeterministic effects:

m fully observable: EXP-complete (Littman, 1997)

m unobservable: EXPSPACE-complete (Haslum & Jonsson,
1999)

m partially observable: 2-EXP-complete (Rintanen, 2004)

m schematic operators:

m usually adds one exponential level to PLANEX complexity
m e.g., classical case EXPSPACE-complete (Erol et al., 1995)

® numerical state variables:
m undecidable in most variations (Helmert, 2002)
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Summary

PSPACE: decision problems solvable in polynomial space
P C NP C PSPACE = NPSPACE.
Propositional planning is PSPACE-complete.

This is true both for satisficing and optimal planning.
The hardness proof is a polynomial reduction that translates
an arbitrary polynomial-space DTM into a STRIPS task:

m DTM configurations are encoded by state variables.
m Operators simulate transitions between DTM configurations.
m The DTM accepts an input iff there is a plan

for the corresponding STRIPS task.

This implies that there is no polynomial algorithm
for classical planning unless P = PSPACE.

It also means that planning is not polynomially reducible
to any problem in NP unless NP = PSPACE.
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