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Search Direction

Search direction
m one dimension for classifying search algorithms
m forward search from initial state to goal based on progression
m backward search from goal to initial state based on regression

m bidirectional search
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Search Direction

Search direction
m one dimension for classifying search algorithms
m forward search from initial state to goal based on progression
m backward search from goal to initial state based on regression

m bidirectional search

Today we will look into progression and regression planning.
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Reminder: Interface for Heuristic Search Algorithms

Abstract Interface Needed for Heuristic Search Algorithms

init()
is_goal(s)
succ(s)

cost(a)

h(s)

ad

lard

lard
ARy
g
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returns initial state

tests if s is a goal state

returns all pairs (a,s’) with s 2 &’
returns cost of action a

returns heuristic value for state s

Summary
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Planning by Forward Search: Progression

Progression: Computing the successor state s[o] of a state s
with respect to an operator o.
Progression planners find solutions by forward search:

m start from initial state

m iteratively pick a previously generated state and progress it
through an operator, generating a new state

m solution found when a goal state generated

pro: very easy and efficient to implement
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Search Space for Progression

Search Space for Progression

search space for progression in a planning task M= (V. /I, O,~)
(search states are world states s of I1;
actions of search space are operators o € O)

m init() ~> returns /

m is.goal(s) ~>testsifsf=+

m succ(s) ~ returns all pairs (o, s[o])
where o € O and o is applicable in s
m cost(o) ~> returns cost(o) as defined in I
m h(s) ~~ estimates cost from s to v (~ Parts C-F)
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Progression Planning Example

Example of a progression search
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Progression Planning Example

Example of a progression search
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Progression Planning Example

Example of a progression search
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Example of a progression search
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Progression Planning Example

Example of a progression search
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Progression Planning Example

Example of a progression search
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Progressmn Planning Example

Example of a progression search
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Forward Search vs. Backward Search

Searching planning tasks in forward vs. backward direction
is not symmetric:
m forward search starts from a single initial state;
backward search starts from a set of goal states
m when applying an operator o in a state s in forward direction,
there is a unique successor state s';
if we just applied operator o and ended up in state s/,
there can be several possible predecessor states s
~> in most natural representation for backward search in planning,
each search state corresponds to a set of world states
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Planning by Backward Search: Regression

Regression: Computing the possible predecessor states regr(S’, 0)
of a set of states S’ (“subgoal”) given the last operator o
that was applied.

~> formal definition in next chapter

Regression planners find solutions by backward search:
m start from set of goal states

m iteratively pick a previously generated subgoal (state set) and
regress it through an operator, generating a new subgoal

m solution found when a generated subgoal includes initial state

pro: can handle many states simultaneously
con: basic operations complicated and expensive
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Search Space Representation in Regression Planners

identify state sets with logical formulas (again):

m each search state corresponds to a set of world states
(“subgoal™)

m each search state is represented by a logical formula:
¢ represents {s € S | s |= ¢}

B many basic search operations like detecting duplicates
are NP-complete or coNP-complete

Summar
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Search Space for Regression

Search Space for Regression

search space for regression in a planning task M = (V,/, 0, ~)
(search states are formulas ¢ describing sets of world states;
actions of search space are operators o € O)

m init() ~> returns 7y
m isgoal(p) ~testsif I o
m succ(yp) ~~ returns all pairs (o, regr(y, 0))
where o € O and regr(p, 0) is defined
m cost(o) ~> returns cost(o) as defined in I
m h(p) ~~ estimates cost from [ to ¢ (~~ Parts C-F)
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Regression Planning Example (Depth-first Search)
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Regression Planning Example (Depth-first Search)
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Regression Planning Example (Depth-first Search)

1 = regr(y, —) 01— 7Y
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Regression Planning Example (Depth-first Search)

o1 = regr(y, —) Y2 —> P — Y
@2 = regr(¢1, —)

\ /
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Regression Planning Example (Depth-first Search)

o1 = regr(y, —) 3 —> P2 ——> P1 —>
2 = regr(p1, —)
3 = regr(ypa, —), | = ¢3
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Summar



Regression for STRIPS Tasks

[ Jele]e]

Regression for STRIPS Tasks



Ilm >duction ) 5i0 .t o Regression for STRIPS Tasks

0e00

Regressmn for STRIPS Plannlng Tasks

Regression for STRIPS planning tasks is much simpler than the
general case:

m Consider subgoal ¢ that is conjunction of atoms a; A --- A a,
(e.g., the original goal ~y of the planning task).
m First step: Choose an operator o that deletes no a;.
m Second step: Remove any atoms added by o from ¢.
m Third step: Conjoin pre(o) to .
~> Qutcome of this is regression of ¢ w.r.t. o.
It is again a conjunction of atoms.

optimization: only consider operators adding at least one a;
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STRIPS Regression

Definition (STRIPS Regression)

Let o = @1 A--- A @, be a conjunction of atoms, and
let o be a STRIPS operator which adds the atoms ay, ..., ak
and deletes the atoms d, ..., d;.

The STRIPS regression of ¢ with respect to o is

s if ¢; = d; for some i,

sregr{(p, 0) = {pre(o)A/\({ma---v%}\{al""’ak})

else

Summary

Note: sregr(i, 0) is again a conjunction of atoms, or L.
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Does this Capture the Idea of Regression?

For our definition to capture the concept of regression,
it should satisfy the following property:

Regression Property

For all sets of states described by a conjunction of atoms ¢,
all states s and all STRIPS operators o,

s = sregr(p,0) iff s[o] | ¢.

This is indeed true. We do not prove it now because we prove
this property for general regression (not just STRIPS) later.
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Summary

Progression search proceeds forward from the initial state.

In progression search, the search space is identical
to the state space of the planning task.

Regression search proceeds backwards from the goal.

Each search state corresponds to a set of world states,
for example represented by a formula.

Regression is simple for STRIPS operators.

The theory for general regression is more complex.
This is the topic of the following chapters.
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